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Introduction

• A Flight Safety Foundation Study revealed that 41% 
of all aircraft accidents involved Controlled Flight 
into Terrain (CFIT)

• CFIT means the aircraft runs into terrain 
(mountains, or land while flying low) even though 
the aircraft is under full control of the pilot

• Principal cause of CFIT is loss of spatial orientation 
during zero visibility conditions due to bad weather 
like rain, fog, snow or darkness
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Remedial Measures
Government Programs

• NASA’s Aviation Safety Program
» Synthetic Vision Systems (SVS) Project

• FAA’s Safeflight21 Program

• NIMA’s Ron Brown Airfield Initiative
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What Are Synthetic Vision Systems ?

• Advanced display technology containing information about 
aircraft state, guidance, navigation, surrounding terrain and 
traffic

• A computer generated (synthetic) image of the outside world 
as viewed “from the cockpit”

• Provides either a Heads-Up Display (HUD) or a Heads-Down 
Display (HDD)

• Clear view in all weather conditions at all times
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Source of Synthetic Vision Displays

• Digitally stored terrain heights known as Digital 
Elevation Models (DEMs) or Digital Terrain Elevation 
Databases (DTEDs)

• Similar to having a digital lookup table containing 
terrain heights

• Eg: DTED level 0,1,2, Jeppesen
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Why Terrain Database Integrity Monitoring ?

Terrain Databases may have systematic faults due to:

• Different sensor technologies used to generate the 
terrain databases

• Manual post – processing of collected data

• Flat earth approximation over relatively large areas

Use of Synthetic Vision Displays for functions other 
than their intended applications
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Errors Present in Terrain Databases
Errors in the form of:
• Bias – due to coordinate transformation mismatch

» Vertical domain
» Horizontal domain

• Ramps
» Vertical domain
» Horizontal domain

• Random Errors
» Distributed errors in Vertical Domain
» Circularly distributed errors in the Horizontal Domain
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Vertical Direction Integrity Monitor
Comparison of the DEM terrain profile with and independent terrain profile 

synthesized from a downward looking sensor such as a Radar Altimeter (RA) 
and GPS WAAS measurements*

Synthesized Height = MSL – AGL – Lar

DTED Height = elevation with respect to MSL

* Dr. Robert Gray’s original Integrity Monitoring Concept



10

Comparison Metrics
The metrics used to express agreement between the two terrain profiles are: 

• Absolute Disparity: 
» Sensitive to bias errors

Mean Squared Difference (MSD) = 

• Successive Disparity: 
» Sensitive to ramp errors

Mean Absolute Difference (MAD) =

• Cross Correlation (XCORR)
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These metrics are random variables and would require test statistics 
for their  characterization
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Formulation of Hypotheses
• Null or Fault – Free Hypothesis:

» Nominal error performance: just normal random errors

Normally distributed errors with zero mean (no bias) and known 
convolved variance of errors 

• Alternative or Faulted Hypothesis:
» Off-nominal behavior: failure, which means the presence of 

bias and ramp errors

Normally distributed errors with mean       (bias) and variance 
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So, Why Do We Need a Statistical Framework?

The distribution of the metrics used to perform hypothesis 
testing which is nominally due to the inherent presence of:

Measurement noise on sensors used for comparison 
(RA, GPS positions)

Vertical and Horizontal Error probability specification of 
the DEM

Random errors on the DEM

Ground Cover (Vegetation)
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The ‘T’ Statistic for Hypothesis Testing

If the MSE is scaled by the variance of the noise on the absolute 
disparities under nominal conditions, it gives rise to a test 
statistic, T, which is a measure of consistency between the two 
terrain profiles.
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This is a standard Chi – Squared statistic, but what should be its 
Threshold ?
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How Do We Know the Threshold for T ?
The threshold value for T is determined by the probability of 

Fault – Free Detection, PFFD and the number of degrees of freedom,N
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Horizontal Integrity Monitor
Multiple Path DLIM

• Look for multiple flight paths parallel to the nominal over a 
search grid and compute the chi – squared test statistic as a 
measure of conformity between the two terrain profiles.

• Determine if one or more of these translated positions are the 
actual positions on the DTED corresponding to the DGPS 
position
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Terrain Elevation & Probable Horizontal Displacement
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Filtering of Absolute Disparities
Estimation of bias if it were to be present
• Ordinary Least Squares Filtering
• Kalman Filtering
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Kalman Filter Equations

Update estimate with 
measurement :

Project Ahead:
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Where,
is the process state vector at time

is the state transition matrix

is the measurement at time

is the domain transition matrix

is the estimation error covariance matrix

is the measurement error covariance matrix

is the system noise covariance matrix

kx

kz kt

kt

kφ
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Kalman filtering could be used for both terrain database integrity 
monitoring and terrain navigation. An illustration of the former follows
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Approach to R/W 25, EGE
Minimum T offset = 92.6 m South and 
71.3 m West

Maximum Displacement = 2,124 m

Minimum T offset = 92.6 m South and 
214 m West

Maximum Displacement = 1,641 m
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Threshold Diagram
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Approach to R/W 7, EGE
Minimum T offset = 92.6 m South and   
0 m West

Maximum Displacement = 1,865 m

Minimum T offset = 92.6 m South and 
142 m West

Maximum Displacement = 163 m
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Threshold Diagram
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Information Content of the Terrain
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The performance of the Horizontal Integrity Monitor 
directly depends upon the Terrain Signature
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Region of Missed Detection (Unfiltered)
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Region of Missed Detection (LS)
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Region of Missed Detection (Kalman Covariance)
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Region of Missed Detection (Kalman Monte Carlo)
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Terrain Navigation
• The ‘T’ statistic can also be used for Terrain 

Navigation. a.k.a Map-aided Navigation

• It is a measure of the agreement of the 
synthesized and database terrain profiles

• Minimum T position  ~  Maximum agreement

Military examples of terrain navigation: TERCOM, SITAN
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Minimum T Position (Unfiltered)
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Minimum T Position (Least Squares)
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Minimum T Position (Kalman Covariance)
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Minimum T Position (Kalman Monte Carlo)
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Unfiltered
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Unfiltered
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Conclusions and Continuing Research
• Kalman filter improves the statistical estimation capability for 

terrain database integrity monitoring, and its potential yet to 
be explored for terrain navigation

• Development of an algorithm that would perform well when 
the aircraft undergoes a sharp turn

• Kalman filtering could be applied in a dynamic case to reduce 
the noise on the sensor measurements

• The next step is to go from estimation to detection that would 
allow the vehicle to navigate autonomously

• The integrity monitor could help SVS to meet reliability 
requirements for safety critical certification levels
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