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Presentation Outline

! The Magnetohydrodynamic (MHD) energy bypass 
engine

! Electron beam sustained MHD
! Analytical modeling
! The role of control
! Cost-to-go design for optimal control using Neural 

Networks
! Implementation details and preliminary results
! Summary and future work



The MHD Energy Bypass Engine

Schematic of some of the technologies envisioned in 
the AJAX

1) Fraishtadt, V.L., Kuranov, A.L., and Sheikin, E.G., “Use of MHD Systems in 
Hypersonic Aircraft,” Technical Physics, Vol. 43, No.11, 1998, p.1309.
2) Gurijanov, E.P., and Harsha, P. T., “AJAX: New Directions in Hypersonic 
Technology,” AIAA Paper 96-4609, 1996.
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Electron Beam Sustained MHD

x 

z 

y 

Bz u

jy 
z

y 

jy Bz e-beams 

electrodes 

electrodes

Side view 
flow 

e-beams

electrodes

inlet 

exit

Schematic of the MHD channel at the inlet

1) Macheret, S. O., Schneider, M. N., Miles, R. B., and Lipinski, R. J., “Electron Beam 
Generated Plasmas in Hypersonic Magnetohydrodynamic Channels,” AIAA Journal, Vol. 
39, No. 6, 2001, pp. 1127-1138.



Analytical Model

! Assumptions:
! One-dimensional steady state flow
! Inviscid flow
! No reactive chemistry
! Low Magnetic Reynolds number

! ‘x-t’ equivalence



Flow Equations

! Continuity Equation:

! Force Equation:
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uAd ρ x - coordinate along the channel
ρ - Fluid density
u - Fluid velocity
A - Channel cross-section area
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P - Fluid pressure
k - Load factor
σ - Fluid conductivity
B - Magnetic field



Flow Equations...
! Energy Equation:

! Continuity Equation for the electron number 
density:

ε- - Fluid internal energy
Qβ - Energy deposited by

the e-beam

ne - Electron number density
jb - Electron beam current
ε-b - E-beam energy
Z- Channel width
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The Role of Control

! Electron beam current as the control element
! Maximizing energy extraction while minimizing 

energy spent on the e-beam ionization
! Minimizing adverse pressure gradients
! Attaining prescribed values of flow variables at the 

channel exit
! Minimizing the entropy rise in the channel



Performance Index

! Minimize
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Optimal Control using the Approach of 
Parametric Optimization

! For a given system:

! Parameterize a control law as:

! To maximize a performance index (minimize a cost 
function)

! Equivalently minimize the cost-to-go function, 
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Motivating the cost-to-go approach
Linear time invariant system:

Parameterizing,
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Modified Approach: 
Parameterize as,

Solution with a unique minimum
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Formulation of the Control Architecture 
NN Controller

! Use of the modified approach to formulate the control 
architecture

! Instead of a single controller structure (G), need ‘r’ controller 
structures

! Outputs of the ‘r’ controller structures, generate u(k) through 
u(k+r-1)

! Parameterize the ‘r’ controller structures using an effective 
Neural Network

x(k)
Neural

Network
Controller

u(k)

u(k+1)
…
u(k+r-1)



! Parameterize the cost-to-go function using a Neural Network (CGA
Neural Network)

! Inputs to the CGA Network:
x(k), u(k),…,u(k+r-1)

! Use the analytical model, or a computer simulation or the physical 
model to generate the future states. 

! Use the ‘r’ control values and the ‘r’ future states to get the ideal 
cost-to-go function estimate.

! Use this to train the CGA Neural Network

Formulation of the Control Architecture: 
NN Cost-to-go function Approximator
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CGA Neural Network Training

Actual System
or

Simulation Model

Neural Net 
Cost-to-go

Approximator

x(k)
u(k)

+−

V(k)

Vnn(k)

Verr

Neural Network Cost-to-go Approximator Training

u(k+1)
u(k+r-1)



Neural Network Controller Training

! Gradient of V(k) with respect to the control inputs u(k) ,…, u(k 
+ r - 1) is calculated using back-propagation through the 
‘CGA’ Neural Network.

! These gradients can be further back-propagated through the 
Neural Network controller to get,                     through

! Neural Network controller is trained so that
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u(k),…,
u(k+3)

 Subnet 2

Subnet 3
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 Subnet 5

 Subnet 1
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Implementation of the Hybrid CGA Network of order ‘r 
= 10’, using trained subnets of order 1 through 5

Bringing Structure to the CGA Network



Salient features of the 
formulation:

! Simplification of the optimization problem
! Decoupled CGA Network training and the controller 

Network training
! Introduction of structure in the CGA Network
! Same basic architecture for linear or nonlinear systems.
! Data-based implementation - No explicit analytical model 

needed
! Adaptive control architecture with the use of Neural 

Networks 



Translating the approach to the 
MHD problem

! In terms of the ‘x-t’ equivalence, the problem is time-
dependent

! Optimization equivalent to the fixed end time optimal 
control

! Procedure:
! Defining subnets
! Parameterizing and training the subnets
! Arranging them together to get the cost-to-go function V(0)
! Parameterizing and training the Neural Network controller



Defining and Parameterizing the subnets
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! Continuously spaced e-beam windows 
each having a length of 1 cm

! Subnet 1 chosen to correspond to the 
system dynamics between a group of 4 
e-beam windows

! Length of the channel = 1 m
! Need subnets upto order 25
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Training Results for Subnet 1

Testing Subnet 1, ‘∇∇∇∇ ’- Ouput value given by subnet 1, ‘οοοο ’ – Error between the 
subnet 1 output and the ideal value given by the simulation
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Training Results for Subnet 10

Testing Subnet 10, ‘∇∇∇∇ ’- Ouput value given by subnet 10, ‘οοοο ’ – Error between 
the subnet 10 output and the ideal value given by the simulation
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Conclusions

! Formulated the problem of performance optimization 
of the MHD Generator as an optimal control problem

! Implementation in terms of the cost-to-go approach
! Subnets trained upto order 10
! Higher order subnets built by cascading the trained 

lower order subnets



Future work
! Arranging the subnets with the fixed Network layers to 

capture the cost-to-go function.
! Training a Neural Network controller to be optimal.

Conference Papers:
1) Kulkarni, N. V., Phan, M. Q., “Data-Based Cost-To-Go Design for Optimal 

Control,” AIAA Paper No. 2002-4668, AIAA Guidance, Navigation and 
Control Conference, August 2002.

2) Kulkarni, N. V., Phan, M. Q., “A Neural Networks Based Design of Optimal 
Controllers for Nonlinear Systems,” AIAA Paper No. 2002-4664, AIAA 
Guidance, Navigation and Control Conference, August 2002.


