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Executive Summary 
 

This report presents the results of an independent assessment of the User Request Evaluation Tool (URET) 
core algorithms conducted by the Traffic Flow Management Branch (ACT-250) at the FAA William J. 
Hughes Technical Center.   This document contains a description of major functions comprising each 
algorithm set, including variable definitions and mathematical equations, and provides an assessment of the 
assumptions/approximations and their impact on the accuracy of the algorithm.  The cooperative support 
provided by the URET developer, MITRE/CAASD, facilitated the accomplishment of this effort. 
 
URET is an automated conflict detection (ACD) tool intended for use as a decision support aid for the en 
route air traffic controller.  URET detects aircraft-to-aircraft and aircraft-to-airspace conflicts for 
Instrument Flight Rules (IFR) aircraft tracked by the Host Computer System (HCS), and provides alert 
information to the controller when such conflicts are detected.   The technical performance and accuracy of 
the URET algorithms are critical issues to be assessed in preparation for a Joint Resources Council (JRC) 
investment decision for an ACD tool. 
 
The scope of ACT-250’s effort was limited to the core algorithms implemented in URET Delivery 1.1 
(D1.1).  This includes the Trajectory Modeler (TJM), Track Management (TKM), and Automated Problem 
Detection (APD) algorithms.   The ACT-250 independent assessment effort was based on determining the 
validity of the URET algorithms and verifying the engineering principles upon which the algorithms were 
established.  ACT-250’s approach was to review MITRE/CAASD’s algorithmic documentation and the 
applicable source code.   By taking this approach, ACT-250 became very knowledgeable about the 
algorithms’ details and the approximations and assumptions that were made during the URET 
development.    
 
A URET testbed was established in the Terminal Air Traffic Control Automation (TATCA)/Automated En 
Route Air Traffic Control (AERA) laboratory at the Technical Center.  Various simulated exercises were 
designed to  “push the envelope” on the constraints established by the identified assumptions and 
approximations.   The completion of the algorithm assessments and their validation via structured 
simulations using this laboratory, as originally planned, was curtailed in late 1996 when ACT-250 was 
redirected by the Air Traffic Management (ATM) Prototype Product Team (AUA-540) to focus on another 
effort.   Consequently, while the majority of the key functions have been assessed, this report does not 
contain an assessment of every URET function.   
 
The source code of the algorithms that were assessed was found to be based on sound engineering 
principles.  The assumptions and approximations made by MITRE/CAASD are reasonable for the current 
prototype software requirements.  Since the scope of this assessment was scaled back to an analytic 
assessment of  the algorithmic source code modules, there is no empirical data derived from simulations or 
live data to validate the algorithms.  Therefore, the assumptions and approximations should still be 
independently validated with a stringent set of simulations and live data tests to ensure the robustness and 
accuracy of the algorithms.  
 
The information provided by this report is valuable to both the developer of the URET prototype and a 
production contractor.  It bridges the documentation gap between the source code and existing software 
design and algorithmic definition documents, outlines URET D1.1 limitations and assumptions, and 
identifies suggested improvements to specific source code modules. 
 
This report should be used as a source for any future independent assessments of the URET algorithms; 
particularly for sensitivity or algorithmic accuracy assessments.   The assessment of the design and 
implementation of the algorithms should be completed for the current version of the URET prototype and 
this version of the software should be rigorously tested by an independent assessment group. 
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1. Introduction 

1.1 Purpose  
This report presents the results of an independent assessment of the logic and mathematics within the User 
Request Evaluation Tool (URET) core algorithms.  This assessment was conducted by the Traffic Flow 
Management Branch (ACT-250) at the Federal Aviation Administration (FAA) William J. Hughes 
Technical Center. 

1.2 Background 
URET is an automated conflict detection (ACD) tool intended for use as a decision support aid for the en 
route air traffic controller.  URET detects aircraft-to-aircraft and aircraft-to-airspace conflicts for IFR 
aircraft tracked by the Host Computer System (HCS), and provides alert information to the controller when 
such conflicts are detected.  
 
The technical performance and accuracy of the URET algorithms are critical issues to be assessed in 
preparation for a Joint Resources Council (JRC) investment decision for an ACD tool.   MITRE/CAASD 
has been evaluating the accuracy and  performance of the URET algorithms throughout the URET 
development effort as well as during the field evaluations conducted at the Indianapolis Air Route Traffic 
Control Center (ARTCC - ZID) in FY96/97.  ACT-250 was tasked by the Air Traffic Management (ATM) 
Prototype Product Team (AUA-540) to provide an independent assessment of the technical accuracy of the 
core URET algorithms.   A URET system was installed in the Terminal Air Traffic Control Automation 
(TATCA)/Automated En Route Air Traffic Control (AERA) laboratory at the FAA William J. Hughes 
Technical Center in early 1996.  ACT-250 utilized this system and the capabilities of other Technical 
Center laboratories in accomplishing this assessment.  The cooperative support provided by 
MITRE/CAASD facilitated the accomplishment of this effort. 

1.3 Scope 
The scope of the FY96/97 effort, as discussed in this report, was limited to the core algorithms 
implemented in URET Delivery 1.1 (D1.1) (installed in ZID in May 1996).  This includes the Trajectory 
Modeler (TJM), Track Management (TKM), and Automated Problem Detection (APD) algorithms.  
 
Although a testbed was established in the TATCA/AERA laboratory, the completion of the algorithm 
assessments and their validation via structured simulations using this testbed, as originally planned, was 
curtailed in late 1996 when ACT-250 efforts were redirected to focus on preparing for the comparison of 
Conflict Probe prototypes  (e.g., URET and NASA’s User Preferred Routing (UPR) system) currently 
planned for mid-1997.  Consequently, while the majority of the key functions have been assessed, this 
report does not contain an assessment of every URET function.  This report does provide a description of  
major functions comprising each algorithm set, including variable definitions and mathematical equations, 
along with an assessment of the assumptions/approximations and their impact on the accuracy of the 
algorithm, and identifies URET D1.1 assumptions and limitations and suggested improvements.    

1.4 Document Organization  
This report is organized into four sections.  Section 2 provides an overview of ACT-250’s independent 
assessment approach.  Section 3 presents detailed descriptions of software modules comprising each of the 
core algorithm sets and associated utility functions.  Section 4 presents the assessment findings and 
observations, including algorithmic assumptions and limitations, and suggested improvements.   An 
example of a proposed simulation design and scenarios to further evaluate the algorithms is presented for 
information in Appendix A, and a list of acronyms is provided in Appendix B.   A list of references used 
during this activity is provided at the end of the document. 
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2. Assessment Overview 
The ACT-250 independent assessment effort was based on determining the validity of the URET 
algorithms and verifying the engineering principles upon which the algorithms were established.  ACT-
250’s initial approach was to review MITRE/CAASD’s algorithmic documentation and the applicable 
source code.  By taking this approach, ACT-250 became very knowledgeable about the algorithms’ details, 
and the approximations and assumptions that were made during the URET development.  ACT-250 used 
this acquired knowledge and the URET system in the TATCA/AERA laboratory at the Technical Center to 
design various simulated exercises to “push the envelope” on the constraints established by the identified 
assumptions, approximations and parameter constraints (however, the conduct of these simulations was not 
completed as discussed in Section 1.3).   A testbed has been established in the TATCA/AERA laboratory 
where independent evaluations of future URET prototype enhancements can be conducted.  In addition, 
ACT-250 now has an in-depth understanding of many critical areas of the URET algorithms where future 
analysis should be focused. 

2.1 Algorithm Analysis 
ACT-250 conducted a detailed analysis of the algorithms, constraints, and assumptions comprising the 
URET Delivery 1.1 system.  This analysis was based on:  
 

1.  a comprehensive study of the existing MITRE/CAASD algorithmic documentation, software 
design data and the URET source code, 

2.  deriving many of the mathematical constructs represented in the URET source code, 
3.  technology transfer meetings with the MITRE/CAASD developers, and 
4.  unit testing of specific algorithmic functions1. 

 
During this analysis period, ACT-250 documented both the algorithmic functions’ derivation in generic  
mathematical terms, and the assumptions and approximations made by MITRE/CAASD during the 
development of the URET algorithms (see Section 3).  The assumptions and approximations are 
summarized in matrix form in Section 4.3. These detailed algorithmic function descriptions should prove 
extremely useful to a production contractor. 
 
ACT-250 concentrated on the lowest level details of the algorithms, thus, many of the higher level 
functions of the algorithmic subsets (which serve to control logic flow or manipulate data base elements) 
are not included.  Many of these high level functions are adequately described in the MITRE/CAASD 
documentation.   In addition, a majority of the algorithmic calculations are actually performed by a library 
of utility functions; therefore, much of this report’s analysis for TJM and TKM is actually found in the 
assessment of the appropriate utility functions (see Section 3.4).  
 
As a side-product of this effort, the adequacy of the technical documentation available with the URET 
prototype development was assessed.  During the time period that the algorithm analysis was being 
conducted, MITRE/CAASD delivered updated algorithmic documentation for review.  ACT-250 
thoroughly reviewed this documentation and provided detailed comments to MITRE/CAASD and to AUA-
540, including an assessment of the adequacy (i.e., accuracy, clarity, consistency and completeness) of the 
documentation for use by a production contractor. 

2.2 Simulation 
The original plan for this independent assessment effort called for an evaluation of the accuracy of the 
algorithms implemented in the URET D1.1 software to be conducted in the TATCA/AERA laboratory.  

                                                           
1 Limited Unit Testing was performed on the following functions:  CNV_LLXY, CNV_XYLL, 
ST_MACHALT, ST_IASALT, CFP_POSIT, CFP_V_INT, CNV_SPEED, GM_REGN, GM_TSTPNT, 
ST_FINDARD, GM_CONVEX, GM_INSEC.  
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The intent was to demonstrate URET parameter constraints, and validate assumptions, via structured  
simulation scenarios designed to exercise URET algorithms under various conditions.  While the testbed 
was established in the laboratory, the conduct of the simulations was curtailed because of AUA-540 
redirection of ACT-250 efforts to focus on the comparison of en route Conflict Probe prototypes (planned 
for mid-1997).  Current planning for this effort calls for the URET system in the TATCA/AERA 
laboratory to be adapted to Cleveland ARTCC (ZOB) for use in conducting this comparison.  The 
proposed simulation design for the original activity is provided for information in Appendix A.   



   

 4

3. Algorithm Descriptions 
The following sections contain descriptions of many of the major functions comprising each of the core 
algorithm sets and the general purpose utility functions.  Where appropriate∗, each function is described in 
terms of the variable definitions and mathematical equations, along with ACT-250’s assessment of the 
assumptions/approximations, and the impact of these factors on the accuracy of the algorithm.  Each 
section’s organization reflects the general directory structure of the URET source code; within each 
subsection, the individual functions are listed in alphabetical order.  In addition, the programming language 
in which the function was coded (either C or PL/I) is identified in parentheses in each subsection heading. 
 
An Assessment Table is provided at the end of each section, where appropriate* (these tables are 
summarized in Section 4.3).  The table consists of the following elements: 
 

Assessment Table 
 

REF# Approximation/Assumption Assessment Impact on  
(Algorithm) 

R 3.1.1-1 Description of 
Approximation/Assumption 

Description of ACT-250’s 
assessment of the 
Approximation/Assumption 

ACT-250’s determination of the 
Impact (defined below) of this 
Approximation/ Assumption on 
the specified algorithm 

          
 
 
 
 
 
 
IMPACT: 
• Critical - if conditions existed which were determined to be unfavorable to the assumption or 

approximation, there would be a significant impact on the accuracy or stability of the algorithm.  Some 
of the criteria the analyst considered in classifying an assumption/approximation as critical were:  
− the module is called many times from many different areas of the code 
− the module calculates a core value which is used as a basis for many subsequent calculations 
− the assumption/approximation is over-simplified and would be inadequate during many normal 

operating conditions 
− there are no other identifiable corrective measures elsewhere in the source code which would 

compensate for the inaccuracy of the assumption/approximation  
 
• Important - if conditions existed which were determined to be unfavorable to the assumption or 

approximation, there could be an impact on the accuracy or stability of the algorithm.  Some of the 
criteria the analyst considered in classifying an assumption/approximation as important were:  
− the module calculates a value which is used as a basis for subsequent calculations 
− the assumption/approximation is simplified and would be inadequate during some reasonable 

operating conditions 
− there may be corrective measures elsewhere in the source code which could compensate for some 

of the inaccuracy of the assumption/approximation, but they may not be sufficient 
 

                                                           
∗ High level functions that control logic flow or manipulate the data base may not be described at this level 
(many of these high level functions are adequately described in the MITRE/CAASD documentation which 
ACT-250 thoroughly reviewed for completeness and accuracy as part of this task). 

Unique number identifying specific 
assessment item within section   

Section number of 
functional assessment 
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• Minor - if conditions existed which were determined to be unfavorable to the assumption or 
approximation, there would be little or no impact on the accuracy or stability of the algorithms.  Some 
of the criteria the analyst considered in classifying an assumption/approximation as minor were:  
− the assumption/approximation is based on classic, proven methods necessary for real time 

processing 
− there are corrective measures elsewhere in the source code which could compensate for some of 

the inaccuracy of the assumption/approximation 
 

3.1 Automated Problem Detection  
Automated Problem Detection (APD) detects aircraft-to-aircraft and aircraft-to-airspace conflicts within a 
parameter look-ahead time.  It is initiated for a given aircraft when:  the aircraft enters the ARTCC, a 
remodeling of the aircraft’s trajectory occurs, or a controller invokes the trial planning function.   
To balance efficiency with accuracy, a series of filters are activated which serve to narrow the range of 
aircraft undergoing each problem detection check.   This range is narrowed further, since only three of the 
six URET categories of aircraft are probed.  For each pair of candidate aircraft trajectories, the separation 
standards and regions of uncertainty built around the aircraft, called conformance bounds, are utilized to 
predict each conflict situation.   
 
Those functions which are associated with aircraft-to-aircraft conflict detection comprise the conflict probe 
(CFP) directory.  Those functions which are associated with aircraft-to-airspace conflict detection comprise 
the environmental conflict probe (ECP) directory.  Low level functions which perform some of the 
algorithmic calculations are described in the library of utility functions in Section 3.4 (GM_INSEC, 
GM_CONVEX, ST_CHK_VP, GM_REGN, GM_TSTPNT). 
 
Conflict Probe (CFP) 
The functions comprising CFP detect aircraft-to-aircraft conflicts and are applied from the current aircraft 
position to a parameter lookahead time into the future (D1.1:  20 minutes). 
 
Environmental Conflict Probe (ECP) 
The Environmental Conflict Probe (ECP) is the function subset of APD that determines if an aircraft is in 
conflict with Special Use Airspace (SUA).   The function is applied from the current aircraft’s position to 
the end of the trajectory calculated by TJM.   
 

3.1.1 Function:  CFP_COARSE_HORIZ ( C ) 
This function eliminates from consideration those aircraft that have trajectory segments so far apart in the 
(x, y) plane that a potential conflict can be ruled out. 

3.1.1.1 Description: 
With the two input line segments in the (x, y) plane, the function is a simple filter that determines if the 
segments get within a fixed distance M of each other.  The M value is equal to the sum of both 
conformance bounds plus the separation standard.  Referring to Figure 3.1.1-1, the approach is to create 
infinite strips of width 2*M.  The strips are centered around the line segments.  The function checks for an 
intersection of a segment’s strip with the opposite line segment.  For a segment not to intersect the strip it is 
necessary and sufficient that both endpoints of the segment lie on the same side of the centerline of the 
strip and not be within distance M of that centerline. 
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 Figure 3.1.1-1:  Example of Strips for Horizontal Coarse Filter  
  (here both segments are in conflict with the other’s strip) 
 
The algorithm checks the four following potential cases: 
 

1. Neither aircraft are in a hold pattern. 
2. The subject aircraft (A) is in the holding pattern and the object aircraft (B) is not. 
3. The object aircraft (B) is in the holding pattern and the subject aircraft (A) is not. 
4. Both subject and object aircraft are in hold. 

 
Each case is evaluated to determine the distance from the opposite line segment’s center line.  If the 
distance is greater than the separation standard plus both conformance bound distances, no conflict can 
take place.  If the distance is less, the aircraft pair may or may not be in conflict. 

2 * M 
A1 

A2 Subject  
Aircraft 

B2

B1 Object  
Aircraft 

B1 

B2 
2 * M 

Object  
Aircraft 

A2 

A1 
Subject  
Aircraft 

OR
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Table of Variable Definitions 

 
Function 
Variable 

Description Math 
Symbol 

m critical distance including conformance radius of subject aircraft and 
object aircraft plus separation2 

M 

m2  M2 or = M * M M2  
g1 numerator of signed distance from beginning of subject segment to 

line through object segment; 
= xs1(yo2 - yo1) + xo2(yo1 - ys1) + xo1(ys1 - yo2) 

G1 

g2 numerator of signed distance from end of subject segment to line 
through object segment; 
= xs2(yo2 - yo1) + xo2(yo1 - ys2) + xo1(ys2 - yo2) 

G2  

h1 numerator of signed distance from beginning of object segment to line 
through subject segment; 
=xo1(ys2 - ys1) + xs2(ys1 - yo1) + xs1(yo1 - ys2) 

H1 
 

h2 numerator of signed distance from end of object segment to line 
through subject segment; 
=xo2(ys2 - ys1) + xs2 (ys1 - yo2) + xs1(yo2 - ys2) 

H2 

u1 signed perpendicular distance from A1 to the line through B1 and B2;  
U1 = G1 /  do

2 
U1 

u2 signed perpendicular distance from A2 to the line through B1 and B2;  
U2 = G2 /  do

2 
U2 

z1 signed perpendicular distance from B1 to the line through A1 and A2;  
Z1 = H1 /  ds

2 
Z1 

z2 signed perpendicular distance from B2 to the line through A1 and A2;  
Z2 = H2 /  ds

2 
Z2 

g3 alternate numerator for h1, used when subject is in hold; 
= (yo1 - ys1)(yo1 - yo2)  +  (xo1 - xs1)(xo1 - xo2) 

G3 

g4 alternate numerator for h2, used when subject is in hold; 
= (yo2 - ys1)(yo1 - yo2) + (xo2 - xs1)(xo1 - xo2) 

G4 

h3 alternate numerator for h1, used when subject is in hold; 
= (ys1 - yo1)(ys1 - ys2) + (xs1 - xo1)(xs1 - xs2) 

H3 

h4 alternate numerator for h1, used when subject is in hold;     
 = (ys2 - yo1)(ys1 - ys2) + (xs2 - xo1)(xs1 - xs2) 

H4 

denomo object segment distance2 =(xo2-xo1)2+(yo2-yo1)2; denominator do
2 

denoms subject segment distance2=(xs2-xs1)2+(ys2-ys1)2; denominator ds
2 

                                                           
2 The conformance radius of an aircraft is the hypotenuse of the right triangle formed by half the 

longitudinal and lateral conformance bounds (i.e. 2 92 15 2 52 2. . .nm nm nm= + ).  
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3.1.1.2 Mathematics 
To compare the aircraft’s potential separation against the distance M, the function calculates the distance 
formed by a perpendicular line drawn from the given aircraft’s endpoint to the line formed by the opposite 
aircraft’s endpoints.  The following discussion will provide derivations on each potential case of endpoint 
to line perpendicular distances. 
 
