Interoperability of Airborne Collision Avoidance Systems

Lixia Song

James K. Kuchar

Massachusetts Institute of Technology
Review of Airborne Collision Avoidance systems

- Traffic Alert and Collision Avoidance System (TCAS) on aircraft since 1980s

- Datalink (ADS-B) based conflict detection system proposed
 - Airborne Conflict Management (ACM)
 - Currently being evaluated in operational tests by UPS/FAA
 - Leapfrog TCAS requirement for cargo airlines
 - Initial specifications & design issues being investigated by RTCA subcommittee

- Will the two systems operate harmoniously?
Conflict between Multiple Alerting Systems

Dissonance may occur whenever a given state maps into two different alert stages or two different resolution commands or when the time-derivatives of these mappings differ.
TCAS---Traffic Alert and Collision Avoidance System

- Designed to alert flight crews to potential mid-air collisions
- Range, range rate, altitude and altitude rate between two aircraft available through radar
- Includes TA (Traffic Advisories) and RA (Resolution Advisories)
 - TAs direct the crew’s attention to a potential threat, but no avoidance information is provided
 - RAs provide avoidance commands such as “Climb” or “Descend”
- Maximum look ahead limited by lack of good trajectory information (~30 seconds)
Graphical Relationship Viewed from Above (TCAS)

- Alert Based on estimated time to reach DMOD separation

At level 5
Altitude: 9500ft-20500ft
DMOD_TA=0.75 nmi
DMOD_RA=0.55 nmi
Tau_TA=40s
Tau_RA=25s
ACM---Airborne Conflict Management

- The state vector and intent available through ADS-B (data link-based)
 - Improved trajectory information (velocity vector, way points, etc.)
 - Enable longer look ahead than TCAS
 - Enable new procedures (in-trail spacing) using enhanced display

- Basic assumptions of ACM
 - ACM will function properly during other applications such as visual approach or approach spacing
 - ACM will be installed on A/C with TCAS as well as A/C without TCAS
Graphical Relationship Viewed from Above (ACM)

Protected Aerospace Zone (PAZ) alert threshold

Collision Avoidance Zone (CAZ)

RTCA proposed thresholds:
PAZ: <2min to 3NM separation
CAZ: <1min to 0.15NM separation
ACM/TCAS Interoperability Amongst Aircraft

- “Interoperability” refers to the successful, simultaneous of the two systems

- Operation of TCAS will not be changed (ACM is an add-on similar to EGPWS)

- TCAS and ACM surveillance information are different
 - TCAS measures relative range and bearing
 - ACM receives the broadcast state vector and intent

- Any possible relationship and interdependence between ACM TCAS must be investigated
ACM and TCAS Installed on Same Aircraft

- In an integrated TCAS/ACM system, it is important to display one real-time target for each actual aircraft.

- It’s been proposed by RTCA that an alert will be presented to crew when issued by either system until there is no alert by system.

- The information and advisories generated by the ACM and should not conflict with each other, or cause pilot confusion.

- Need to prevent dynamic conflict between ACM and TCAS:
 - TCAS → ACM
 - ACM → TCAS
ACM on One Aircraft and on the Other

- Both aircraft can detect each other with their respective ADS-B available on both aircraft, but different systems may be issuing resolution advisories.

- Problem exists if the systems issue incompatible resolutions.

- An analysis must be performed to determine if there is a significant probability that the ACM would issue resolution advisories incompatible with TCAS advisories.

- An analysis must be performed to prevent dynamic conflict between ACM and TCAS.
 - ACM on one aircraft ➔ TCAS on another aircraft
 - TCAS on one aircraft ➔ ACM on another aircraft
Unresolved Issues in the Integration of TCAS and ACM

- **TCAS/ACM Conflict Alert Integration**
 - Does the crew need to know which system is generating the alert?
 - How to handle ACM alert which becomes TCAS alert? (& vice-versa)
 - Will TCAS alert when ACM says there is no problem?

- **TCAS/ACM Resolution Integration**
 - How much coordination is required between systems installed on the plane, or on conflicting aircraft?
 - What is the goal of PAZ Resolution Advisories?
 - To maximize miss distance
 - To get out of PAZ as soon as possible
 - To minimize the likelihood of TCAS alert
Scaled TCAS and ACM Logic

- Both aircraft opposite direction at 300 knots each.
Required Minimum Maneuver to Avoid TCAS Alert following ACM Alert (Turn)

Model: Opposite direction aircraft at the same altitude
With 200 knots for each aircraft

\[
\begin{align*}
\psi & \text{ Heading} \\
\phi & \text{ Bank Angle} \\
\tau & \text{ Time Delay}
\end{align*}
\]
Turning Maneuver for PAZ to Avoid TCAS TA
Turning Maneuver for PAZ to Avoid TCAS RA
Turning Maneuver for CAZ to Avoid TCAS Alert

![Graph showing required heading vs bank angle for different delays (0s, 5s, 10s) for TA and RA.](graph.png)
Required Minimum Maneuver to Avoid TCAS Alert following ACM Alert (Climb)

Model: Opposite direction aircraft at the same altitude with 200 knots for each aircraft
Climb Maneuver for PAZ to Avoid TCAS Alert

Required Climb Rate (ft/min) vs. Load Factor (g) for 0s, 10s, and 20s delay for TA and RA.
Climb Maneuver for CAZ to Avoid TCAS RA

To avoid TCAS TA

Need 1.6g load factor with Clime Rate=2500 fpm and 0s delay

Required Climb Rate (ft/min)

*g (Load Factor ft/s^2)
Summary

- Initial suggestions for PAZ & CAZ dimensions do not appear to allow responding to ACM alert without later receiving a TCAS (must be aggressive)
 - Longer look ahead would reduce required maneuver but increase alert rate
 - Does it make sense that CAZ alert nearly always becomes a TCAS alert

- Potential for TCAS False Alarm with no ACM alert
 - Worse as closure rate increases

- Future Objectives
 - TCAS alert affect ACM alert needs to be examined
 - Apply the formal model to the analysis of TCAS/ACM