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Introduction

• Classical/neural synthesis of control systems
Linear control theory
Artificial neural networks

• Adaptive critics
Learn in real time
Cope with noise
Cope with many variables
Plan over time in a complex way
...

Action network takes immediate control action

Critic network estimates projected cost

• Adaptation takes place during every time interval:



Motivation

• Provide full envelope control

• Multiphase learning
Pre-training (off-line), motivated by linear controllers
On-line training, during full-scale simulations or aircraft testing

• On-line training improves performance w.r.t. linear controllers:
Differences between actual and assumed dynamic models
Nonlinear effects not captured in linearizations

• Potential applications:
Incorporate pilot's knowledge into controller a-priori
Uninhabited air vehicles control
Aerobatic flight control



Table of Contents

• Aircraft control design approach

• Pre-training phase

• Adaptive critic neural network control

• On-line training: 

Resilient backpropagation algorithm

Improvements and implementation

• Results: large angle maneuvering



-10

0

10
50 100 150 200 250

0

2000

4000

6000

8000

10000

12000

14000

16000

Full Envelope Control!Full Envelope Control!Full Envelope Control!Full Envelope Control!

LinearizationsLinearizationsLinearizationsLinearizations

( ) ( ) ( )[ ]ttt uxfx ,=&

C

Linear ControlLinear ControlLinear ControlLinear Control
( ) ( ) ( )[ ]ttt uxfx ,=&

InitializationInitializationInitializationInitialization

( ) ( ) ( )[ ]ttt uxfx ,=&

ModelingModelingModelingModeling

OnOnOnOn----line Trainingline Trainingline Trainingline Training

Aircraft Control Design Approach



60 80 100 120 140 160 180 200 220 240 260
0

2000

4000

6000

8000

10000

12000

14000

16000

Linear Control Design

LinearizationsLinearizationsLinearizationsLinearizations::::

( ) ( ) ( ) ( )[ ]tttt puxfx ,,=&

( ) ( ) ( )
( ) ( ) ( )




∆+∆=∆
∆+∆=∆

ttt
ttt

LDLDLDLDLD

LLLLL

uGxFx
uGxFx

&

&

Aircraft Flight Envelope

A
ltitude (m

)

Velocity (m/s)

( ) ( ) ( )ttt uGxFx ∆+∆=∆&

Linear control designLinear control designLinear control designLinear control design::::

• Longitudinal
• Lateral-directional



Linear Proportional-Integral Controller

Closed-loop stability: ( ) ,ct xx → ( ) 0~ →ty( ) ,ct uu →

yc = desired output,  (xc,uc) = set point.
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Proportional-Integral Neural Network Controller
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Where: ( ) ,0~ →ty ( ) ,cs t yy → : Algebraic Training, : On-line Training.
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Proportional-Integral Neural Network Controller: 
Action and Critic Networks Implementation

: On-line Training
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Adaptive Critic Implementation: Action Network 
On-line Training

Train action network, at time t, holding the critic parameters fixed

[Balakrishnan and Biega, 1996]
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Adaptive Critic Implementation: Critic Network 
On-line Training

Train critic network, at time t, holding the action parameters fixed

[Balakrishnan and Biega, 1996]
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Aircraft Model
• Transition Matrices
• State Prediction
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Resilient Backpropagation for Network Error Minimization

During each epoch, the algorithm adjusts wk of an increment ∆wk:

w(t) = w0

w(t + 1)

wk+1 = wk + ∆wk wkwk+1 RProp

At time t, given the weight vector, w(t), Resilient Backpropagation 
(RProp) minimizes E, by computing a new weight vector w(t + 1),

t ≡ Real time
Epoch ≡ Algorithm iteration (indexed by k)



MATLAB® Resilient Backpropagation Algorithm

*
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0<
∂
∂

kw
E

The size and direction of each weight's increment, ∆wk, are based on the 
sign of the gradient of the performance, E, w.r.t. the weight, w

* *

*

0>
∂
∂

kw
E

0
1

>
∂
∂

∂
∂

− kk w
E

w
E 0

1
<

∂
∂

∂
∂

− kk w
E

w
E

k

k-1 k-1
k



Improving Resilient Backpropagation

∆∆∆∆w0 = [0.07 ... 0.07]T ∆∆∆∆w0 = f1 |w0| + f2

Proportional initial increment

MATLAB® Algorithm Improved Algorithm

**

* *

No backtracking Backtracking

No backtracking, with local minima Backtracking, with local minima

Arbitrary initial increment



Performance Comparison: 
Trained Weights Distribution w.r.t. Initial Weights Distribution

|w|

Initial Weights (w0)

Final Weights (Proportional Initial Increment) 

Final Weights (MATLAB®)

Weight vector element index
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Estimate the sign of the gradient, without computing       :
w
E

∂
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Speed increase: O(200)

sgn[σ(n)] = sgn[n]
sgn[σ′ (n)] > 0, ∀n

Only few epochs are used to minimize E, at time t:
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Summary and Conclusions

• Adaptive critic flight control design:

Objective: improve aircraft control performance under extreme conditions

• Achievements:
Systematic approach for designing nonlinear control systems
Innovative neural network (off-line and on-line) training techniques

• Results: improved performance during large angle maneuvers

Algebraic pre-training based on available linear control knowledge
On-line training during simulations (full envelope, severe conditions)

Future Work:
Continue testing: acrobatic maneuvers, severe operating conditions, 

coupling and nonlinear effects!