Case 1 
 
For a Case 1 example, neither aircraft are in a holding pattern, so they both have defined line segments.  
Figure 3.1.1-2 illustrates an example of a Case 1 scenario.  For this scenario, the function determines the 
distance of the perpendicular line drawn from the subject aircraft’s cusp A1 to the object aircraft’s line. 
 
 

 
 
 
 
 
 
 
 
 
 
 

   
 

Figure 3.1.1-2:  Example of Case 1 
 
 
Derivation of the distance d in the Figure 3.1.1-2  above: 
 
First it is necessary to the define the equations for the lines of both object and subject aircraft.  The object 
aircraft’s line equation can be expressed by the general line equation: 
 

 L Ax By C: + + = 0  Equation  3.1.1-1 

 

The slope of this line L is -A/B, which is the slope of the line through the point P in Figure 3.1.1-2.  If the 
line is neither vertical or horizontal, the perpendicular line through the object’s line equation, L, is +B/A.  
The equation of the perpendicular line using the point slope formula is: 

 

                       ( ) ( )y ys B
A

x xs Bx Ay Ays Bxs− = 





− ⇔ − + − =1 1 1 1 0  Equation  3.1.1-2 

 

A1 

B1

B2

P   (xi, yi) 

(xo1,yo1)

(xo2,yo2) 

(xs1,ys1) 

d 
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To find the intersection point of the line L and the perpendicular line through A1, we solve the following 
equations simultaneously: 
 

 Ax By C+ + = 0  and Bx Ay Ays Bxs− + − =1 1 0       Equation  3.1.1-3 

 
In Equation  3.1.1-3 above by multiplying the first equation by A and the second by B, and then solving for 
x by adding them together, yields: 
 

 xi
B xs  - ABys  - AC 

A + B
=

2
1 1

2 2
, Equation  3.1.1-4 

 
By multiplying the first equation by B and the second by A and then subtracting, yields: 
 

 yi
A ys  - ABxs  - BC 

A + B
=

2
1 1

2 2  Equation  3.1.1-5 

 
The distance, d, between the point at A1 and the point at (xi, yi) according to the distance formula. 
 

 d xs xi ys yi= − + −( ) ( )1 1
2 2  Equation  3.1.1-6 

 
Substitution of Equation  3.1.1-4 and Equation  3.1.1-5, yields: 
 

  d xs
B xs ABys AC

A B
ys

A ys ABxs BC

A B
2

1

2
1 1

2 2

2

1

2
1 1

2 2

2

= −
− −

+
+ −

− −

+



















  Equation  3.1.1-7 

 
Now, combine the terms to yield: 
 

       d
A Axs Bys C

A B

B Axs Bys C

A B
2

2
1 1

2

2 2 2

2
1 1

2

2 2 2=
+ +

+
+

+ +

+





















( )

( )

( )

( )
    Equation  3.1.1-8 

 
Finally, by combining the terms further and taking the square root we get the distance formula: 
 

   d
Axs Bys C

A B
=

+ +

+

1 1
2 2

  

 

     
( )

d
Axs Bys C

A B
2 1 1

2

2 2=
+ +

+
 Equation  3.1.1-9 
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Note:  The function actually does not calculate the square root for efficiency purposes, but uses the square 
of the distance (d2) in the actual algorithm, as in Equation  3.1.1-9. 
 
 
As defined in the function, the square root of the numerator in Equation  3.1.1-9 can be expressed using a 
3x3 matrix determinant and expanded as follows:  
 

  G
xs xo xo
ys yo yo1

1 2 1

1 2 1

1 1 1
= det  

 

  G xs
yo yo

xo
ys yo

xo
ys yo

1 1
2 1

2
1 1

1
1 2

1 1 1 1 1 1
= − +  

 

                            ( ) ( ) ( )G xs yo yo xo yo ys xo ys yo1 1 2 1 2 1 1 1 1 2= − + − + −  Equation  3.1.1-10 

 
To express the numerator as G1 as in Equation  3.1.1-10, return to the point-slope equation of the line of 
the object aircraft. 
  

  ( ) ( )y m x m xo yo= − +1 1
*  

 

                       y
yo yo

xo xo
x

yo yo

xo xo
xo yo=

−

−
−

−

−
+















2 1

2 1

2 1

2 1
1 1  Equation  3.1.1-11 

 
By rearranging the terms in Equation  3.1.1-11, the equation can provide the A, B, and C terms of the 
general equation. 
 

  y = 
( )

( )
( )

( ) ( )

( )

yo yo

xo xo
x

yo yo xo yo xo xo

xo xo
2 1

2 1

2 1 1 1 2 1

2 1

−

− −
− −

− − + −

− −















   

 
 
The equation above can be expressed as: 
 

  y
A

B
x

C

B
= − − ,  where A = (yo2 - yo1), B = - (xo2 - xo1), and  

  C = -(yo2 - yo1)xo1 + yo1(xo2 - xo1) 

 
Therefore, using the terms above, the square root of the numerator in Equation  3.1.1-9 can be shown to be 
equivalent to Equation  3.1.1-10. 

                                                           

* The slope, m, for the object aircraft line is 
yo yo
xo xo

2 1

2 1

−
−









 . 
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   Axs Bys C1 1+ +  
 
 (yo2 - yo1)xs1 + - (xo2 - xo1)ys1 + -(yo2 - yo1)xo1 + yo1(xo2 - xo1)  
 
 (yo2 - yo1)xs1 + -ys1xo2 + ys1xo1 + -xo1yo2 +xo1yo1 + yo1xo2 + -yo1xo1 
 
  xs1(yo2 - yo1) + xo2(yo1 - ys1) + xo1(ys1 - yo2) 
 
 
For this case, Equation  3.1.1-12 expresses the denominator in Equation  3.1.1-9 from the formula (A2 + 
B2).  It represents the distance of the object aircraft’s segment from cusp A1 to A2.  
 

 ( ) ( )d xo xo yo yoo
2

2 1
2

2 1
2= − + −  Equation  3.1.1-12 

 
The derivation is similar for the other endpoints and from the object aircraft to the subject aircraft. 
 
Cases 2 and 3 
 
For Cases 2 and 3, one of the two aircraft is in a holding pattern, making their line segment a point.  Since 
there are an infinite number of perpendicular lines from the given aircraft to the holding aircraft, the 
function uses the perpendicular line drawn from the given point and the point forming the intersection.  
This intersection point is the endpoint of the perpendicular line drawn from the holding point to the 
opposite line.   
 
For example, for Case 2 the subject aircraft is on hold, so the signed perpendicular distance from the object 
aircraft’s first cusp to the subject aircraft is indeterminate.  As illustrated in Figure 3.1.1-3 below, the 
distance calculated by the function is the signed perpendicular distance from the object aircraft’s first 
endpoint to the intersection point, P.  The point, P, is formed by the intersection of the line from the subject 
aircraft’s holding point to the object aircraft’s line. 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Figure 3.1.1-3:  Example of Case 2 (distance calculated for one aircraft  holding) 

 
 
 
 
Derivation of the distance, d, in Figure 3.1.1-3: 

(xo1,yo1) 

A1 

B1 

B2

P   (xi, yi) 

(xo2,yo2)

(xs1,ys1) 

d 
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The triangle formed by the points B1, A1, and P can be used to determine the distance, d, in Figure 3.1.1-3.  
Using the Pythagorean Theorem and the formulas listed in the function, the relationship of the triangle’s 
side distances can be expressed as: 
 
   c2 = a2 + b2 

 

                                                 R2 = (G1
2 +G3

2)/do
2  Equation  3.1.1-13 

 
 Where, R = distance of line from B1 to A1, diagonal of triangle, 
 G1/do = distance from A1 to P as defined in previously, 
 G3/do = distance from B1 to P as defined in the function code 
 
G3 is the numerator in the distance equation above and is defined by the function as: 
 

                          ( )( ) ( )( )G yo ys yo yo xo xs xo xo3 1 1 1 2 1 1 1 2= − − + − −  Equation  3.1.1-14 

 
The distance from B1 to P (or d), as defined in the function, is the numerator G3 divided by the squared 
root of the denominator, do

2.  Using Equation  3.1.1-13 we will derive Equation  3.1.1-14 or G3 and the 
distance d, but first a few more terms must be defined. 
 
R is the distance of the line segment from B1 to A1 and can be expressed by the general Euclidean distance 
equation as: 
 

 R = ( ) ( )xo xs yo ys1 1
2

1 1
2− + −  Equation  3.1.1-15 

 
The numerator and denominator of the distance from A1 to P, as derived previously, is restated here as: 
 

 ( ) ( ) ( )G xs yo yo xo yo ys xo ys yo1 1 2 1 2 1 1 1 1 2= − + − + −  Equation  3.1.1-16 

 

 ( ) ( )d xo xo yo yoo
2

2 1

2

2 1

2
= − + −  Equation  3.1.1-17 

 
By substitution, the Equation  3.1.1-13 can be expressed as: 
 
 d R G Go

2 2
1

2
3

2
= +  

 ( ) ( )[ ] ( ) ( )[ ]xo xs yo ys xo xo yo yo1 1

2

1 1

2

2 1

2

2 1

2
− + − − + − =  

              
( ) ( ) ( )[ ]

( )( ) ( )( )[ ]
xo ys yo yo xs xo xs yo xo ys

yo ys yo yo xo xs xo xo

1 1 2 1 1 2 1 2 2 2

2

1 1 1 2 1 1 1 2

2

− − − + −

− − + − −
 Equation  3.1.1-18 

     
 
To simplify the algebraic manipulation of Equation  3.1.1-18, assign A, B, M, N to the following values: 
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 A = (yo2 - yo1);  B = - (xo2 - xo1);  M = (xo1 - xs1);  N = (yo1 - ys1) 

Now, substitute these terms into Equation  3.1.1-18, to get: 

                   d R G Go
2 2

1
2

3
2

= +  

 (A2 + B2)(N2+M2) = (NM-MA)2 + (-NA-MB)2 Equation  3.1.1-19 

 
It can easily be shown that in Equation  3.1.1-19 G3 is represented as (-NA-MB), but it must be shown that 
the terms in Equation  3.1.1-19 can be expanded to confirm G d R Go3

2 2 2
1

2
= − .   In other words, we will 

solve for G3 in Equation  3.1.1-13 represented in the terms of Equation  3.1.1-19 for simplification.  If the 
value of  G3  can be expressed in terms of d R Go

2 2
1

2
− , then G3 has been effectively derived by Equation  

3.1.1-13.  Therefore, by moving G1 to the other side and squaring the terms, Equation  3.1.1-19 reduces to 
the G3 equivalent to the function’s definition (Equation  3.1.1-14). 
 
 (A2 + B2)(N2+M2)- (NM-MA)2  = (-NA-MB)2 
 
 (N2A2+M2A2+N2B2+N2M2-N2B2+2MNAB-M2A2)=(-NA-MB)2 
 
 (N2A2+2MNAB+M2A2) = (N2A2+2MNAB+M2A2) 
 
Like Case 1, the same derivation can be applied to the other endpoints and from the object aircraft to the 
subject aircraft. 
 
Case 4: 
 
For the case where both subject and object aircraft are in a holding pattern, the function calculates the 
Euclidean plane distance between the two points.  The general distance formula is used. 
 
 

 ( ) ( )Ω = − + −xo xs yo ys1 1

2

1 1

2
 Equation  3.1.1-20 

 
Note:  Once again the square root is not calculated in the function due to efficiency, but the Ω2  is 
compared against M2. 
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3.1.1.3 Boolean Logic 
 

The function uses five Boolean variables to decide whether the filter passes the aircraft pair 
(conflict could exist) or rejects the aircraft pair (no conflict could exist).  These Boolean variables 
are defined as follows: 
 

Variable Description Formula 
L1 subject segment does not cross line 

containing object segment 
U1*U2>0 

L2 object segment does not cross line 
containing subject segment 

Z1*Z2>0 

L3 ends of subject segment close to line 
containing object segment 

U12<M2 OR U22<M2 

L4 ends of object segment close to line 
containing subject segment 

Z12<M2 OR Z22<M2 

L5 throw out the segment pair (L1 and not L3) OR  
(L2 and not L4) 

Table 3.1.1-1:  Boolean Variable Table 

 
The overall function’s logic and how the Boolean variables are used is illustrated in Figure 3.1.1-
4.  First, the function determines if both of the aircraft are in hold.  If both are in hold, the 
calculation is relatively simple.  Both aircraft are at points, so the squared distance between them 
is calculated and compared against the strip width M2.  This result is stored in Boolean variable 
L5.  If L5 is true, the holding aircraft are separated by a distance greater than M resulting in the 
rejection of the aircraft as a viable conflict.   If L5 is false, the aircraft are passed on to the next 
filter as a potential conflict.   
 
If one of the aircraft were not in hold, the function calculates the numerator formulas (i.e. g1, g2, 
h1, etc.).  It first checks for the object aircraft being in hold and if true uses the h3 and h4 as the 
numerators in the U1 and U2.  If the object is not in hold, it uses the g1 and g2 numerators.  The 
numerators are explained in detail in the case descriptions in Section 3.1.1.2, but the values being 
calculated here are L1 and L3 which use both U1 and U2 distances (refer to the Table 3.1.1-1 
above).  Also if L1 is true (which means the subject segment does not cross the object line) and 
L3 is false (which means the end cusps of the subject aircraft is beyond the M distance from the 
object segment), there would be no potential for conflict and L5 would be true. 
 
A similar check is evaluated for the subject aircraft where it is checked if in hold.  If true, the g3 
and g4 numerators are calculated and used for L2 and L4.  If the subject aircraft is not in hold, the 
numerators h1 and h2 are calculated.  Just like the previous for the object in hold, the subject in 
hold will determine if the object segment crosses the subject line.  Also the object end cusp’s 
distance from the subject segment is determined.  Referring to the Table 3.1.1-1, if the L5 is true, 
the L2 must be true meaning the object aircraft does not cross the subject line, and the L4 is false 
meaning the object cusps are less than a distance M from the subject line. 
 
For example, take a pair of aircraft that are both not in hold, so all the numerators are calculated.  
First, L1 and L3 are calculated (using the g1 and g2 numerators) that check if the subject segment 
does not cross the object line and the cusps of the subject aircraft are greater than the M distance 
to the object segment.  Therefore, if the lines do not cross and they are greater than M, the aircraft 
are considered not potentially in conflict making the L5 variable true.  Next, the similar variables 
are calculated for the object aircraft against the subject using the L2 and L4 Boolean variables.  
For this check (using the h1 and h2 numerators), the object aircraft checks for a non-crossing of 
the subject line and if the object segment cusps are greater than M distance to the subject segment.  



   

 15

If both conditions are true, a potential conflict cannot exist, so L5 variable is evaluated true.  The 
routine ends by checking the L5 variable; if true, the segments are rejected as a potential conflict. 
 
 

Assessment Table 
 

REF# Approximation/Assumption Assessment Impact on  
APD 

R 3.1.1-1 For holding pattern3, aircraft are 
assumed to remain at a given point 
(not a circular path, Equation  3.1.1-
20). 

Currently, URET D1.1 does 
not model aircraft holds.  

Important 

R 3.1.1-2 For the holding aircraft, the 
perpendicular line drawn to holding 
point from opposite line is 
approximated by the perpendicular 
line from the opposite point to the  
intersection of the perpendicular 
drawn from the holding point to the 
opposite line (refer to Cases 2 & 3, 
i.e. G3 and G4, Equation  3.1.1-14). 

Reasonable, since two 
checks are always 
performed.  In this case,  the 
other check from the 
opposite line to holding 
point will determine the 
parallel distance to the strip 
M and this distance will 
determine the perpendicular 
distance to strip M. 

Minor 

R 3.1.1-3 Minimum input length used to 
determine if aircraft in holding 
pattern (found in code, i.e. 
cfp_inp.min_seg_length) 

Reasonable, assuming the 
value is relatively small. 

Minor 

R 3.1.1-4 Misleading comments and 
documentation description of Case 2 
and 3 perpendicular distance.  The 
numerators: Z3, Z4, H3, and H4 are 
not equivalent to Case 1 
perpendicular, but defined as the 
adjacent side of the right triangle (i.e. 
A1 to P to B1). 

Need more descriptive 
comments and 
documentation for use of 
the adjacent side distance. 

Minor 

 
 

                                                           
3 Aircraft flying holding patterns are not currently modeled by URET D1.1.  However, in APD the code 
exists and is being assessed for sake of completeness.  
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Is one of the
aircraft not in a

hold?

Yes

Calculate numerators:
g1, g2, h1, h2, g3, g4,

h3,  and h4

Coarse Horiz Start:
Calculate M and

denominators

No

Calculate distance
between holding

aircraft and L5= throw
out seg. pair  vs. M2

Is object a/c in a
hold?

Yes

No

Calculate:
L1=subject segment does
not cross line containing

object seg.
L3=end of subject seg. close
to line containing object seg.

{using g1 and g2}

Calculate:
L1=subject segment does
not cross line containing

object seg.
L3=end of subject seg. close
to line containing object seg.

{using h3 and h4}

Is subject a/c in a
hold?

Yes

No

Calculate:
L2=object segment does not
cross line containing subject

seg.
L4=end of object seg. close

to line containing subject
seg.

{using h1 and h2}

Calculate:
L2=object segment does not
cross line containing subject

seg.
L4=end of object seg. close

to line containing subject
seg.

{using g3 and g4}

Calculate:  L5 =Throw
out segment pair*

Decide
Conflict?

 

Figure 3.1.1-4:  Coarse Horizontal Function Overall Logic 
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3.1.1.4 Additional Diagrams For Reference: 
 
For Case1:  Subject to Object Aircraft: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For Case1:  Object to Subject Aircraft: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For Case 2:  Subject to Object with Subject in hold: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A1 

B1 

B2

P1   (xi, yi) 

(xo2,yo2)

(xs1,ys1) 

Distance _|_   
of subject to 
object cusp 1: 
G1/do 

A2 (xs2,ys2) Distance _|_  
of subject to 
object cusp 2: 
G2/do 

P2   (xi, yi) 

(xo1,yo1) 

A1 = A2 

B1 

B2

P  (xi, yi) 

(xo2,yo2)

A1 

(xs1,ys1) 

B1 

B2

Distance _|_   
of subject to 
object cusp 1 
or cusp 2: 
G1/do and 
G2/do 

(xi, yi)  P1 

(xo2,yo2)

(xs1,ys1) 

Distance _|_  
of object to 
subject cusp 1: 
H1/ds 

A2 (xs2,ys2) 

Distance _|_  
of object to 
subject cusp 2: 
H2/ds 

(xi, yi)  P2

(xo1,yo1)
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For Case 2:  Object to Subject with Subject in hold: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.1.2 Function:  CFP_FINE ( C ) 
Using relative geometry, this function tests if a line segment and an octagon boundary intersect.  If the 
conflict is present, it also computes the start and end of the intersection. 

