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Introduction

o Classical/neura synthesis of control systems
Linear control theory
Artificial neural networks

e Adaptivecritics
Learninreal time
Cope with noise
Cope with many variables
Plan over time in a complex way

o Adaptation takes place during every time interval:

Action network takes immediate control action

Critic network estimates projected cost



Motivation

Provide full envelope control

Multiphase learning
Initialization (off-line), motivated by linear controllers
On-line training, during full-scale ssmulations or aircraft testing

On-line training improves performance w.r.t. linear controllers:
Differences between actual and assumed dynamic models
Nonlinear effects not captured in linearizations

Potential applications:

Incorporate pilot's knowledge into controller a-priori
Uninhabited air vehicles control

Aerobatic flight control
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Aircraft Control Design Approach

Modeling
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Linear Control Design

Linearizations:
x(t) = f[x(t), u(t), p(t)]
g

Ax(t) = FAx(t) + GAu(t)
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Aircraft Flight Envelope {V, H}:
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Proportional Integral Linear Control Law

Quadratic cost function:
t f

J= lim = fL[xa ),u(r)dr
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Minimizing Linear Control Law:

u(t) = -Cxa(t) = -CpX(t)- €, &(t)



Linear Proportional-Integral Controller
Closed-loop stahility:  x(t) - x., u(t) - u., y(t) -0

y«t)

+
ul
+ ¥ &
F j G H, H,
) A
y -y U I x(t)
’ > Cp 1 —{ AIRCRAFT >
C, |

Omitting A's, for smplicity:
vt =ys(t)-ye, wt)=ult)-uc...., y. = desired output, (x,u,) = Set point.



Proportional-Integral Neural Network Controller

X(t)
,

Aug(t) X(t)
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Where: ¥(t) - 0, ¥<(t) - ye. ~ : Algebraic Trajning,’; On-line Training.



Role of Forward Neural Network
in the Control System

* NN represents commanded trim control settings,
u, = NN(Y.),.

scheduled by a, throughout full flight envelope:
OR={V,H, y i, B}

 Trimsettings commanded by y. are defined as

f[Xc(t)’“c(t)’P(t)] =0,

Trim Map Modelling:

Uc(xe,p)=fuk: (XpXJoor, fx.puk)=0, k=1 ..., p|



One Layer Sigmoidal Forward Neural Network

Training set:

{yck’ ak’ uck} k=1,..p

Output: z = NN(p)
Input: p

Input weight matrix:
W={w}, (sxq)

Output weight matrix: g - inputs, s - nodes, m - outputs
V={v}, (mxyg)
n_ —oo<N< o
Input bias; d o(n)= L ,
e"+1] |-1<o(n)<1



Forward Neural Network Initialization Equations

Requirements: Training set:

Z(Yck’ ak) = uck’ D k {ka’ ak’ uck}k: 1,..,p

Initialization equations:

K _ < K
U = Zv”a(ni ) |=1,...,mandk=1,..,p
]

q - kK _r. kT K'qT
nik:Zw,j plj<+di, with p" =[yc a° ]
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Forward Neural Network Initialization Equations Solution

Existence of solution:

* No solution iff rank (S | u,;) # rank (S)
 Unique solution iff rank (S | w,)) =rank (S) =s
* An(s—r)-family of solutionsiff rank (S |u;)) =rank (S) =r <s

Suggested methods of solution:

—»+ Reduce number of nodes until s=r, I.e., eliminate columnsin S
— « [Exact algebraic solution where sis chosen equal to p (square S)
— « Approximate solution using pseudoinverse, v, = SPlu, with s< p:

Network
Superpositi
on




Initialized Full-envelope Forward Neural Network

Full-envelope command input:

Ye = [VoV o BT

I

XC:[VCJ/CqC HCrCIBC pC#C]T
u; =[Ol &, A R’

[S = 200 (nodexs)




Actual Full-envelope Aircraft Trim Map
Trim settings (from f]x(t), u (t), p(t)] = 0) vs. V (m/s) and H (m):
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Full-envelope Neural Network Modeling of Aircraft Trim Map

Forward neural network output vs. V (m/s) and H (m):
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Proportional-Integral Neural Network Controller:
Action and Critic Networks Implementation
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Adaptive Critic Implementation:
Action Network On-line Training

Train action network, at timet, holding the critic parameters fixed
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[Balakrishnan and Biega, 1996]



Adaptive Critic Implementation:
Critic Network On-line Training

Train critic network, at timet, holding the action parameters fixed

. I

| » Aircraft Model |

x(t) L * Transition Matrices :

a '» NN 3| * State Prediction :
I

' :

| v .

¢ | Utility Function :

: Derivatives |

NN | |
|

I NNC(oId) :

S e .

NN Target | Target Cost «— :

: Gradient |

|
l

l

_ _ Target Generation
[Balakrishnan and Biega, 1996]



G (Mis) g (MVs)  je (MVs)  V, (MVs)

110+
100+

8

oON O

3 8

Example: Full-envelope Large-angle Aircraft Maneuver

Command-input time history:
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Summary and Conclusions

« Adaptive critic flight control design:

/

“ Algebraic pre-training based on available linear control knowledge

/

% On-line training during simulations (full envelope, severe conditions)

Objective: improve global aircraft control performance

 Achievements:

Systematic approach for designing nonlinear control systems
Innovative neural network (off-line and on-line) training techniques

» Results: improved performance during full-envel ope large-angle maneuvers

Future Work:

Continue testing and implement constrained adaptive critic designs!