3.1.2.1 Description:   
The vertices of the octagon boundary are calculated in a subfunction called CFP_OCTAGON.  The 
octagon boundary is the finest relative boundary mesh and is formed by the two aircraft’s rectangular 
conformance boundaries plus the separation distance.  The Fine Filter calls GM_CONVEX to determine if 
the object aircraft’s relative position is inside or outside the octagon.   Depending on the specific case of 
which relative position is inside or outside the octagon, the GM_INSEC function is called to determine if 
and where the relative position vector intersects the octagon.  The floating point computations relating the 
intersection points and relative positions of the aircraft may cause inaccurate results, so these are 
thoroughly checked for potential problems and corrected within the algorithm.  Therefore, CFP_FINE filter 
acts as a manager of the algorithm, while other lower level functions actually calculate the intersections 
(i.e. GM_CONVEX, GM_INSEC, etc.). 

A1 = A2 

B1 

B2

P  (xi, yi) 

(xo2,yo2)

(xs1,ys1) 

Distance _|_   of 
object to subject 
cusp 1: G3/do  

Distance _|_   of 
object to subject 
cusp 2:  G4/do 

(xo1,yo1) 
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Table of Variable Definitions 
 

Function Variable Description Math Symbol 
in_p flag for p being inside (1) or outside (0) the 

octagon  
in_p 

in_q flag for q being inside (1) or outside (0) the 
octagon  

in_q 

num_insecs number of intersections num_insecs 
xi[5], yi[5] x and y  array coordinates for the intersection 

points 
xi, yi 

ratio1[5], ratio2 ratios of distance location on the intersection 
segment, returned by GM_INSEC function 

ratio1, ratio2 

max_ratio maximum ratio generated from GM_INSEC max_ratio 
tp, tq start and end times of adjusted vectors tp, tq 
ti[5] array of intersection times ti 
poscd return code for calls to CFP_POSIT poscd 
index index for largest ratio1 in the array list index 
ver[1][8] input matrix which contains vertices of the 

octagon boundary, where ver[0][1..8] = x 
coordinates and the ver[1][1..8] = y 
coordinates 

ver[1][8] 

cfpint input pointer to internal data structure of the 
line segments of the object and subject aircraft 

cfpint 

3.1.2.2  Mathematics: 
Since this function is essentially a low level manager of the calls to the subfunctions which 
determine the actual conflict segment, a flowchart is presented under this section and the 
mathematical descriptions are left to the subfunction assessments.   
 
Figure 3.1.2-2 presents the initial part of the algorithm, including the steps taken if the relative 
velocity vector is smaller than epsilon.  The process continues to the next three figures.   Figure 
3.1.2-3 presents the steps and calls for the case where the relative velocity is non-zero and the p 
position vector is inside the octagon while the q is not  (refer to the following diagrams in Figure 
3.1.2-1 for illustration of examples of the potential cases of the p and q).  The Figure 3.1.2-4 
presents the steps for a similar case as Figure 3.1.2-3, but for this case the q position vector is 
inside the octagon while p is not.  The Figure 3.1.2-5 presents the case where both p and q vectors 
are on or outside the octagon.  For both Figure 3.1.2-3 and Figure 3.1.2-4, there must be either 1 
or 2 intersections found.  There are four potential sub-cases to Figure 3.1.2-5: either 0, 2, 3, or 4 
intersections were found.   
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Figure 3.1.2-1:  Diagram of examples of each case where relative velocity is non-zero 

P and Q  inside octagon 

P 

Just one position vector inside, 
either P inside or Q inside  
(example below with P inside) 

P

or 

P 

One intersection Two intersections  No intersections  

Both P and Q outside 
octagon boundary P 

or 
P

No intersections Two intersections  

P 

or 

P 

Three intersections  

P

Four intersections  

or 

Q Q 

Q 

QQ 

Q

Q 
Q 

or 
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Call CFP_RELVEC to
determine relative

vectors (i.e. relative
positions p, q, and the

relative velocity, v)

Is the relative
velocity < ε ?

Yes

No

Is p OR q
inside the
octagon?

Yes

RETURN conflict

No
RETURN
no conflict

Relative Velocity in
non-zero:

call GM_CONVEX for
both p and q

Call GM_CONVEX
for both p and q

Is p AND q
inside the
octagon?

Yes

RETURN conflict

No

Is p inside the
octagon?

Yes

No Continue:

Continue:

 
Figure 3.1.2-2:  Initial Steps in CFP_FINE 

Figure 3.1.2-3 

Figure 3.1.2-4
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Continue

Is
num_insecs=0?

Yes

No

RETURN conflict:
technically impossible but

assume Q is inside

Find index of for
intersection

coordinates with
maximum ratio1:
xi[index], yi[index]

Loop through each pair
of vertices by calling

GM_INSEC to
determine which have

intersection with
 p and q segment

Is maximum
 ratio1 <= 0?

Yes

RETURN conflict:
technically impossible but

assume Q is inside

No

Call
CFP_INTERSECT_TIME
to determine tq; then call
CFP_POSIT and trim end

points of segments up to tq

RETURN conflict:  with
trimmed segments

 
 

Figure 3.1.2-3:  Flowchart where P is inside octagon only (continued from Figure 3.1.2-2) 
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Continue

Is
num_insecs=0?

Yes

No

RETURN conflict:
technically impossible but

assume P is inside

Find index of for
intersection

coordinates with
maximum ratio1:
xi[index], yi[index]

Loop through each pair
of vertices by calling

GM_INSEC to
determine which have

intersection with
 p and q segment

Is maximum
 ratio1 <= 0?

Yes

RETURN conflict:
technically impossible but

assume P is inside

No

Call
CFP_INTERSECT_TIME
to determine tq; then call
CFP_POSIT and trim end

points of segments up to tp

RETURN conflict:  with
trimmed segments

 
 
 

Figure 3.1.2-4:  Flowchart where Q is inside octagon only (continued from Figure 3.1.2-2) 

Note:  This is similar 
to Figure 3.1.2-3. 
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No

ELSE
For p and q outside the

octagon:

Loop through each pair
of vertices by calling

GM_INSEC to
determine which have

intersection with
 p and q segment

Is any check in
loop Co-linear?

Yes

RETURN no conflict:
p-q segment colinear with

an octagon side

Switch on
number of

intersections:
0,1,2,3,4

no.=0 or no.=1 no.=2 no.=3 or no.=4

RETURN no conflict:
protential roundoff error

Check for intersect
times equal?

Yes

RETURN no conflict:
special case where

conflict at vertex

No
Call

CFP_POSIT
to trim

accordingly

RETURN conflict:  both
ends of segments

trimmed

Set times tp and tq
from proper

intersection times
ti[0..3]

Call CFP_POSIT
to trim accordingly

Short
interval?

RETURN conflict:  both
ends of segments

trimmed

No

Yes

RETURN no conflict:
conflict very short

 

Figure 3.1.2-5:  Flowchart where both P and Q are outside octagon  (continued from Figure 3.1.2-2) 
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Assessment Table 

 
REF# Approximation/Assumption Assessment Impact on APD 

R 3.1.2-1 The relative velocity vector is 
determined by using the 
magnitude from the average 
ground speed over the interval 
and the direction from the 
bearing interval.  This is 
compared to a small epsilon 
value to determine when to 
assume a check of the relative 
position alone is sufficient. 

If the acceleration is constant over the 
segments and the epsilon value is 
small, the approximation is very 
reasonable.  This function determines 
if either p or q vector are inside the 
octagon, which helps reduce the 
chance for a missed alert from round 
off error.   

Important 

R 3.1.2-2 The case where the number of 
intersections equals zero or the 
maximum ratio is <=0 is 
checked when one of the 
position vectors is inside the 
octagon.  If they do occur, a 
floating point error must have 
caused this, since they are 
technically impossible. 

The checks are in place and the proper 
flags are also present.  Though how 
often, if ever, does this occur? 

Minor  

R 3.1.2-3 The case where the P and Q 
vectors are outside the octagon 
and the GM_INSEC finds one 
intersection is an error which is 
protected against by an error 
trap.  The assumption is it is 
caused by a round off error and 
no conflict result is returned. 

On the surface the error seems 
impossible, but due to floating point 
round off error this may happen.  The 
assumption is reasonable since both 
position vectors were already 
determined to not be collinear and 
outside the octagon.  One intersection 
could only mean the position vector 
skims the surface of the octagon, but 
not at a vertex or it would have been 
two intersections.  To touch the 
surface somewhere else, could only 
mean a floating point error and this is 
what the function checks for. 

Minor  

 

3.1.3 Function:  CFP_INTERSECT_TIME  ( C ) 
This function calculates the time, given the coordinates (x and y) of a specific point, by linear interpolation 
between the end points of a segment. 

3.1.3.1 Description:   
Given the x, y, and t of the end points of a trajectory segment, the function will linear interpolate to find the 
time for a given x and y location along the trajectory segment.  The function has simple checks to ensure 
the point is within the segment.  If it is not within the segment, the function will use the corresponding end 
point time. 
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Table of Variable Definitions 
 

Function Variable Description Math Symbol 
x1, y1 x, y coordinates of first end point x1, y1 
t1 time of first end point t1 
x2, y2 x, y coordinates of second end point x2, y2 
t2 time of second end point t2 
xi, yi x, y coordinates of intersection point xi, yi 
i if segment is a point, which time should 

be used:  i=1 so use first point’s time; 
t=2 so use second end point’s time 

I 

temp1 absolute value change in the x 
dimension for the segment 

temp1 

temp2 absolute value change in the y 
dimension for the segment 

temp2 

ratio ratio of the difference between end 
point dimension and the intersection 
dimension by the corresponding 
temp1or temp2 

ratio 

3.1.3.2  Mathematics: 
The function interpolates to find a specific intersection time for a given point on a segment.  The 
function starts by calculating the two segment difference variables. 
 

 temp x x1 1 2= −  Equation 3.1.3-1 

 temp y y2 1 2= −  Equation 3.1.3-2  

The next statement checks for both these differences being effectively zero (as small as an epsilon 
value).  If they are, a time is returned for one of the end points (the choice for this end point is 
provided as an input).  However, if the both the difference equations are not effectively zero, the 
dimension used for the interpolation has the larger difference.  Therefore, the next formula 
calculated is for the ratio: 
 

 
( )
( )

xi x

x x

−

−

1

2 1

  or  
( )
( )

yi y

y y

−

−

1

2 1

 Equation 3.1.3-3  

A final check is made to ensure that the ratio is within the interval (0, 1).  Finally, the calculation 
for the time is based on the chosen ratio.    
 

 ( )t t ratio t t= + −1 2 1*  Equation 3.1.3-4 

 
The equation above is simply the linear interpolation for the time at the given xi, yi coordinates. 
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Assessment Table 
 

REF# Approximation/Assumption Assessment Impact on  
APD 

R 3.1.3-1 Equation 3.1.3-4 is a linear 
approximation which 
assumes no acceleration is 
present, although the real 
kinematics of an aircraft may 
have acceleration.  

For the input to this function, the 
assumption for the relative velocity of the 
aircraft is that the aircraft do not have 
acceleration during the segment, since the 
relative velocity uses the average ground 
speed for the entire segment.  A more 
accurate approach is to use a similar 
function as CFP_POSIT which uses a 
quadratic function to calculate the time. 

Minor 
 

 
 

3.1.4 Function:  CFP_MIDDLE_HORIZ ( C ) 
This function performs the horizontal middle filter, which uses circular conformance bounds. 

3.1.4.1 Description: 
The algorithm assumes circular conformance bounds around the subject and object aircraft with the radii 
specified from the standard horizontal conformance by taking the larger of longitudinal or lateral 
conformance distance.  Using relative vectors, the algorithm subtracts the subject aircraft’s position and 
velocity vectors from the object’s position and velocity vectors.  The circular boundary is drawn around the 
subject aircraft, consisting of both aircraft’s  conformance radii and the separation distance.  The aircraft 
are considered not to be in a conflict if the relative position vector falls outside the subject centered circular 
conformance region.  If it does fall inside the region, the aircraft pair flight segments are trimmed only to 
the inside of the circular boundary and passed to the next middle filter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
Figure 3.1.4-1:  Relative Geometry with Circular Conformance Boundary 

Radius of  the 
conformance 
boundary 

Subject 
aircraft 

Object 
aircraft



   

 28

 
 

Table of Variable Definitions 
 

Function 
Variable 

Description Math Symbol 

xd, yd  x, y coordinates of object minus subject aircraft  xd, yd 
tempc, temps cosine and sine temporary variables  tc, ts 
vdotv, vdotp, 
pdotp 

vector dot products ( ), ( ),
( )
V V V P
P P

• •
•

 
m square of separation radius  = (object’s conformance radius + 

subject’s conformance radius + separation distance)2 
m 

qdiscr one quarter of the discriminant det 1/4 
beta angle used to compute relative velocity;  β = θo − θs = object heading 

angle - subject heading angle 
β 

t1, t2, t3, t4 time interval endpoints t1, t2, t3, t4 
dum dummy variable used in max3 and min3 dum 
ths, tho heading angle for subject aircraft and object aircraft, respectively θs, θo 
p[0] , p[1] relative position vector P for x-axis [0] and y-axis [1] P0, P1 
q[0] , q[1] relative position vector Q for x-axis [0] and y-axis [1] Q0, Q1 
vel[0], vel[1] relative velocity vector for x-axis and y-axis V0, V1 
 

3.1.4.2 Mathematics: 
 

Relative geometry calculation: 
The first step is to trim the endpoints in the x and y coordinates, so the time intervals are 
equivalent.   
 
Position Vectors: 
The next step is to calculate the relative geometry vectors.  The relative vector is calculated for the 
start and end of the line segments, respectively the P and Q vectors.  The P and Q vectors are 
rotated to align the x-axis in the subject aircraft direction of travel.  Therefore, the geometry 
vectors are calculated as follows: 
 

 tc = cos (θs) Equation  3.1.4-1 

 ts = sin (θs) Equation  3.1.4-2 

 xd = (x coordinate of aircraft b) - (x coordinate of aircraft a)  Equation  3.1.4-3 

 yd = (y coordinate of aircraft b) - (y coordinate of aircraft a) Equation  3.1.4-4 
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Figure 3.1.4-2:  Rotating P vector to axis frame of subject aircraft 

 
Now, rotate position vector P to define the x-axis by the subject aircraft’s direction of travel (refer 
to Figure 3.1.4-2).  Project the x and y differences on to the x and y prime axis as illustrated in the 
Figure 3.1.4-2 above, such that: 
 

 P0 = xd ts + yd tc Equation  3.1.4-5 

 P1 = yd ts - xd tc Equation  3.1.4-6 

 
The same steps are performed for the Q vector for the point 2 coordinates, resulting with: 
 

 Q0 = xd ts + yd tc Equation  3.1.4-7 

 Q1 = yd ts - xd tc Equation  3.1.4-8 

 
where xd and yd are again calculated using the second point on each of the position vectors 
 
 
Velocity Vector: 
The relative velocity vector is determined by projecting the average ground speed on to the 
relative position vector of the subject by the following formulas (refer to Figure 3.1.4-3): 
 
V0 = [ -(ground speed of aircraft a at (point 1 + point 2)) + (ground speed of aircraft b at (point 1 
+ point 2)) * cos(b)]/2 
 V1= [-(ground speed of aircraft b at (point 1 + point 2)) * sin(b)]/2 
 
where Va = (ground speed of aircraft a at (point 1 + point 2))/2; 
 Vb = (ground speed of aircraft b at (point 1 + point 2))/2; 
 with a aircraft as subject aircraft and b as object aircraft  

y-axis

x-axis

y’-axis 
x’-axis

θs 

θs θs 

θs 
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Figure 3.1.4-3:  Relative velocity  

 
 
Therefore, the relative velocity vector is : 
 

 V0 = Vbcos(β) - Va Equation  3.1.4-9 

 V1 = -Vbsin(β) Equation  3.1.4-10 

  
where the V0 refers to x’-axis and V1 refers to y’-axis 
 
 
Dot products and separation calculated: 
 
The dot product is calculated for the velocity and position vectors.  The next check determines if 
the relative velocity is close to zero.  The dot product of V on V is the magnitude of the relative 
velocity squared.  This check squares the speed epsilon value (ε) and compares it to the dot 
product of V on V.   
 
Relative Velocity close to zero: 
If the dot product is smaller than the ε2, the relative velocity is essentially zero, meaning the 
aircraft are not moving relative to each other.  Therefore, it is sufficient to test if the relative 
position vector is inside the circular conformance bound.   The radius of the circular boundary is 
as follows: 
 
m = (radius of conformance of subject aircraft a   + radius of conformance of object aircraft b + 
separation standard)2  
 
The m is compared against the dot product of the relative position vector of P on P.  If the dot 
product is less than m, then the aircraft pair may be in conflict so are passed on to the next filter.  
With relative velocity at zero, the P and Q vectors should be equivalent, so only one check is 

                                                           
a The radius of conformance of the subject aircraft is the hypotenuse of the right triangle formed by half the 
longitudinal and lateral conformance distances for the segment, = ( ) ( )longitude lateral2 2+ .  For example, 

the radius with longitudinal and lateral conformance bounds of 3 and 5 miles would be equivalent to 2.52 
nautical miles from ( . ) ( . )15 2 52 2nm nm+ . 
b The radius of conformance of the object aircraft is calculated in the same manner as the subject aircraft, 
using the longitudinal and lateral conformance distances of the object aircraft segment. 

Va Vb 
Vr 

β

x-axis 

y-axis x’-axisy’-axis
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necessary if the rounding errors are minimal.  As suggested in the code’s comments, the Q dot Q 
should also be checked and if either are less than m, the function should result in a detected 
conflict.  The comments suggest that only one vector check is sufficient, however if round off 
problems are present both vectors should be checked against m.  The comments also state that 
the check is for the “norm” equal to zero, however the vdotv is equivalent to the magnitude of the 
relative velocity squared not the normal vector.  If this magnitude is equal to zero, the position 
vectors P and Q should be equivalent, since there is no relative movement for the time interval of 
the flight segment. 
 
Relative velocity greater than zero: 
With the relative velocity greater than zero, the aircraft are moving relative to each other.  The 
function needs to determine if the object aircraft is within the m distance from the subject 
aircraft within the time interval of the segment.  The vector equation for the relative distance is :  
 

 R(t) = P + tV Equation  3.1.4-11 

   where t = time variable - time at point 1 
 
The function must solve for the time, t, that the relative distance traveled is equal to the radius 

m .  Thus by squaring both sides, the function solves : 
 

 R(t)2 = m Equation  3.1.4-12 

 
  (P + tV)2 = m 
  (tV)2 + 2tPV + P2 = m 
  (V2)t2 + (2PV)t + (P2-m) = 0 
 

 at2 + bt + c = 0 Equation  3.1.4-13 

  where a = V2, b = 2PV, c = P2-m 
 
Therefore, the function must solve the quadratic Equation  3.1.4-13 for the roots (times) where the 
object aircraft enters the circular boundary.  Using the quadratic formula, the quarter discriminant 
is calculated.  If the quarter discriminant is negative, there are no real roots, which means no time, 
t, that equates the relative distance on the boundary.  In other words, there would be no conflict 
for this case.  From the quadratic equation, the expression for the quarter discriminant is derived 
as follows: 
 

  Quadratic Equation:  
− ± −b b ac

a

2 4

2
 

  where discriminant = b2 - 4ac,  

 so quarter discriminant = b2/4 - ac Equation  3.1.4-14 

 
If the quarter discriminant equals zero, then there are equal rootsc to the quadratic equation and 
the conflict just touches the circular bound once.  Since the aircraft are separated by the 
conformance boundary, assume no conflict.  From Equation  3.1.4-13 and Equation  3.1.4-14, the 
quarter discriminant is equivalent to: 
 

                                                           
c For a circular boundary with equal roots, the relative position vector touches the boundary at only one 
point. 
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 det1/4 = (PV)2 - V2(P2-m) Equation  3.1.4-15 

 
or by using dot products:  

 
   det1/4 = ( )( ) ( )[( ) ]P V P V V V P P m• • − • • −   
 

If Equation  3.1.4-15 is greater than zero, roots do exist and are determined by the following two 
equations: 
 

Time 1 = t1 = t1a + 
− − −











b b ac

a

2 4

2
= t1a + 

− − −











b b ac

a

/ /2 42

 

Time 2 = t2 = t2a + 
− + −











b b ac

a

2 4

2
= t2a + 

− + −











b b ac

a

/ /2 42

 

 
Times 1 and 2 defined in terms from the function: 

 
  

 t1 = t1a + 
− • −

•











( )

( )

P V

V V

det  1/4  Equation  3.1.4-16 

 t2 = t2a + 
− • +

•











( )

( )

P V

V V

det  1/4  Equation  3.1.4-17 

 
If the times, t1 and t2, fall between the (t1a, t2a) and (t1b, t2b) time intervals, there exists a time 
interval where the object aircraft is inside the circular boundary and thus a conflict exists.  The 
function trims the start and end points of the data set based on the intersection of the times.   
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Assessment Table 
 

REF# Approximation/Assumption Assessment Impact on 
APD 

R 3.1.4-1 If the relative velocity 
magnitude squared (V2) is 
less than or equal to the 
speed epsilon squared, it 
sufficient to check the 
distance P from the subject 
aircraft. 

If the acceleration is minor over 
the segment since the relative 
velocity is averaged over the 
segment, it seems reasonable.  
The P position vector will be 
sufficient to check against the 
circular bound radius, however 
a more conservative approach is 
to check both Q and P, 
returning a conflict if either is 
less than conformance radius.    

Critical 

R 3.1.4-2 Assumption is made in using 
the average ground speed 
over the length of the 
segment in Equation  3.1.4-9 
and Equation  3.1.4-10.  

Assumes linear acceleration of 
aircraft during the segment 
length.  This could cause 
inaccuracy of the position/time 
estimates. 

Important  

R 3.1.4-3 For the trimming of the time 
intervals (at the end of the 
routine) if a conflict is found, 
error coded may be returned 
by CFP_POSIT, as stated in 
the comments. 

Potentially rare, but rounding 
error due to single precision 
calculations may cause these 
error code returns.  

Important 
 

R 3.1.4-4 When the function checks for 
the relative velocity less than 
epsilon, the function 
calculates the dot product of 
V.  This is referred to as the 
“norm” of the velocity in the 
comments and 
documentation.  

The dot product of V (relative 
velocity) is not the normal 
(“norm”)  of the velocity vector.  
It is the squared magnitude of 
the relative velocity vector.  It is 
true the aircraft would be 
trailing or parallel with the dot 
product zero.  However, the 
normal could be zero and the 
dot product may not be. 

Minor 
(comment) 

 

3.1.5 Function:  CFP_MIDDLE_VERT ( C ) 
This function performs the vertical middle filter, which trims the conflict region passed by the horizontal 
middle filter.  The conflict region is trimmed in the vertical versus time plane.  If no vertical conflict region 
is present, the aircraft are not in conflict and finish the detection process. 

3.1.5.1 Description:   
The algorithm determines the vertical region of overlap for the previously trimmed flight segments from 
the middle horizontal filter.  The algorithm constructs an altitude (z dimension) versus time plot, 
determining the intersection region if present.  In the z-t plane, there exist altitude conformance regions 
where both subject and object are present during the segment.  These regions are bounded on all sides by 
either straight lines or continuous curves.  The conflict time interval passed from the middle horizontal 
filter may or may not overlap in the z dimension for the entire interval.  The function determines the 
bounds of the z dimension overlap (if at all) and trims the time interval accordingly.  If there is not an 
overlapping region, the function returns a no conflict result.  If a conflict is detected, the function trims the 
conflict for the z-t overlap region and passes this to the next filter. 
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Table of Variable Definitions 
 

Function Variable Description Math Symbol 
kappa lower bound of subject aircraft interval κ 
lambda upper bound of subject aircraft interval λ 
mu lower bound of object aircraft interval µ 
nu upper bound of object aircraft interval ν 
k number of intersections found k 
troots[2] a vector of the times of the intersections found roots1 
roots[2] a vector of the times of the intersections found roots2 
cfpint->a1.z and a2.z subject aircraft cusp 1 and 2 altitudes (z dimension, feet) a1z, a2z 
cfpint->b1.z and b2.z object aircraft cusp 1 and 2 altitudes (z dimension, in feet) b1z, b2z 
cfpint->a1.t and a2.t subject aircraft cusp 1 and 2 times (t dimension, in seconds) a1t, a2t 
cfpint->b1.t and b2.t object aircraft cusp 1 and 2 times (t dimension, in seconds) b1t, b2t 
cfpint->zps subject aircraft vertical conformance distance above 

trajectory altitude (in feet from trajectory altitude) 
zps 

cfpint->zms subject aircraft vertical conformance distance below 
trajectory altitude (in feet from trajectory altitude) 

zms 

cfpint->zpls subject aircraft vertical conformance bound limit above 
trajectory altitude (in feet from sea level) 

zpls 

cfpint->zmls subject aircraft vertical conformance bound limit below 
trajectory altitude (in feet from sea level) 

zmls 

cfpint->zpo object aircraft vertical conformance distance above trajectory 
altitude (in feet from trajectory altitude) 

zpo 

cfpint->zmo object aircraft vertical conformance distance below trajectory 
altitude (in feet from trajectory altitude) 

zmo 

cfpint->zplo object aircraft vertical conformance bound limit above 
trajectory altitude (in feet from sea level) 

zplo 

cfpint->zmlo object aircraft vertical conformance bound limit below 
trajectory altitude (in feet from sea level) 

zmlo 

cfpint->zsep aircraft vertical half separation distance (in feet) zsep 

3.1.5.2 Mathematics: 
The code begins with error checks for synchronized segment endpoint times and positive ground 
speeds, which should have been completed in the Horizontal Middle Filter.  Next, the code 
determines where in the intervals is the vertical conflict taking place, providing the following 
cases: 
 

1. Intersection for the entire interval 
2. Intersection takes place at the beginning of the interval  
3. Intersection takes place at the end of the interval 
4. No intersection takes place 
5. Intersection of conformance bounds without crossing of the trajectories  
6. Intersection inside the intervals with crossing of the trajectories 

 Table 3.1.5-1:  Logical Vertical Intersection Cases 

 
 

To determine each the case above, four variables are defined first for the beginning points and 
then for the end points. 
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κ lower bound of subject aircraft interval 
λ upper bound of subject aircraft interval 
µ lower bound of object aircraft interval 
ν upper bound of object aircraft interval 

 Table 3.1.5-2:  Beginning and End Conflict Variables 

 
If the upper bound of the subject aircraft, λ, is above the lower bound of the object aircraft, µ, and 
the same for ν and κ, the location of the conflict is determined.  Specifically,  if  the following 
Equation 3.1.5-1 for the given end point is true, an intersection of both aircraft’s altitudes will 
take place at that endpoint. 
 

 ( ) ( )λ µ ν κ. .> >and  Equation 3.1.5-1 

  
This condition statement evaluates between the following seven cases: 
 

 
 
 
                
          

Figure 3.1.5-1:  Cases of End Point Intersections 

 where the dark line = subject altitude  
 and the light line = object altitude 
  (note:  *overlapping altitudes) 

 
Only for cases C and D is an intersection not evaluated at the particular endpoint (i.e. cusp 1 or 2).  
For the remaining cases (A,B,E,F,G), the Equation 3.1.5-1 is evaluated true and does intersect in 
the vertical dimension.   
 
Once the test for the beginning and ending conflicts is complete, the intersections are evaluated.  
As listed in Table 3.1.5-1 for Case 1, if the begin and end conflicts are both evaluated true, the 
Middle Vertical Filter ends with no trimming to the conflicts, since the trajectory segments are in 
vertical intersection for the entire time interval.   
 
For Case 2, the beginning endpoints are in an intersection but not at the end of the intervals.  
There are two possible situations under this case:  either the lower bound of the subject intersects 
the upper bound of the object, or the upper bound of the subject intersects the lower bound of the 
object.   
  
The function uses the fact that the subject’s lower bound intersects the object’s upper bound only 
if the subject’s cusp 2 altitude is greater than object’s cusp 2.  This is illustrated in Figure 3.1.5-2.

 A               B              C             D              E             F             G* 
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 Figure 3.1.5-2:  Situations for calling CFP_V_INT 

 
Now, the actual calculation of the vertical intersection point is determined by the function 
CFP_V_INT.  The function returns the intersection root times and the number determined 
between a pair of segments upper and lower bounds.  There could possibly be 0, 1, or 2 
intersection times for all the cases, however for Case 2 only 1 root can be returned by 
CFP_V_INT.  For this case, a zero root is determined only if the difference between the beginning 
time and the root time is less than an epsilon value.  This is an approximation for a vertical 
conflict of a very small duration.  Otherwise, the intervals are truncated from the beginning time 
to the new end time (i.e. root time) determined by CFP_V_INT.   
 
For Case 3,  the end points are where the intersection takes place and the beginning points are not.  
This is symmetrical to the Case 2 comparisons.  Now with the end point as the intersection side, 
the cusp 1 altitudes are used to determine the situation for the call to CFP_V_INT in the same 
manner as the cusp 2 altitudes were used for Case 2. 
 
For Cases 4 and 5, the beginning and end altitude bounds are not intersecting, but a vertical 
conflict may or may not exist.  These cases are evaluated by an expression that determines 
whether the trajectory segments cross in the vertical dimension.  The expression is as follows: 
 

 ( )( )[ ]alz b z a z b z− − >1 2 2 0  Equation 3.1.5-2  

 
For the Equation 3.1.5-2 to be positive, the segments will not be crossing in the vertical 
dimension. 
 
 
 
 
   

Figure 3.1.5-3:  Equation 3.1.5-2 > 0 for both situations 
 

Similar to Cases 2 and 3, the order of intersection (i.e. lower intersects upper bound) is determined 
by using the cusp 1.  For Case 4, CFP_V_INT found zero roots, so no intersection is determined.  
For Case 5, two intersection points are found.  These intersection points are within the 

a1z a2z 

b1z b2z 

b1z b2z 

a1z a2z 

Beginning of 
intervals in 
intersection 

Situation A: Subject’s 
cusp 2 altitude is greater 
than object’s cusp 2 

Situation B: Subject’s 
cusp 2 altitude is less 
than or equal to object’s 
cusp 2 

Subject’s lower 
bound intersects 
object’s upper bound 
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conformance bounds without the crossing of the trajectories, and of course without being in 
conflict at the segment endpoints.   
 
For Case 6,  the Equation 3.1.5-2 must be less than zero, which represents a pair of crossing 
trajectory segments.  Both cases of intersecting bounds take place simultaneously.  The lower 
bound of the subject aircraft intersects the upper bound of the object aircraft and the upper bound 
of the subject aircraft intersects the lower bound of the object aircraft, so two calls to the function 
CFP_V_INT are made.  The first call is with the intersecting lower bound as the subject aircraft.  
The second call is with the intersecting lower bound as the object aircraft.  Each call must return 
one root and both roots are used to trim the segments. 
 
 
 
 

 
 
 
 
   
 

 Figure 3.1.5-4:  Crossing Trajectories for Case 6 

 
A final check is made to determine if the trimmed interval is less than an epsilon value (currently 
1 second).  If the interval is less than or equal to the epsilon time,  no conflict is returned.  If the 
time is greater than the epsilon time, the conflict does exist and the intervals have been trimmed 
accordingly.  

 
 

b2z 

b1z 

a1z 

a2z b2z 

b1z 

a1z 

a2z 
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Function Logic Review: 

 
The following flowchart summarizes the logic of the Middle Vertical Filter.  The checks for the 
small epsilon time are not represented for each case, but assumed present for each call to 
CFP_V_INT.  
 

Middle Vertical Filter

Compute vertical
intersection

check at cusp 1:
 beginning in conflict

Compute vertical
intersection

check at cusp 2:
end in conflict

If begin &
end in conflict Yes

Conflict but no
adjustment

No

If begin
 in conflict Yes

No

If a2z > b2z Yes

No

Call CFP_V_INT with
lower bound of subject

intersecting upper
 bound of object

Call CFP_V_INT
with upper bound

of subject
 intersects lower
 bound of object

If root
 no. = 1 Yes

Correct no.
 of roots,

trim to
 root found

No

Error returned,
incorrect
 no. roots

B

Case 1

Case 2

  

Figure 3.1.5-5:  Middle Vertical Filter Logic Flowchart
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If end in conflict Yes

No

If a1z > b1z Yes

No

Call CFP_V_INT with
lower bound of subject

intersecting upper
 bound of object

Call CFP_V_INT with
upper bound of subject

intersects lower
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 no. = 1 Yes

Correct no.
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trim to

 root found

No
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incorrect no.

roots

B
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NoNo
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No
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Assessment Table 

 
REF# Approximation/Assumption Assessment Impact on 

APD 

R 3.1.5-1 Round off problems have 
caused errors due to single 
precision accuracy as 
expressed in the comments. In 
all calls to CFP_V_INT, the 
middle filter checks for small 
interval times less than epsilon 
value. 

The occurrence of very small conflicts 
cause the error checks to assume no 
conflict (less than acp.time_epsilon).  
This is a reasonable approximation if 
the epsilon time is relatively small 
(currently 1 second). 

Important 

R 3.1.5-2 Incorrect number of roots for 
particular geometric situation 
returned by CFP_V_INT (a 
sub-function call by the middle 
filter). 

Current method is to check for the 
appropriate number of roots for each 
case.  If the wrong number is returned, 
the middle filter will return an error 
code.  More investigation is required to 
examine when and if this can occur. 

Important 

R 3.1.5-3 Prior filter check for equal 
adjusted interval cusp times. 

This is checked for equal interval cusp 
times that must have been completed in 
a prior filter (middle horiz.).  

Important 

 

3.1.6 Function:  CFP_RELVEC  ( C ) 
This function recalculates the relative geometry vectors, specifically the relative velocity vector and the 
relative position vectors. 

3.1.6.1 Description:   
Due to the trimming in the Middle filters the relative geometry should be recalculated before entering the 
Horizontal Fine Filter.  Also, if acceleration is present the recalculation of the relative vectors will reduce 
round off in the Fine Filter.  The function applies the same technique used in the Middle Horizontal filter to 
generate the relative vectors. 
 
 

Table of Variable Definitions 
 

Function Variable Description Math Symbol 
xd, yd x, y coordinates of object minus subject aircraft  xd, yd 
tempc, temps cosine and sine temporary variables  tc, ts 
beta angle used to compute relative velocity;  b = qo - qs = 

object heading angle - subject heading angle 
β 

ths, tho heading angle for subject aircraft and object aircraft, 
respectively 

qs, qo 

p[0] , p[1] relative position vector P for x-axis [0] and y-axis [1] P0, P1 
q[0] , q[1] relative position vector Q for x-axis [0] and y-axis [1] Q0, Q1 
vel[0], vel[1] relative velocity vector for x-axis and y-axis V0, V1 
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3.1.6.2  Mathematics: 
The function starts by calculating the relative geometry vectors.  The relative vector is calculated 
for the start and end of the line segments, respectively the P and Q vectors.  The P and Q vectors 
are rotated to align the x-axis in the subject aircraft direction of travel.  Therefore, the geometry 
vectors are calculated as follows: 
 

 ( )tc s= cos θ  Equation 3.1.6-1  

 ( )t s s= sin θ  Equation 3.1.6-2  

 x x xd aircraft b aircraft a= −_ _  Equation 3.1.6-3 

 y y yd aircraft b aircraft a= −_ _  Equation 3.1.6-4 

 

 

 

 

 

 

 

 

 
    

Figure 3.1.6-1:  Rotating P vector to axis frame of subject aircraft 
 
Now, rotate position vector P to define the x-axis by the subject aircraft’s direction of travel (refer 
to Figure 3.1.6-1).  Project the x and y differences on to the x and y prime axis as illustrated in the 
Figure 3.1.6-1 above, such that: 
 

 P x t y td s d c0 = +  Equation 3.1.6-5 

 P y t x td s d c1 = −  Equation 3.1.6-6 

 
The same steps are performed for the Q vector for the point 2 coordinates, resulting with: 
 

 Q x t y td s d c0 = +  Equation 3.1.6-7 

 Q y t x td s d c1 = −  Equation 3.1.6-8 

 
where xd and yd are again calculated using the second point on each of the position vectors 
 
 

y-axis

x-axis

y’-axis 
x’-axis

θs 

θs θs 

θs 
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Velocity Vector: 
The relative velocity vector is determined by projecting the average ground speed on to the 
relative position vector of the subject by the following formulas (refer to Figure 3.1.6-2): 
 
V0 = [ -(ground speed of aircraft a at (point 1 + point 2)) + (ground speed of aircraft b at (point 1 
+ point 2)) * cos(b)]/2 
 V1= [-(ground speed of aircraft b at (point 1 + point 2)) * sin(b)]/2 
 
where Va = (ground speed of aircraft a at (point 1 + point 2))/2; 
 Vb = (ground speed of aircraft b at (point 1 + point 2))/2; 
 with a aircraft as subject aircraft and b as object aircraft  
 
 
 
 
 
 
 
 
 
  
 

  

Figure 3.1.6-2:  Relative velocity  

 
 
Therefore, the relative velocity vector is : 
 

 ( )V V Vb a0 = −cos .β  Equation 3.1.6-9 

 ( )V Vb1 = − sin .β  Equation 3.1.6-10 

where the V0 refers to x’-axis and V1 refers to y’-axis. 
 
 

Assessment Table 
 

REF# Approximation/Assumption Assessment Impact 
on APD 

R 3.1.6-1 There is an inherent assumption of 
constant acceleration if acceleration is 
present. 

The assumption is reasonable if the 
segments are relatively small. 

Important 

R 3.1.6-2 There is a check for acceleration prior to 
calculating the new relative velocity 
vector.  If either aircraft has acceleration, 
the relative velocity is recalculated.  
However, if neither do, the calculation is 
bypassed. 

The reason is sound, if no 
acceleration is present the calculation 
of relative velocity will not have 
changed at all. 

Minor 

 

Va Vb 
Vr 

β

x-axis 

y-axis x’-axisy’-axis
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3.1.7 Function:  CFP_TRIM  ( C ) 
This routine trims two segments so they have the same start and end times, making them overlap within the 
same time interval. 

3.1.7.1 Description:   
The function is composed of two main conditional loops:   

1. The first loop trims the starting points based on which segment’s starting time is greater. 
2. The second loop trims the ending points based on which segment’s ending time is earlier. 

 
The program returns the new set of trimmed flight segments by calling CFP_POSIT, which interpolates to 
find the x and y coordinates of the each trimmed endpoint. 
 

Assessment Table 
 

REF# Approximation/Assumption Assessment Impact on 
APD 

R 3.1.7-1 All aircraft segments that 
enter CFP_TRIM have 
overlapping time intervals. 

Requirement satisfied since CFP uses 
coarse filter to ensure segments overlap in 
time.   

Minor 

R 3.1.7-2 All accuracy and calculation 
specifically carried in 
CFP_POSIT algorithm. 

Approximation of x and y coordinates of 
trimmed endpoint calculated in 
CFP_POSIT algorithm. 

Minor 

 

3.1.8 Function:  CFP_V_INT ( C ) 
This function computes the intersections of two linear segmented curves (referred to as splines).  For this  
application, these splines refer to the boundary lines of aircraft in the vertical dimension.  Only the 
intersections within the interior of the interval are desired and any splines that touch but do not cross are 
not of interest. 

3.1.8.1 Description:   
The algorithm intersects the lower bound function (za(t)) with the upper bound function (zb(t)) and 
calculates where these functions intersect.  To determine these intersections, the function first computes the 
points of inflection, specified as the spline mesh points, in the altitude versus time dimensions.  The mesh 
points are defined for the lower level spline and denoted a[i] where i= 1, 2, 3.  For the upper bound the 
spline mesh points are denoted as b[i] where i= 1, 2, 3.  The algorithm interpolates to find the same time 
mesh for each spline.  In a sense, the spline mesh points define intervals where the algorithm checks for 
intersections.  The times at the endpoints of the region, (where za(t) is below zb(t) and forms the 
intersection), are reported back to the vertical middle filter.  The algorithm may find 0, 1, or 2 intersections 
of the two splines. 
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Table of Variable Definitions 
 
 

Function 
Variable 

Description Math Symbol 

zl1 z of lower bound trajectory at t1 zl1 
zl2 z of lower bound trajectory at t2 zl2 
zl lower conformance for lower bound zl 
zll lower conformance limit for lower bound  zll 
zu1 z of upper bound trajectory at t1 zu1 
zu2 z of upper bound trajectory at t2 zu2 
zu upper conformance for lower bound zu 
zuu upper conformance limit for lower bound  zuu 
zsep vertical half separation zsep 
tbegin common start time of truncated segments t1 
tend common end time of truncated segments t2 
k number of intersections found k 
roots[2] a vector of the times of the intersections found roots 
am count of slots used in A vector am 
bm count of slots used in B vector bm 
mesh_len number of points in spline mesh mlength 
tbend time for middle spline mesh point tbend 
eps epsilon value used for machine roundoff for this routine only ε 
  

3.1.8.2  Mathematics: 
This function starts by checking the times and trajectory, and performs simple error traps to 
ensure the segment inputs are reasonable, i.e. beginning time is before ending time.  The next step 
is to define the ε value for round off checks in the calculations to follow.  The ε value used for this 
function is the minimum of the following: 
 
 (0.000001)t2   and   (0.1)(t1-t2) 
 
Since the time variables are defined by seconds (starting at zero seconds to 86400 seconds at time 
2400 hours), the maximum value used for ε  will be approximately 0.1 seconds. 
  
Calculation of the spline mesh points for the lower bound spline starts by setting the first point to 
the beginning time and lower bound altitude.  The function’s next step is a check for level flight.  
For the lower bound trajectory with level flight, only two mesh points will be evaluated and am is 
set to 2.   
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Figure 3.1.8-1:  Example of lower bound trajectory and tbend  

 
 
For the case where the lower bound trajectory is climbing or descending in the interval, the middle 
spline mesh point is calculated.  The point where the trajectory line intersects the lower boundary 
limit is the middle spline mesh point, refer to Figure 3.1.8-1 above.  There may not be a middle 
spline mesh point if the lower bound trajectory line intersects the lower boundary limit outside the 
time interval (for this case, the spline has only two mesh points).  Solving for this middle spline 
mesh point’s time, the following equation is solved: 
 
  lower boundary limit = lower boundary line 
 

 zll zf t zl= −( )  Equation 3.1.8-1  

 where zf t zl t t zl t t t t( ) [ ( ) ( )] / ( )= − + − −1 2 2 1 2 1  Equation 3.1.8-2 

 
So, 
 

 zll zl t t zl t t zl t t t t= − + − − − −[ ( ) ( ) ( )] / ( )1 2 2 1 2 1 2 1  
 

 zll t zll t zl t t zl zl zl t zl t zl t( ) ( ) [ ( ) ( ) ( ) ( ) ( )]2 1 1 2 2 1 2 1 2 1− = + − − − +  
 

 ( )( ) ( )zll zl t t zl t zl t t zl zl+ − − + = −2 1 1 2 2 1 2 1  
 

 t= [( )( ) ] / ( )zll zl t t zl t zl t zl zl+ − − + −2 1 1 2 2 1 2 1  Equation 3.1.8-3 

 
 
In the algorithm code, Equation 3.1.8-3’s time t is stated as tbend and examined to ensure that 
tbend is inside the segments time interval.  In other words, if tbend is outside the time interval 
[(t1+ ε) to (t2- ε)], then the lower boundary conformance line has only two spline mesh points at 
the ends of the interval.  The same procedure is carried out for the upper bound trajectory and 
conformance line, where the tbend is evaluated for this potential middle spline mesh point.   
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Once both sets of spline mesh points are defined, the points are combined at the same times and 
linearly interpolated so each uses the same mesh.  Five cases of the mesh point combinations are 
considered by the algorithm (refer to Table 3.1.8-1).  Example diagrams are illustrated in Figure 
3.1.8-2.  The first case is the combination of both boundary functions having 2 mesh points.  For 
this case, there is no need for interpolation, since the points are all at the ends of the interval at 
equivalent times.  The second and third cases have 2 mesh points for the one boundary and 3 for 
the other.  The boundary function with the 2 mesh points is interpolated with the same middle 
time mesh point and stretched to have 3 mesh points.  In the fourth case, both boundary functions 
have 3 mesh points and an equivalent middle time mesh, so no interpolation is required.  In the 
fifth case, both boundary functions have 3 mesh points but the middle mesh point times are not 
equivalent.  For this case, both boundary functions are interpolated and stretched to have 4 mesh 
points at equivalent times. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 3.1.8-2:  Examples of mesh point combinations for each case   

 
 

No. Variables  Mesh 
Length 

Description 

1 am=2 and bm=2 2 2 mesh points for both lines, both defined 
within ε time of the end points of the interval 

2 am=2 only 3 2 mesh points for the lower bound (at the end 
points) while the upper bound has 3 mesh 
points (at ends and middle) 

3 bm=2 only 3 2 mesh points for the upper bound 
(symmetric to above but in reverse) 

4 am=3 and bm=3  3 3 mesh points for both lines and middle time 
mesh equivalent 

5 am=3 and bm=3  4 3 mesh points for both lines and middle time 
mesh not equal 

Table 3.1.8-1:  Mesh point combinations  

 
The mesh points are stored in two arrays of length 4 (i.e. a(0), a(1), a(2), and a(3)).  The a array 
stores the altitudes and times for the lower bound aircraft, while the b array stores the values for 

t1 t2 

am=2 

bm=2 

Case 1 t1 t3

am=3 

bm=2 

Case 2 t1 t3

bm=3 

am=2 

Case 3 t2 t2

t1 t3 
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bm=3 

Case 4 
t1 t4
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the upper bound aircraft.  Now, the mesh points are used to interpolate and define the intersections 
of the two boundary lines, za(t) and zb(t), over the interval.  Two main loops are used for either 
intersections at the end points of the intervals and the internal portion of the intervals.   
 
The first loop performs two sequential checks to determine the first root times.  If the mesh points 
meet the following conditions, the first root times are assigned: 
  

1. The altitudes are equal at the adjacent mesh points (a = b), and 
2. Either the next or prior mesh point altitude meets a < b   (excluding the beginning 

and end points of the interval) 
 

These root times are assigned, when the root altitudes are equivalent and the next or prior points 
are not.  The loop handles the cases where the splines are touching exactly (in the vertical 
dimension), but are not identical throughout the segment interval.  If the splines are identical, they 
do not require this function since they are in intersection throughout the interval.  If the splines are 
only equivalent for part of the interval, the root times are required to trim the interval and as 
starting and ending points for the interior mesh points.    
 
The next loop checks for intersections in the interior portion of the segments by interpolating for 
the intersection point.  In this loop, starting with the second mesh point (i.e. i=1, not 0), the b 
array altitudes are subtracted from the a array altitudes.  For clarity in the derivation, assign the 
altitudes and times of the mesh points to the following variables: 
 
 

a[i][1] = a2  
a[i-1][1] = a1 
b[i][1] = b2 
b[i-1][1] = b1  
a[i][0] = t2 
a[i-1][0] = t1 

 
 

In the code, the difference between the altitudes are calculated first and compared.  Specifically, 
the difference between a1-b2 and a2-b2 are compared to determine if the mesh points cross.  
Referring to Figure 3.1.8-3, these two differences, defined in the code as temp1 = a2-b2  and  
temp2 = a1-b2, are multiplied and compared ([temp1*temp2]<0) for a negative value, which 
means the lines are intersecting and the interpolation computation is applicable. 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1.8-3:  Mesh point intersection (altitude vs. time) 

 
Again by referring to the four sides in Figure 3.1.8-3, the Equation 3.1.8-4 is defined as: 
 

t1 t2 t 

a1 

b1 a2 

b2 
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 ( ) ( )[ ] ( ) ( )[ ]b a t t a b t t1 1 1 2 2 2− − = − −/ /  Equation 3.1.8-4  

 
Solve for t using Equation 3.1.8-4 and  temp1 and temp2 definitions: 
 

 ( )[ ] ( )[ ]− − = −temp t t temp t t2 1 1 2/ /   
 ( ) ( ) ( ) ( )− + = −t temp temp t temp t temp t2 2 2 1 1 1   
 ( ) ( ) ( )temp temp t t temp t temp2 1 2 2 1 1− = −  

 ( ) ( )[ ] [ ]t t temp temp t temp temp= − −2 2 1 1 2 1/  Equation 3.1.8-5 

 
Now, using Equation 3.1.8-5 the root time t is rearranged into the same terms expressed in the 
code. 
   

 ( )[ ] [ ] ( )[ ] [ ]t t temp temp temp temp t temp temp= − − −2 2 2 1 1 1 2 1/ /  
 ( )[ ] [ ] ( )[ ] [ ]t t temp temp temp temp t temp temp t= − − − +2 2 2 1 2 1 2 1 1/ /  

 ( )[ ] [ ]t t t t temp temp temp= + − −1 2 1 2 2 1/  Equation 3.1.8-6 

 
In review, Equation 3.1.8-6 is expressed in the code and is an interpolation of the internal 
intersection point of the lower bound versus upper bound function as defined by the mesh points.  
Finally, the last loop just sorts the root times if required into the roots array. The final result is a 
sorted array of the intersection times in the root array. 
  

Assessment Table 
 

REF# Approximation/Assumption Assessment Impact on 
APD 

R 3.1.8-1 The ε value is used to define a 
cutoff value of a conflict in the 
time dimension.  It is also used 
to provide robustness of the 
algorithm against roundoff 
error. 

Reasonable approximation if time values 
are in seconds, ε for this algorithm is 
minimum of either: 
 
maximum of [(0.000001)t2] ≈ 0.086400    
maximum of [(0.1)(t1-t2)] ≈ -0.1 

Important 

R 3.1.8-2 The climb or descent profile 
for the interval is assumed 
linear and the boundaries are 
assumed linear. 

Reasonable approximation since the 
duration of the intervals are relatively small 
(<5000 feet in altitude change) and have 
approximately a constant climb rate  

Important 

R 3.1.8-3 For the definition of zll, zl1, 
zul, and zu1, the variable 
names chosen are very 
difficult to distinguish 
between. 

Relatively minor point, but for traceability 
and clarity changing the names or using 
capitol letters would be much more 
appropriate. 

Minor  

 

3.1.9 Function:  CFP_POSIT ( C ) 
Interpolates between two state vectors (consisting of x, y, z, t, and ground speed) to an intermediate time. 
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3.1.9.1 Description:   
The state vector is given at both ends of a straight line segment.  The function interpolates between the two 
state vectors to an intermediate time.  The function considers both the case with no acceleration and with 
linear acceleration.  For the case with no acceleration, the approach is a straight forward linear 
interpolation between the two segment end points.  For the case with acceleration, the approach is based on 
the mapping of the along route distance formula to the x, y, and z being linear. 
 

 
Table of Variable Definitions 

 
Function Variable Description Math Symbol 

P1 Initial node position or state vector of aircraft, contains 
five fields:  x, y, z, t, and ground speed 

x1,  y1, z1, t1,  g1 

P2 Final node position or state vector of aircraft, contains five 
fields:  x, y, z, t, and ground speed 

x2,  y2, z2, t2, g2 

K Index indicating which P vector is to be over written with 
the interpolated vector  (= 1 for P1 and 2 for P2) 

k 

Ti Interpolation time, which is between P1.time and P2.time ti 
cfp_inp.apd_spd_epsilon Ground speed difference or tolerance required to consider 

acceleration present  
speed_epsilon 

ALPHA Weight for position 1 for linear interpolation;   
alpha + beta = 1 

α.  

BETA Weight for position 2 for linear interpolation β.  
GAMMA Denominator for the quadratic interpolation, used in the 

acceleration present case 
γ .  

CUSP Q Interpolated position vector qx, qy, qz, qt 
RETURN VALUE 0 = no error 

-1 = error in times of cusps 
-2 = k is 1, input time is after end cusp time 
-3 = k is 2,  input time is prior to first cusp time 

 

3.1.9.2  Mathematics: 
The function begins by checking for trivial or wrong input data. 
 
The interpolation starts by defining the α and β values.  For the case without acceleration, the 
interpolation vector is based on the following formula: 

 

 ( ) ( ) ( )[ ] ( )s t t t s t t s t t= − + − −2 1 1 2 2 1  Equation 3.1.9-1 

 

 ( ) ( ) ( )s t s s= +α β. .1 2  Equation 3.1.9-2 

 
 
 where ( ) ( )α .= − −t t t t2 2 1  and  ( ) ( )β.= − −t t t t1 2 1  
 
 

With: 
Variable Description 
s(t) Represents the x, y, or z in respect to time 
t1 or  t2 The time the aircraft crosses the segment end points 1 or 2 
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s1 or  s2 The dimension parameter value (x, y, or z) at the end points 1 or 2 
t Interpolation time 

 
The Equation 3.1.9-1 is derived from calculating the linear interpolation between the two segment 
endpoints, based on the formula : 
 

 ( ) ( )[ ] ( )( ) ( )[ ]s s t t s t s t t2 1 2 1 1 1− − − −  Equation 3.1.9-3 

 
Solving for s(t) with  t1 < t < t2 : 

 
 ( )[ ] ( )[ ] ( )[ ] ( )( )[ ]s t t s t t s t t s t t t2 1 1 1 1 2 1 2 1− − − + − = −  
 
 ( )[ ] ( )[ ] ( )( )[ ]s t t s t t s t t t2 1 1 2 2 1− + − = −  
 
 ( ) ( ) ( )[ ] ( )s t s t t s t t t t= − + − −1 2 2 1 2 1  

 
 

For the case where acceleration must be considered, the following equation models the position 
for x, y, and z: 
 

 ( ) ( ) ( )
s t

A t s B t s
C

=
+* *1 2  Equation 3.1.9-4 

  
 where 
 ( ) ( )( ) ( )( )A t g g t t g t t t t= − − + − −1 2 2

2

2 2 1 22  

 ( ) ( )( ) ( )( )B t g g t t g t t t t= − − + − −2 1 1

2

1 2 1 12  

 ( )( )C g g t t= + −1 2 2 1

2  
 
Therefore, Equation 3.1.9-4 is illustrated similar to Equation 3.1.9-2 with an α and β terms.  The 
key result is the sum of both of these terms is equivalent to one. 
 

 α β+ = 1  Equation 3.1.9-5 

 where α =
A t
C
( ) and  β =

B t
C
( ) from Equation 3.1.9-4. 

 
From this equation and as stated in the code’s comments, A and B terms sum to C 

( ) ( )( )A t B t C+ = , so the airspace segment is partitioned into two weighted parts.  The 

denominator term, C, is a quadratic equation proportional to the average velocity times the time 
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interval squared.  The quadratic equation (or the C term above) can be expressed as: 
 

( )( ) ( )( ) ( )( )( ) ( )( )C g g t t g g t t g g t t t t g g t t= + − = + − + + − − + + −1 2 2 1

2

1 2 2

2

1 2 2 1 1 2 1

22  

where ( ) ( )( ) ( )( )A t g g t t g t t t t= + − + − −1 2 2

2

2 1 22 and  
 

( ) ( )( ) ( )( )B t g g t t g t t t t= + − + − −1 2 1

2

1 1 22 .  Therefore, the intermediate location along all 
dimensions x, y, and z are all continuous for the same relationship between time and ground 
speed.  The result is a location along the flight segment at time t which is quadratically weighted 
by both sides of the interval. 
 
For further verification, the Equation 3.1.9-4 is compared to generally derived equations of 
motion.  The quadratic equation above interpolates between the two endpoints of the segment, 
giving equal weight to both sides of the time interval (or segment).  If the acceleration is truly 
constant for the duration of the segment, the Equation 3.1.9-4 will produce the exact same result 
as the following equation from Calculus: 

Constant acceleration is equivalent to a dv
dt

= , and solving for velocity by integrating: 

 dv a dt at v v
t

v

v

= = = −∫∫ 0
00

,  the velocity becomes:  

 v v at= +0  Equation 3.1.9-6 

 
Now, the relation for velocity is v ds

dt
= , and by integrating again, the distance, s, traveled 

becomes: 
 

 ds v dt= . , so   ds v dt s s v t t
a

t t
s

s

t

t

0 1

2

0 0 2 1 2 1
2

2∫ ∫= ⇒ − = − + −. ( ) ( )    Equation 3.1.9-7 

From numerical comparison between the distance traveled in Equation 3.1.9-4 and Equation 
3.1.9-7 under various constant acceleration quantities, there was no significant difference between 
the distance calculated by both equations.  However, if the acceleration does not exactly remain 
constant over the interval, the results of the two equations do diverge.  In other words, Equation 
3.1.9-4 is a quadratic function based on both sides of the equation, while Equation 3.1.9-7 uses the 
∆

∆
.

.
velocity

time
   of the segment for the acceleration and starts from one side of the interval.  Equation 

3.1.9-4 uses a quadratic interpolation function that weights both sides of the interval based on the 
difference in the particular end point times and ground speed. 
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Assessment Table 

 
REF# Approximation/Assumption Assessment Impact on 

APD 

R 3.1.9-1 For aircraft with acceleration 
during the interval, the 
function applies a quadratic 
interpolation.  It assumes 
constant acceleration over the 
interval. 

The interpolation technique does seem 
reasonable when acceleration is not 
constant over the interval, since it will still 
weight by ground speed and end point 
times.  For most cases, the segment’s 
acceleration is approximately constant 
anyway which is how TJM defines the 
state segments.  For this case with constant 
acceleration, the function produces the 
same result as the general equations of 
motion.  

Important   

 

3.1.10 Function:  ECP (PL/I) 
This function checks an aircraft’s trajectory for penetration of a blocked airspace.  The results of the probe 
are returned to the external data structure ECP_OUT. 

3.1.10.1 Description:   
The function iterates through all the blocked airspaces inside the data base table BAS.  For each BAS entry 
(i.e. blocked airspace), the aircraft trajectory state segments and the blocked airspace vertices are sent to 
ST_CHK_VP, which actually determines if the aircraft does enter the particular airspace region and what 
the entry and exit points are.  This information is then placed into the ECP_OUT structure. 
 
Function calls include:    

• ST_CHK_VP:  This is the main function for ECP which in turn calls GM_REGN, 
GM_TSTPNT and GM_INSEC which carry out the actual airspace violation calculations. 

• DB_FIND_AUD_PTR:   The function returns the AUD pointer and size for the specified 
AUD index. 

• DB_LOC_FIRST:  The function locates the first entry to the specified system table. 
• DELTECB:  The function deletes a specified ECB from the ECB list.  The ECB is the 

environmental conflict box or data structure which contains all the aircraft-to-airspace 
conflict information. 

• MAKE_ECB:  The function loads ECB structure in the aircraft’s AUD.  Based on the volume 
(i.e. BAS) penetration data defined in the VP_OUT structure, the function creates a linked list 
of ECB’s in the AUD.  Also it builds the ECP_OUT table containing the conflicts in order of 
occurrence up to the table maximum. 

3.2 Trajectory Modeler 
The Trajectory Modeler (TJM) produces a detailed four-dimensional aircraft trajectory for use by the other 
URET functions.  It describes the aircraft’s route of flight in both horizontal and vertical dimensions.  Each 
point (x, y ,z ,t) along the trajectory is referred to as a cusp and the straight line between cusps is referred to 
as a segment.   

The trajectory modeling routine includes five basic software functions -- Horizontal Route Analysis, 
Horizontal Route Analysis Step B, Nominal Profile Builder, Modeler, and Hand-off.   The majority of the 
lower level algorithmic calculations are actually performed in the library of utility functions (see Section 
3.4); the higher level algorithms are omitted or only briefly described in this section. 
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Modeler (MDL)  
The modeler produces a list of state segments (SSGs) which comprise the trajectory.  It is here where 
aircraft positions and time are calculated in the vertical dimension. 

The Modeler process will  modify the start point of a gradient (or slope) to satisfy a restriction.  The 
Modeler also determines conformance bounds for each aircraft; this includes adjusting the bounds for 
altitude transitions, turns, or when entering special airspaces.  The Modeler also determines the required 
separation distances.  The separation distances are based on FAA Order 7110.65. 

Low level functions which actually perform the algorithmic calculations are described in the library of 
utility functions in Section 3.4 (DB_AIR_AT_POINT, DB_FIND_AUD_PTR, ST_MAXTAS, 
ST_MINTAS, GM_BRNG, CNV_GRDSPD, CNV_CNVSPD, CNV_STD_ATMOS, 
ST_CLIMB_GRADIENT, ST_IASALT, ST_MACHALT, ST_DESCENT_DIST, 
ST_DESCENT_GRADIENT, CNV_SPEED, ST_CHK_VP, ST_TIME_SSGDATA, GM_TURN, 
ST_ARD_SSGDATA). 

Horizontal Route Analysis (HRA) 
The Horizontal Route Analysis routine creates the horizontal trajectory dimension.  It performs route 
interpretation as specified in NAS-MD-312.  Fixes and route information are loaded from the Adaptation 
Controlled Environment System (ACES) adaptation files.  It ensures that appropriate controller/facility 
preferred routing is assigned (i.e. Preferred Arrival Route (PAR), Preferred Departure Route (PDR), 
preferred Departure and Arrival Route (PDAR), etc.) as well as applicable altitude and speed restrictions.    
This routine breaks the flight plan route string into a descriptive list of fixes and builds a data structure 
(know as on-board route segments (ORSs)) which describes each segment defined between two successive 
fixes.   

Low level functions which actually perform the algorithmic calculations are described in the library of 
utility functions in Section 3.4 (LO_FIND, CNV_XYLL, GM_INSEC, GM_PTLINE, CNV_RADDMS, 
CNV_GNOMONIC_STEREO, CNV_STEREO_GNOMONIC, GM_BRNG, DB_FIND_AUD_PTR). 

Horizontal Route Analysis Step B (HRB)  
Defines an ORS which joins the current position of the aircraft to the filed route.   The routine is called 
during a route reconformance or when a trial plan is created. 

Low level functions which actually perform the algorithmic calculations are described in the library of 
utility functions in Section 3.4 (DB_FIND_AUD_PTR, CNV_XYLL, GM_PTLINE). 

Nominal Profile Builder (NPB) 
The Nominal Profile Builder creates the vertical and speed dimension of the trajectory.  It builds planned 
actions for future changes in an aircraft’s speed and altitude.  The process is decomposed into three 
subsections - altitude processing, speed processing, and delay processing.  The altitude processing 
organizes all altitude restrictions associated with the aircraft route and builds planned actions (PAs) to 
transition the aircraft to the target altitudes or altitude restrictions.  The speed processing does a similar 
process for speed restrictions. 

Low level functions which actually perform the algorithmic calculations are described in the library of 
utility functions in Section 3.4 (DB_FIND_AUD_PTR, LO_FIND, GM_INSEC, ST_TRANSLATE_ARD, 
ST_DESCENT_DIST, ST_CLIMB_DIST, DB_CDMERG). 

Handoff (HDO) 
The Hand-Off routine computes the time and position of entry and exit from each sector, or from the 
AERA boundary. 

Low level functions which actually perform the algorithmic calculations are described in the library of 
utility functions in Section 3.4 (DB_FIND_AUD_PTR, ST_CHK_VP). 
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3.2.1 Function:  ARDXY (PL/I) 
Finds x, y for a given ARD. 

3.2.1.1 Description:   
Given an Along Route Distance (ARD), this function will return the position data (x, y) within a given On-
Board Route Segment (ORS).   This function is used to support the FTME and TPRIME functions with 
missing x, y information.  These higher level functions are used to supply the modeler with the necessary 
SSG end-point data. 
 

Table of Variable Definitions 
 

Function Variable Description Math Symbol 
X, Y Coordinates of the aircraft at the given ARD (ft) x, y 
ORS.XSN, ORS.YSN, 
ORS.XEN, ORS.YEN 

Coordinates of the start and end points of the On-
Board Route Segment (ft) 

x1, y1 
x2, y2 

ORS.LNGTH The length of the On-Board Route Segment (ft) l 
ARD_IN Along Route Distance (ft) ard 
ORD.ACCUM_DIST ARD at the beginning of the On-Board Route 

Segment (ft) 
ard1 

3.2.1.2  Mathematics: 
The function performs the following simple calculations and logic. 
 
First it checks if the given ARD is less than the accumulated distance up to the start of the given 
ORS. If it is, it simply assigns the coordinates of the starting point of the ORS to the output x, y. 
 

 x x= 1  Equation  3.2.1-1 

 y y= 1  
 
Otherwise the function finds the ratio of the length the aircraft traveled from the start of the ORS 
to the ARD over the total length of the ORS 

 r
ard ard

=
− 1

l
 Equation  3.2.1-2 

The function uses this ratio to interpolate the x and y coordinates at the ARD position from the 
ORS endpoints. 

 ( )x x r x x= + −1 2 1  Equation  3.2.1-3 

 ( )y y r y y= + −1 2 1  Equation  3.2.1-4 

 
The values for x, y are returned from this function.   
 

There are no assumptions or approximations made in this module which would have significant impact on 
the algorithms. 
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3.2.2 Function:  EGRAD (PL/I)  
Computes the adjustment to the altitude gradient angle from the effects of wind. 

3.2.2.1 Description:   
A typical vertical trajectory is first associated with a predetermined nominal trajectory estimated with no 
wind.  The nominal trajectory is stored in a table and associates altitude gradients, estimated from “normal 
aircraft flight characteristics”, to changes in flight levels (during ascents and descents).  Since this altitude 
gradient is estimated for no wind, an adjustment to the gradient must be made when a known value for 
wind speed and direction is defined along the predicted trajectory.   

 
Table of Variable Definitions 

 
Function Variable Description Math Symbol 

WIND_SPEED Scalar value for wind speed Vw  
CROSS_WIND Wind speed along the transverse axis of the 

trajectory 
Vwt  

WIND_BEARING Direction of wind with respect to true North θw  
ALONG_TRACK_WIND Wind speed along the longitudinal axis of the 

trajectory 
Vwl  

CURRENT.SPEED.TAS Current true airspeed Vt  
GSPD Ground speed Vg  
CHANGES.EGRD The wind corrected effective gradient; the 

ratio of the altitude change over horizontal 
distance traveled (ft/ft).  Note that the math 
symbol actually represents the angle made by 
the gradient 

γ i  
 

CHANGES.GRD Air mass gradient; the ratio of the altitude 
change over horizontal distance traveled (ft/ft). 
Note that the math symbol actually represents 
the angle made by the gradient 

γ a  
 

CHANGES.BRG Aircraft bearing with respect to true North.  ψ  
 

3.2.2.2 Mathematics: 

3.2.2.2.1 Ground Speed 
 

The EGRAD function first defines the ground speed as: 
 

 ( )[ ] ( )V V V Vg t w w w w= − − + −2 2
sin cosΨ Ψθ θ      Equation  3.2.2-1 

  
If we make the following assignment 

 

 θ ψ θrw w= −  Equation  3.2.2-2 
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where θrw is the relative angle between the course heading of the aircraft and the wind direction, 
Equation  3.2.2-1 can be reoriented as 
 

 V V
V
V

Vg t
w

t
rw w rw= −









 +1

2

sin cosθ θ  Equation  3.2.2-3 

 
 Equation  3.2.2-3 is based on the vector representation of ground speed 

 
Vt

Vw
Vg

θrw
θc

 
 and 

 V V Vg t c w rw≈ +cos cosθ θ  Equation  3.2.2-4 

 
where θc is the “crab” angle between the Vt -leg and Vg -leg.  Equation  3.2.2-3 and Equation  
3.2.2-4 are approximations because they assume a small flight path angle (i.e. negligible effect 
from motion in the vertical plane). 

  
Therefore Equation  3.2.2-1 appears to be reasonable and coincides with most trajectory 
estimation practices that assume a small flight path angle and a horizontal wind direction. 
 

3.2.2.2.2 Effective Gradient Angle 
 

The effective gradient angle is then calculated as: 
 

 EGRD  = =γ γi a
t

g

V
V

 Equation  3.2.2-5 

 
where γ a  is the gradient angle in the aerodynamic reference frame, which is equivalent to the 
nominal gradient angle assignment when no wind exists.  The ratio of true airspeed to ground 
speed multiplied by the nominal gradient angle will adjust the gradient angle for the wind effect. 
 
This relationship also appears reasonable and coincides with other trajectory assumptions.  
However this relationship is based on other approximations, namely: 
 
• The flight path angle during ascent or descent is small so that  

 

 
sin
cos

, ,

,

γ γ
γ

a i a i

a i

≈

≈ 1
 Equation  3.2.2-6 
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• The altitude rate is described as  

 
dh
dt

Vt a= sinγ   

    ≈ Vt aγ  Equation  3.2.2-7 

     and 
   ≈ Vg iγ  

 
• Therefore arriving at the relationship 

 

 γ
γ

a

i

g

t

V
V

≈  Equation  3.2.2-8 

 
All of these approximations are reasonable for most commercial aircraft flight paths.  For very steep 
ascents or descents (for example, greater than 45° ) these approximations may be less accurate.  Also 
see the analysis for the CNV_GRDSPD function, Section 3.4.2. 
 
 

Assessment Table 
 

REF# Approximation/Assumption Assessment Impact  
on TJM 

R 3.2.2-1 Small inertial path angle 
Equation  3.2.2-6 

Reasonable, for Commercial Aircraft, and a 
small inertial flight path angle (i.e.  <= 45 
degrees) 

Critical 

R 3.2.2-2 Derivation of ground speed, 
Equation  3.2.2-3 

Reasonable for the given vector 
representation and relative wind and crab 
angle definitions.  Assumes a small flight 
path angle, as in Equation  3.2.2-6, and a 
horizontal wind. 

Important 

R 3.2.2-3 Derivation of effective 
gradient, Equation  3.2.2-5 

Reasonable, for small path angle approx. Critical 

 
 

3.2.3 Function:  INTMDL (PL/I) 
Function which initializes the MDL. 

3.2.3.1 Description:   
Function which initializes the MDL_INFO and several trajectory model (MDL) fields, deletes all state 
segments (SSG), sets the status of all Planned Actions (PA) to 0, checks for bad data in flight plans, and 
sets the modeling to begin with the Along Route Distance (ARD) set to zero.  Here the CURRENT data  
structure is established, which describes the initial x, y, and z position, time, ground speed and air speed.  
The time is calculated by converting the flight plan’s initial time to the time, in seconds, since the cold start 
(using the CNV_TIN function). 
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3.2.4 Function:  HRB (PL/I)*  
The Horizontal Route Analysis Step B (HRB) function defines an ORS which joins the current position of 
the aircraft to the filed route.  The routine is called during a route reconformance or when a trial plan is 
created.   

3.2.4.1 Description:   
The HRB function is called when:  the TKM determines that the track data is out-of-conformance with 
respect to the trajectory, or a trial plan requests a new route which eventually merges back with the filed 
route.  HRB will build an ORS from the current position to the end of the next ORS which satisfies a 
parameter constraint.  All of the remaining ORSs which were previously built for the aircraft’s current 
trajectory will then be appended to the newly created HRB ORS. 
 

Table of Variable Definitions 
 

Function Variable Description Math Symbol 
OFF_DIST The smallest distance from the current position 

to the associated ORS 
doff 

STD_LAT_CONFORMANCE The standard lateral conformance bounds.  In 
D1.A, this parameter is assigned a value of 2.5 
nmi. 

CL 

MIN_DIST The minimum of the joining distance 
permitted in the code.  

dmin 

X_PROJECTION, 
Y_PROJECTION 

The coordinates of the point which is 
projected on the current associated ORS line 
segment from the current position 

xp , yp 

MAX_JOIN_ANGLE The maximum join angle. The D1.A database 
assigns this parameter equal to 15 degrees 

α min  

MIN_JOIN_DIST The minimum joining distance.  The D1.A 
database assigns this parameter equal to 50 
nmi. 

Djmin 

PROJECTION_TO_FIX Distance from the projected point on the 
associated ORS to the endpoint of a 
downroute ORS 

dproj 

XX, YY The coordinates of the current position of the 
aircraft 

x , y 

RTE_ORS.XEN, 
RTE_ORS.YEN 

The coordinates of the endpoint of the ORS xors ,yors 

ORS.LNGTH The  length of the ORS lors 
 

3.2.4.2 Mathematics: 
HRB first determines which ORS is associated with the current position of the aircraft using the Along 
Route Distance (ARD) and the approximate distance (doff)  between the ORS and the current position 
(determined by using the function GM_PTLINE (Section 3.4.16)). 

                                                           
* Note:  The following analysis was based on URET Version D1.A.  Revisions which will describe this 
function as it appears in URET Version D1.1 are still being developed. 
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3.2.4.2.1 HRB for a Reconformance 
 
 If the considered route is a current plan, the HRB function assumes that the current position of the 

aircraft is out of lateral conformance: 
 

 d Coff Lat>  Equation 3.2.4-1 

 
 Next, the minimum allowable distance4 from the current position to the next ORS is determined 

by: 
 

 ( )d D
d

j
off

min min
max

max ,
tan

=










α

 Equation 3.2.4-2 

 
 Loop through every subsequent ORS, checking to see if any satisfy the criteria 

  Equation 3.2.4-3 

   1) d dproj > min  

   2) The ORS does not have a delay 
   3) d proj + ≠ε 0   

  
Where ε is a very small parameter value. 

 
 The projection to the fix, dproj, is calculated as the distance from the projected point on the current 

associated ORS5, (xp, yp), to the end point of the ORS being considered. 
 

 ( ) ( )d x x y yproj ors p ors p= − + −
2 2

 Equation 3.2.4-4  

  
Note: It is questionable why dproj is calculated using (xp ,yp) instead of using the current position 
(x , y), since the new ORS is built from the current position.  See Figure 3.2.4-1. 
 
The first ORS which satisfies the criteria in Equation 3.2.4-3 will contain the endpoint to which 
the new ORS will be built (see Section 3.2.4.2.2). 

                                                           
4 In D1.A, Djmin = 50 nmi and doff > CL (= 2.5 nmi).  Therefore ( )doff tan .maxα ≥ 9 33 nmi .  In order for 

( )doff tan maxα ≥ D
jmin

,  doff must be greater than 13.4 nmi. 
5 (xp, yp) is calculated from the function GM_PTLINE  
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Figure 3.2.4-1:  Example of an HRB Return-to-Route 

3.2.4.2.2 Create New ORS 
  
 From the current position to the end point of the ORS which satisfied the criteria in Equation 

3.2.4-3, make a new ORS with length 
 

 ( ) ( )l x x y yors ors ors= − + −2 2  Equation 3.2.4-5 

 
 Making sure that (lors + ε) > 0. 

 
 Append the remaining ORSs to the route string and recalculate the accumulated distance. 

 
Note:  The steps described above which involve returning the aircraft to its route are now performed in the 
TKM_RTR function in URET D1.1.  There is additional logic in TKM_DETERMINE_CASE which 
considers several different flight history characteristics before deciding on a method to return the aircraft to 
its horizontal route.  The description and analysis of this process is not included in this report. 

3.3 Track Management 
Track Management (TKM) monitors track reports received from the HCS against each aircraft’s trajectory 
to determine whether an aircraft is “out-of-conformance” in a particular dimension (lateral, longitudinal, 
vertical), and determines the necessary maneuvers to remodel the trajectory.  TKM also makes an 
assessment about the track categories of the flight, depending on the quality of the track data and the state 
of the aircraft.  These categories are used as a basis for determining whether a “reconformance” should be 
performed and whether an aircraft is eligible for conflict probing by Automated Problem Detection. 
 
TKM includes six major software functions:  Match ID, Verify Data, Change Category, Check Airspace, 
Monitor Conformance, and Compute Reconformance.   Because the Track Management subsystem was 
under continuous development throughout the course of this assessment (especially the 
TKM_COMPUTE_RECONFORMANCE module and its underlying functions), it was not possible to 
assess these  functions at the same level of detail as the other algorithmic subsystems.   Low level functions 
which actually perform the algorithmic calculations are described in the library of utility functions (see 
Section 3.4 - DB_AIR_AT_POINT, GM_BRNG, DB_FIND_AUD_PTR, LO_FIND, 
ST_TIME_SSGDATA, GM_REGN); the higher level algorithms are omitted or only briefly described in 
this section. 

doff 
(x , y) 

(xp , yp) 
(xors , yors) 

dproj 
New ORS 
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3.3.1 Function:  CNV_GRD_TO_TAS (PL/I) 
This function calculates True Airspeed from a given ground speed, position/altitude information and track 
bearing. 

3.3.1.1 Description:   
This function computes the aircraft’s true airspeed based on the ground speed , the x, y, and z position 
coordinates, and the track bearing . 
 

Table of Variable Definitions 
 

Function Variable Description Math Symbol 
WIND_SPEED Scalar value for wind speed Vw  
WIND_BEARING Direction of wind with respect to North θw  
TAS True airspeed Vt  
GROUND_SPEED Ground speed Vg  

TRACK_BEARING The flight path bearing. ψ  
 

3.3.1.2  Mathematics: 

 The function uses the x, y, and z position data in the DB_AIR_AT_POINT function  (Section 
3.4.10) to calculate the wind data (the x and y wind components, wind temperature and pressure).  
It then calculates the wind bearing using the GM_BRNG function (Section 3.4.13).  It takes the 
difference between the wind bearing and the track bearing and assigns this value as the relative 
wind angle, θrw 

  θ θrw w= −Ψ  Equation  3.3.1-1 

 
The function uses all of these values to solve for true airspeed with the following equation 

 

  ( ) ( )V V V Vt g w rw w rw= − +cos sinθ θ
2 2

 Equation  3.3.1-2 

Equation  3.3.1-2 is simply (Equation 3.4.3-1 from Section 3.4.3) reordered to solve for true 
airspeed, Vt.  For the derivation, refer to Section 3.4.3.   

 
 

Assessment Table 
 

REF# Approximation/Assumption Assessment Impact on 
TKM 

R 3.3.1-1 Small inertial path angle During steep climbs or descents, the true 
airspeed will be calculated with error  

Critical 
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3.3.2 Function:  GM_PTSEG (PL/I) 
Finds the relationship between a point and a line. 

3.3.2.1 Description:   
Refer to Section 3.4.16 which describes the GM_PTLINE function.  The GM_PTSEG function is very 
similar to the GM_PTLINE function except that it also calculates the distance between (x1, y1) and (xI, yI). 

3.3.3 Function:  LEASTSQ  ( C ) 
Finds the least square parameters for a linear first order (and second order optional) regression model. 

3.3.3.1 Description:   
This function performs the least squares fit of dependent data vector to independent data vector.  The 
function can find the least square parameters for both a first order or second order regression model, 
however only the first order model is being used in D1.1. 
   
This function uses the classic linear regression model solving for the parameters α0 and α1. 
 
 $Y X= +α α0 1  
 
Where X are the independent data and $Y  is the predicted value of the dependent Y data.  The values for 
α0 and α1 are determined as follows: 
 

 ( )( ) ( )( )
( )

α0

2

2 2=
−

−

∑ ∑ ∑ ∑
∑∑

X Y XY X

n X X
 

 

 ( )( )
( )

α1 2 2=
−

−

∑ ∑∑
∑∑

n XY X Y

n X X
 

 
The function also checks to ensure there are no divisions by zero.  This function is based on classic 
principles6 and is reasonable. 

                                                           
6 See Draper, N., and Smith, H., Applied Regression Analysis, Second Edition, New York, NY.: John 
Wiley and Sons, 1988, Chapter 1. 
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3.3.4 Function:  TKM_CATEGORY_CHANGE ( C ) 
Determines the category that best describes the current state of the aircraft’s track and flight plan data. 

3.3.4.1 Description: 
This function maintains a category for each aircraft for use by TKM_Conformance_Monitor and 
Automated Problem Detection in determining which aircraft should be subject to those functions.  The 
categories are defined below: 
Category A: Have flight plan data and reasonable, continuous track data 
Category B: Have flight plan data and intermittent track data or short track history 
Category C: Have flight plan data but no track data (aircraft is proposed departure) 
Category D: Have flight plan data and track data but aircraft is in a hold 
Category E: Have:   1) flight plan data and track data, but unable to model trajectory from flight plan 

2) track data but no flight plan data 
Category F: Have flight plan data but no track data (aircraft is inbound from another facility or 

outbound from this facility) 
 
An aircraft’s category is initialized to category C, E or F outside of this function (i.e., Replan Manager 
(RPM)) for first flight plans.  TKM_CATEGORY_CHANGE (called by TKM_CORE AND 
TKM_CONTROL) then determines if the category should remain the same, or be changed, via the 
following logic flow: 
 
 If there is no track history for the aircraft, then the current category will remain unchanged 
  else 
 If there is track history, but the amount is less than or equal to a parameter representing “reasonable 

history” (TKM_REASONABLE_HISTORY) or has more than a parameter number of “holes” 
(HOLES_IN_TRACK_HISTORY), then the current category will be set to “B” 

  else 
 If the input category is “D”  and the aircraft is determined to still be in a hold, then the category will 

remain unchanged (i.e., CURRENT_CATEGORY=IN_CATEGORY) 
  else 
 If the input category is “F” and the aircraft is determined to be:   in tactical airspace, leaving the 

ARTCC airspace, or leaving the APD inhibited area (APDIA), then the category will remain 
unchanged 

  else 
 Set the current category for this aircraft to “A” 

 
 

Table of Variable Definitions 
 

Function Variable Description 
AC_INDEX Index to aircraft history in TKM_HISTORY 
TKM_REASONABLE_HISTORY Minimum amount of track history that aircraft must 

have to be considered “reasonable” (parameter:  2) 
CURRENT_TIME Current global time 
RADAR_UPDATE Time interval between two consecutive radar 

updates (currently 12 seconds) 
HOLES_IN_TRACK_HISTORY Number of holes required before aircraft can be 

downgraded to B category (parameter:  3) 
IN_CATEGORY Input aircraft track category  
CURRENT_CATEGORY Current category indicator 
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3.3.5 Function:  TKM_CHECK_AIRSPACE ( C ) 
Determines whether aircraft is in special airspaces. 

3.3.5.1 Description 
This function checks the aircraft’s current track position against several special airspaces:  leaving the 
tactical airspace around the departure airport, entering tactical airspace around the arrival airport, and 
leaving the ARTCC facility boundary.  If the aircraft is currently within any of these airspaces (determined 
by TKM_GM_REGN; returns “1” if inside tactical airspace, “0” if outside), a flag will be set to cause 
conformance monitoring to be discontinued for this aircraft. 
 

Table of Variable Definitions 
 

Function Variable Description 
AC_IX Index to aircraft’s track history 
TRACK_X, TRACK_Y X, Y coordinates of TRACK_DATA 
TRACK_T Time of TRACK_DATA 
TRACK_Z Altitude of TRACK_DATA 
IN_TACTICAL_AIRSPACE Flag indicating whether aircraft is in 

tactical airspace or not 
VERTICAL_MONITOR Flag indicating whether vertical 

conformance monitoring should be 
performed or not. 

CATEGORY Aircraft category 
 

3.3.6 Function:  TKM_COMPUTE_RECONFORMANCE ( C ) 
Determines if an aircraft’s trajectory should be reconformed in accordance with its reported track position 
and the proper actions to bring the aircraft back into conformance. 

3.3.6.1 Description:   
This function, initiated when an aircraft’s conformance bounds are exceeded a consecutive number of 
times (parameters:  lateral=2, longitudinal=2, vertical=1), determines the specific actions required to 
remodel the trajectory to bring the aircraft’s predicted position into conformance with its reported track 
position.  If the aircraft is out of conformance in the lateral and/or longitudinal dimension(s), the aircraft 
will be reconformed in that dimension as well as in the vertical dimension.  If the aircraft is out of 
conformance in the vertical dimension, it will be reconformed only in the vertical dimension. 
 
The function first makes a general check to ensure that the aircraft is not in “vertical drift” or “far away” 
from its route.  Vertical drift exists when the aircraft is out of vertical conformance and is beyond the 
minimum and maximum vertical bounds associated with the current flight characteristic. For example, an 
aircraft that is in the middle of an altitude transition which is either greater than the ssg_max_conform_z 
parameter or less than the ssg_min_conform_z parameter is considered in a vertical drift.  An aircraft is 
considered far away from its route if its current position is greater than a parameter horizontal distance (in 
D1.1, the value is far_away_distance = 30 nmi) from its associated trajectory segment.  If it has been 
determined that the aircraft is in either vertical drift or far away from its route, the function will not attempt 
to reconform the trajectory.  Consequently the aircraft will no longer be probed by the conflict detection 
logic.  
 
TKM reconforms the aircraft trajectory that is out of conformance in the longitudinal dimension by calling 
the TKM_DETERMINE_SPEED function to compute the track speed of the aircraft. It then calculates a 
multiplying factor to weigh both the track speed and the trajectory speed to determine a new 
“reconformed” speed for the trajectory.  Similarly, for the reconformance in the vertical dimension, the 
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TKM_DETERMINE_GRADIENT function is called to compute the actual track gradient the aircraft is 
flying.  It then calculates a multiplying factor to weigh both the track gradient and the trajectory gradient to 
determine a new “reconformed” gradient for the trajectory.   
 
Finally, if the aircraft is out of lateral conformance, the function calls the TKM_DETERMINE_CASE 
function.  TKM_DETERMINE_CASE determines, from a history of the track report, the characteristic of 
the flight path with respect to the original filed horizontal route. TKM_DETERMINE_CASE uses a 
heuristic method based on the observed flight characteristic to determine a position along the original filed 
route, downstream from the current aircraft position, to reconform the aircraft’s trajectory (and in one case 
it determines an intermediate point before it returns the aircraft to its route).   
 
TKM will then supply the reconformance information (i.e. new gradient, new speed, or return to route 
position) to the Replan Manager (RPM) and Trajectory Modeler (TJM) where a new reconformed 
trajectory structure can be built.   

3.3.7 Function:  TKM_CONFORMANCE_MONITOR ( C ) 
Determines if an aircraft is out of conformance in longitudinal, lateral, and/or vertical dimension. 

3.3.7.1 Description:   
This function checks to see if the aircraft’s track position is within the defined conformance bounds (i.e., 
the conformance region) around its’ predicted trajectory position (for category A and B aircraft only), and 
maintains the out of conformance count and reason for each dimension.   Following is a description of the 
basic logic flow of the function: 
 
If the HORIZONTAL_MONITOR flag is TRUE, then the extrapolated position of the aircraft (difference 
between ARD_BY_TIME and TRAJ_ARD)  is compared with the longitudinal conformance bound 
(SSG_LONG_CONFORM), and the appropriate direction is set in LONG_IND (blank if within 
conformance).   Next, the DISTANCE_TO_SSG is compared with the lateral conformance bound 
(SSG_LAT_CONFORM), and the appropriate direction is set in LAT_IND.   Likewise, if the 
VERTICAL_MONITOR flag is set, vertical conformance is checked by determining whether TRACK_Z is 
within the vertical conformance bounds, and the appropriate direction is set in VERT_IND.  This is done 
by comparing TRACK_Z with the minimum and maximum allowable altitudes for the segment 
(SSG_MIN_CONFORM_Z and SSG_MAX_CONFORM_Z,) and with the trajectory altitude (TRAJ_Z) 
plus/minus vertical conformance bounds (SSG_BOT_CONFORM and SSG_TOP_CONFORM).    
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Table of Variable Definitions 

 
Function Variable Description 

AC_INDEX Index to TKM_HISTORY 
TRACK_Z Reported track altitude for this aircraft 
TRAJ_Z Predicted (trajectory)altitude for this aircraft  
ARD_BY_TIME Projected along route distance by track 
TRAJ_ARD Estimated along route distance from trajectory 
DISTANCE_TO_SSG Shortest distance from track to trajectory 
SSG_LONG_CONFORM Longitudinal conformance bound 
SSG_LAT_CONFORM Lateral conformance bound 
SSG_TOP_CONFORM Vertical conformance bound (above) 
SSG_MAX_CONFORM_Z Maximum allowable altitude for this segment 
SSG_BOT_CONFORM Vertical conformance bound (below) 
SSG_MIN_CONFORM_Z Minimum allowable altitude for this segment 
HORIZONTAL_MONITOR Flag indicating whether horizontal conformance 

should be monitored (i.e., if X, Y data “good 
enough”) 

VERTICAL_MONITOR Flag indicating whether vertical conformance should 
be monitored (i.e., if altitude data “good enough”) 

LONG_IND (Output) Indicates out of conformance direction for dimension 
(blank, A (ahead), or B (behind)) 

LAT_IND (Output) Indicates out of conformance direction for dimension 
(blank, L (left), or R (right)) 

VERT_IND (Output) Indicates out of conformance direction for dimension 
(blank, A (above), or B (below)) 

 

3.3.8 Function:  TKM_CONTROL (PL/I) 
This is the PL/I control function for URET.  It sets up the database and TKM data structures, and then 
waits to receive one of the following messages from the mailbox: 
 
1. Track Update or Progress Report message from the HCS 
2. Drop Track message from the HCS 
3. 12 second update message from the Clock subsystem (CLK) 
4. Check category message from RPM 
5. Data collection message from CLK 
6. Terminate message 
 
TKM_CONTROL also sends messages to other URET subsystems (e.g., RPM and Plan Display Manager  
(PDM)) as a result of  processing these messages. 
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TKM_CONTROL invokes the following TKM modules and utility functions upon receiving the 
appropriate message: 
 

Message TKM Modules 
1.  Track Update/Progress Report TKM_FOR_AERA 

TKM_UPDATE_CURRENT_POSITION 
DB_FIND_AUD_PTR 

2.  Drop Track TKM_MATCH_ID  
TKM_FREE_HISTORY 
DB_FIND_AUD_PTR 
TKM_TRAJECTORY_EXIST 
TKM_GET_HOLD 

3.  12 second update TKM_FREE_HISTORY 
DB_FIND_AUD_PTR 
ST_TIME_SSGDATA 
TKM_UPDATE_CURRENT_POSITION 
TKM_TRAJECTORY_EXIST 
TKM_GET_HOLD 
TKM_CATEGORY_CHANGE 

4.  Check Category TKM_MATCH_ID 
TKM_TRAJECTORY_EXIST 
TKM_GET_HOLD 
TKM_CATEGORY_CHANGE 

 

3.3.9 Function:  TKM_CORE ( C ) 
This function is the top-level C control routine for all “major” TKM algorithmic functions.  All data is 
passed to and from TKM_CORE via the TKM_RESULTS data structure.   TKM_CORE calls the 
following TKM functions: 
 
 TKM_VERIFY_DATA 
 TKM_ADD_TRACK_HISTORY 
 TKM_FIND_ARD_BY_TIME 
 TKM_POINT_ON_TRAJ 
 TKM_CHECK_AIRSPACE 
 TKM_CATEGORY_CHANGE 
 TKM_CONFORMANCE_MONITOR 
 TKM_COMPUTE_RECONFORMANCE 
 TKM_ADD_OOC 
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3.3.10 Function:  TKM_FOR_AERA (PL/I) 
This function is called by TKM_CONTROL to process Track Update and Progress Report messages 
received from the HCS.  This is accomplished via calls to the following TKM modules and utility 
functions: 
 
 DB_GET_CMT_INDEX 
 TKM_MATCH_ID 
 TKM_FREE_HISTORY 
 TKM_INIT_HISTORY 
 TKM_GET_TACTICAL_AS 
 TKM_GET_HOLD 
 TKM_TRAJECTORY_EXIST 
 TKM_CORE 
 CNV_GRND_TO_TAS 
 GM_REGN 
 DB_FIND_AUD_PTR 
 ST_TIME_SSGDATA 
 ST_NEAREST_FL 
 

3.3.11 Function:  TKM_GET_RTE_ORS (PL/I) 
This function returns the number of segments in the RTE_ORS of an aircraft starting with the current 
offset. 

3.3.11.1 Description:   
Given the index for the central track store (CTS) data structure, this function finds the corresponding 
aircraft unique data table (AUD) pointer and the pointer to the RTE_ORS (route of the aircraft based on 
the initial filed route string) data structure.  Here the function will loop through all of the route segments, 
keeping a counter, while recording to a global variable array the values for the starting x, y coordinates, the 
segment course heading, the accumulated distance to the start of the segment, and the type of fix (i.e. 3 
character, 5 character, turn fix, lat/long, or not a fix) for every segment of the aircraft’s route.  The call to 
this function will actually return the number of segments in the RTE_ORS for the aircraft.  This value can 
then be used later to loop through the variable array containing all of the above, detailed RTE_ORS 
information. 
 
The function never uses the ORS_OFFSET value which is supplied as an input. 

3.3.12 Function:  TKM_GM_REGN   ( C ) 
In the x-y plane, this function determines if a test point (xt, yt) lies within a polygon region defined by the 
a set of boundary points (x[n], y[n]). 

3.3.12.1 Description:   
The function uses the stdlib.h random number generator to create random numbers, and by using the 
maximum and minimum x and y coordinates of the region, the function creates points outside the polygon 
region.  These outside points are joined with the test point to form a line segment.  These test lines are 
checked for intersections against the segments defining the circumference of the polygon region.  The end 
results is a number of intersections.  The function makes n number of random number calls (currently 8).  
The number of intersection checks is therefore n times the number of polygon vertices.  If the number of 
intersections is even, the test point is outside the region.  If the number of intersections is odd, the test point 
is inside the region. 
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Table of Variable Definitions 

 
Function Variable Description Math Symbol 

xmin, xmax minimum and maximum x coordinates of the 
polygon region in feet 

xmin, xmax 

ymin, ymax minimum and maximum y coordinates of the 
polygon region in feet 

ymin, ymax 

rv random number value rv 
xr, yr x and y coordinates of random generated point in 

feet 
xr, yr 

*x1 x coordinate of the start point of the line (ft) x1 
y1 y coordinate of the start point of the line (ft) y1 
x2 x coordinate of the end point of the line (ft) x2 
y2 y coordinate of the end point of the line (ft) y2 
xt x coordinate of the test point  (ft) xt 
yt y coordinate of the test point  (ft) yt 
xi x coordinate of the intersection point  (ft) xi 
yi y coordinate of the intersection point (ft) yi 
p, t ratio’s returned by gm_insec  p, t 
pton point on line status;  pton=1 point is on a line 

segment of the boundary region’s polygon, pton=0 
point is not on a line of this boundary 

pton 

istat intersection status; istat=0 line segments intersect 
between endpoints 

istat 

i, k loop counters i, k 
pntsep constant used as delta separation allowed to 

consider a point on a line;  currently set at 1 ft.; 
used for the TKM_GM_TSTPNT 

pntsep 

eps epsilon value used as effective difference of zero; 
currently = 0.001 

ε  

nrpt number of random point tries that function iterates nrpt 
n number of polygon end points n 
 

3.3.12.2 Mathematics: 
The function determines if a test point lies within a polygon region in the x-y plane defined by the 
array of boundary points (x[n], y[n]).   
 
The first step in the function is to determine the minimum and maximum boundary distances.  
These extreme points are used to perform a gross check for the test point.  If the test point lies 
outside the extreme points of the polygon, the function returns an outside the region result for the 
test point.  However, if the test point is equal to or inside the extreme points, 8 random numbers 
are generated.  These numbers are used to define random points outside the polygon region by 
using the extreme points defined earlier.   
 
The function generates the random number by the “rand()” function in an overall loop structure i 
from 0 to 7.  The value of i is MOD by 4.  Therefore, the result is expressed in Table 3.3.12-1, 
where each MOD value is carried out twice. 
 
 

Iteration MOD value Resulting random point is 
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number generated 
0 0 point to the left of the region 
1 1 point above the region 
2 2 point to the right of the region 
3 3 point below the region 
4 0 point to the left of the region 
5 1 point above the region 
6 2 point to the right of the region 
7 3 point below the region 

Table 3.3.12-1:  Iteration key TKM_GM_REGN 

 
For i = equals 0 or 4, the random point is generated to the left of the polygon region.  The 
expression to determine this point is :   
 

 ( )xr x x x= − −min . max min1005  Equation 3.3.12-1 

 ( )yr y rv y y= + −min max min  Equation 3.3.12-2 

 
For the x dimension, the point is placed 0.5% to the left of the length of the polygon.  For the y 
dimension, the point is placed a uniform random variable distance within the width of the 
polygon. 
 
For the other directions (i.e. to the right, below, and above), the calculation is performed 
analogously to Equation 3.3.12-1 and Equation 3.3.12-2. 
 
After each random point is generated, the function runs a second loop for each segment of the 
polygon.  For each segment, the TKM_GM_TSTPNT is called to determine if the test  point is on 
the segment.  If it is, the test point is considered inside the region and the function ends with an 
inside result.  However, if the TKM_GM_TSTPNT determines the point is not on the line the test 
point is combined with the current random point to form a segment.   
 
Now, GM_INSEC is called to determine if an intersection takes place between the test point to 
random point segment versus the polygon segment.  A counter is incremented (icnt) for each 
intersection found.  If an intersection is found, but the ratio of the distance to the end point of the 
polygon segment is less than ε  or greater than 1 − ε  , then the loop ends without finishing the 
rest of the polygon segments and the next random point is generated.   The i loop ends after nrpt 
random points are generated.   
 

The function ends by returning the MOD value of icnt by 2.  This value will return a 0 or 1 for the number 
of intersections determined to be even or odd, respectively.  If an odd number of intersections are found, 
the test point does lie inside the region.  If the number of intersections is an even number, the test point lies 
outside the region.   Figure 3.3.12-1 illustrates the logic for this function. 
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Find the max and min
values for the polygon

shape.
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within the max and

min values?

Yes

No
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k loop
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Return (MOD icnt by 2)

No

 

Figure 3.3.12-1:  Logic Flow of TKM_GM_REGN 
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Assessment Table 
 

REF# Approximation/Assumption Assessment Impact  
on TKM 

R 3.3.12-1 The original PL/I version of this 
function was written to only 
generate additional random points 
if an intersection was found too 
close to the end point.  This 
function always runs nrpt times n 
iterations, while the PL/I version 
runs a maximum of nrpt times n 
iterations. 

This delta between the two versions will not 
effect the accuracy of the code, since only 
one random point sufficiently outside the 
polygon can be utilized to determine if the 
test point is inside the polygon.  If all nrpt 
random points are generated, the result is the 
same, however, the code efficiency would be 
improved if only one were used. 

Important  

R 3.3.12-2 The ε  value assumes the value 
for the ratio returned by 
GM_INSEC is approximately 1 
or 0.  The value currently chosen 
is 0.001 which is very reasonable. 

A reasonable choice for the parameter has 
been chosen and if the intersection point is 
effectively on the end point of the polygon 
line segment, another random point is chosen 
(total of nrpt of them) 

Minor 

R 3.3.12-3 The choice of nrpt random point 
iterations seems reasonable, 
though if more are required the 
result will be to falsely determine 
the point is outside the region 
(return 0). 

The number nrpt=8 chosen seems reasonable 
and can only be verified by unit testing. 

Important 

R 3.3.12-4 This function is subject to the 
critical and important 
approximations of 
TKM_GM_TSTPNT, since it 
uses this function to check if the 
test point lies on each polygon 
line segment. 

Refer to the TKM_GM_TSTPNT function’s 
Assessment Table.  They will directly effect 
this function TKM_GM_REGN. 

Critical 

 
 

3.3.13 Function:  TKM_GM_TSTPNT  ( C ) 
This function determines if a point lies on a line.  To lie on this line, the point may be a small epsilon 
distance from the line and still be considered on the line.    

3.3.13.1 Description:   
Given the x and y coordinates ( in feet) of the end points of the line and the x and y coordinates of a point 
(in feet), the function first determines the location of an intersection point which forms a perpendicular line 
from the given point to the given line (refer to Figure 3.3.13-1).  Next, the function determines the distance 
of this perpendicular line and compares it to the minimum epsilon distance.  If the distance of the normal 
line is less than the minimum distance, the point is considered on the line. 
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Figure 3.3.13-1: Diagram of test point to line distance 

 
Table of Variable Definitions 

 
Function 
Variable 

Description Math Symbol 

x1, y1 x, y coordinates of the start point of the line (ft) x1, y1 
x2, y2 x, y coordinates of the end point of the line (ft) x2, y2 
xt, yt x, y coordinates of the test point  (ft) xt, yt 
pntsep separation allowed between 2 points pntsep 
delx delta difference of the line in x dimension (ft) δ . x  
dely delta difference of the line in y dimension (ft) δ . y  
s1 slope of the line from x1,y1  to  x2,y2 m 
s2 slope of the normal line from xt, yt to xi, yi -1/m 
xi, yi x, y coordinates (ft) of intersection point of test 

point to line 
xi, yi 

eps epsilon value for considering the line to vertical or 
horizontal (currently set at 100 feet) 

ε  

d perpendicular distance (ft) from the test point to 
the line 

d 

3.3.13.2  Mathematics: 
The function starts by calculating the delta differences of each dimension of the line.   These 
variables include the following: 
 

 δ . x x x= −2 1  Equation 3.3.13-1 

 δ . y y y= −2 1  Equation 3.3.13-2 

 
These deltas are used to determine if the line is a vertical line or horizontal line.  For the x 
dimension, if the line’s δ . x  is less an ε   value, consider the line to be a vertical line.  The 
function checks if the test point is greater than the distance pntsep in the x dimension and if so 
considers it not on the line.  If the test point is less than the distance pntsep in the x dimension and 
is within the y dimensions of the line, it is considered on the line.  An analogous check is made for 
the y dimension. 
 

x1, y1 

x2, y2 

xt, yt 

xi, yi 

distance from 
point to line 
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Now, the line is not a vertical or horizontal line and the perpendicular distance will need to be 
calculated between the test point and the line.  The first step is to determine the following slope 
equations: 
 

 s m
y
x

1 = =
δ
δ

.

.
 Equation 3.3.13-3 

 s
m

x
y

2 1
= − = −

δ
δ

.

.
 Equation 3.3.13-4 

 
The equation of the line is expressed for the given line and the line formed by drawing a 
perpendicular line from the test point to the line.  By solving these two equations simultaneously 
for x and y, the resulting formulas give the x and y coordinates of the intersection point used in 
the function to solve for the distance d. 
 

 The given line:   

 ( )y y m x x− = −1 1   Equation 3.3.13-5 

  
The normal line from the test point to the line:  
 

  ( )y yt
m

x xt− = − −
1

 Equation 3.3.13-6 

 
Solving them simultaneously for x (note the x below is equivalent to xi in the code): 
 

 ( ) ( )m x x y yt
m

x xt− + − = − −




1 1

1
  

 mx mx
x

m

xt

m
yt y− + − = −1 1  

 x m
m

yt y
xt

m
x m+ = − + +







1
1 1  

 x
yt y

xt

m
x m

m
m

=
− + +

+






1 1

1
 Equation 3.3.13-7 

 
Now, solve for y (or yi in the code) for the intersection point using the x value in Equation 3.3.13-
7 and use Equation 3.3.13-5 to solve for y. 
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The last check determines the distance of the intersection point using the general distance formula: 
 

 ( ) ( )d xt x yt y2 2 2
= − + −  Equation 3.3.13-8 

The function proceeds by checking this distance d against the pntsep distance, and if this distance 
is greater than the pntsep distance the test point is evaluated as not on the given line.  However, if 
the distance is less than pntsep, the test point is checked to determine if it is between the end 
points of the line.  For example, this checks for cases when the distance in Equation 3.3.13-8 is 
zero because the test point is collinear with the given line, but not within the line segment.  It 
could actually be a large distance from the endpoints of the line.  (NOTE:  To determine if the test 
point is within the line segment, the function extends the line by theε  value, currently 100 feet.) 

 
Assessment Table 

 
REF# Approximation/Assumption Assessment Impact  

on TKM 

R 3.3.13-1 If the test point is less than a distance  
pntsep from the given line, the point is 
evaluated to be between the end  points of 
the given line segment.  However, the line 
is extended by ε  for the TKM version of 
GM_TSTPNT in C, but for the PL/I 
version the line segment is extended only 
by pntsep.  The pntsep value is 1 foot and 
the ε  value is 100 feet. 

The transfer from C to PL/I will 
provide different results not because 
of coding in a different language, 
but because different comparison 
values are used.  An investigation in 
the potential reasons for the change 
are necessary.  

Important  

R 3.3.13-2 For each check (includes three in this 
function), the “else return(false);” should 
be added to protect against an 
undetermined return from the function.  
For example, the last case where the 
distance equation returned a value of zero 
because the test point is collinear with the 
line, but not within the endpoints of the 
segment.  The result will end the function 
without specifically assigning the value 
FALSE. 

The specific compiler by default 
may or may not assign a zero value 
(which will return the correct value) 
or the return value may be 
reinitialized before the call to this 
function, but this is not sufficient for 
portable ANSI C code.  (NOTE:  
The original PL/I version was 
written differently to protect under 
this case.) 

Critical 

R 3.3.13-3 As a result of the unprotected return in the 
function for the horizontal line case, a 
horizontal line checked against a point 
outside the endpoints of the line segment 
but on the line will return a division by 
zero (s1 = 0.0 while s2 will be in error…).  
The corresponding problem is present for 
the vertical case as well. 

The original PL/I version had goto 
statements to protect under this case.  
This is not necessary, but a simple 
“else statement” with a return of 
false would protect against the 
problem. 

Critical  

R 3.3.13-4 The check carried out to determine if a 
point is between the end points of the line 
segment when the line segment is either 
vertical or horizontal uses the pntsep value 
to extend the lines under the PL/I version 
and not for the C version here. 

It is actually more accurate not to 
use the pntsep value, but this may 
cause errors due to round off during 
floating point arithmetic.  Therefore, 
an investigation is required to 
determine why this was not used in 
this function. 

Important 
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3.3.14 Function:  TKM_MATCH_ID (PL/I) 
Attempts to associate track data with flight plan data in the URET database. 

3.3.14.1 Description:   
Upon receipt of a track update message or progress report message from the HCS, this function attempts to 
associate the track data with flight plan data in the URET database.  This is accomplished by calls to utility 
functions LO_FINDAC and DB_FIND_AUD_PTR.  If a match is found, the output variables identified 
will be returned and further TKM processing can continue. 
 

Table of Variable Definitions 
 

Function Variable Description 
ACID (Input) Aircraft identification 
CID (Input) Computer identification 
ORIGIN (Input) Origin airport of this flight 
CTS_IX (Output) CTS index 
AUD_IX (Output) AUD index 
AMC_PTR (Output) Pointer to AMC structure 
FLP_PTR (Output) Pointer to flight plan structure 
THE_FIRST_FLP_PTR (Output) Pointer to the first flight plan 

 

3.3.15 Function:  TKM_TK_HDG ( C ) 
This function determines the course heading of a set of track position reports. 

3.3.15.1 Description:   
Given the number of needed track position reports (or all of the points from the newest given index to the 
oldest given index, whichever is less), this function will determine the heading of this series of points.  If 
there is only one point, the function determines the heading by taking the tan-1 of the ratio of the given 
track velocities at this newest point.  If there is more than one track report available, the function 
determines the least square parameters for the linear first order regression model.  The line defined by these 
parameters is the linear relationship of the dependent variable (the x or y coordinate) to the independent 
variable (time).  The slope (the second parameter) is actually the velocity component of the x and y, and is 
later used to determine the heading using the tan-1 function as above.  Since the track reports are extracted 
in reverse order, π is added to the final heading result (only if multiple track reports are available) to 
reverse the direction of the heading vector to correspond to the aircraft movement. 
 

Table of Variable Definitions 
 

Function Variable Description Math Symbol 
tkm_track[i].x, 
tkm_track[i].y 

Coordinates of the aircraft at the given track 
index i (ft) 

xi, yi 

number_reports_to_use The parameter number of TK reports to use to 
determine the track heading 

m 

index_newest_tk, 
index_oldest_tk 

Indices of the newest (most current) and oldest 
(first) report of the aircraft’s track data 

0, k 

temp The course heading of the aircraft with respect 
to true North (radians) 

Ψ 

3.3.15.2  Mathematics: 
The function performs the following simple calculations and logic: 
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First the function extracts the track data (x, y, and t) in reverse order starting with the newest, most 
recent, report and ending with oldest report or until the given parameter number of reports (m) has 
been found.  These values are stored in an array for each variable (xi, yi, and ti); however ti is 
converted from a clock value to the time increment starting from newest point.  The increment is 
calculated by  (t0-ti)  to reflect the reverse order sequence.  
 
Next the function supplies the LEASTSQ function with the number of track reports to use (m) the 
independent variable array (t) and either dependent variable array (x or y).  The function returns 
the least square parameters for a linear first order regression model, in terms of arrays, α0 and 
α1 or β0 and β1, where α1 and β1 actually represent the slopes of the regression lines.   

 α1 =
∆
∆

x
t

 Equation  3.3.15-1 

 β1 =
∆
∆

y
t

 Equation  3.3.15-2 

 
The function uses these slopes, which are the x, y component velocities,  to calculate the heading 
angle using the following equation. 
 

 Ψ = +








−π

α
β

tan 1 1

1
 Equation  3.3.15-3 

 
Where Ψ is the course heading of the aircraft with respect to true north.  π is added to the resultant 
angle to correct for the reverse order of the time increment (i.e. to reverse the vector heading). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The function also checks:   
 
If  k=0 (newest index = oldest index) then there is only one available track point.  The function 
will then use the corresponding x and y velocity components (as long as they are not zero) given 
with the track report to calculate the heading. 
 
   tkm_track[0].x_velocity = Vx 
   tkm_track[0].y_velocity = Vy 
 

True North 
y 

x 

∆x

∆y Ψ 
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 Ψ =








−tan 1 V

V
y

x
 Equation  3.3.15-4 

The above method (i.e. Equation  3.3.15-4) is also used if α1 = β1 = 0 and there is more than one 
track  report and the least square function has been called. 

 
 

Assessment Table 
 

REF# Approximation/Assumption Assessment Impact  
on TKM 

R 3.3.15-1 The function does not protect against a β1 
value equal to zero in the denominator of 
the inverse tangent function, Equation  
3.3.15-3. 

This coding error could cause a 
floating point error while processing 

Important 

R 3.3.15-2 All headings are with respect to true North. Any advisories or future resolutions to 
the aircraft would need to be 
converted back to magnetic North 

Minor 

 

3.3.16 Function:  TKM_VERIFY_DATA ( C ) 
This function verifies the quality and reasonableness of track data received from the HCS, based on track 
history.  The validity of the data determines the degree it can be used for further processing by TKM.  The 
horizontal distance, and the vertical gradient, between the current and previous track positions are 
computed.  The horizontal distance is calculated using the standard distance formula, and is compared with 
a parameter representing the distance that this aircraft could reasonably travel in one radar scan (currently 
set to 100 nm).   If the distance is within this parameter, a flag is set to indicate that horizontal conformance 
should be monitored by TKM_CONFORMANCE_MONITOR.   The vertical gradient is calculated in 
TKM_CHECK_POSITIVE_Z, and is compared with a parameter representing the change in altitude this 
aircraft could achieve in one radar scan (currently set to 1 ft/ft).  If  the gradient is within this parameter, 
another flag is set to indicate that vertical conformance should be monitored by 
TKM_CONFORMANCE_MONITOR. 
 

3.3.17 Function:  UTL_XY_ARD_BY_RTE (PL/I) 
This function determines the closest distance from a given point to the original route in the horizontal 
plane. 

3.3.17.1 Description:   
This function determines the closest original route segment (RTE_ORS) to the given track (x, y) point.  
The closest distance calculation is determined by calling the GM_PTSEG for every segment in the 
RTE_ORS data structure.  The minimum distance is returned from the function in the variable MIN_D. 
 
NOTE:  The comments and name of this function are misleading.  The function does not calculate the ARD 
at the x, y position.  It only computes the minimum distance from the given point to any point along the 
original route (RTE_ORS). 
 

3.4 General Purpose Utilities 
The developer’s library of functions are contained in two general purpose utility directories.  The 
assessment tables at the end of the following sections address the impact of  the identified 
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assumptions/approximations on the indicated algorithm set (i.e., TJM, TKM or APD) although the utility 
function itself may be called by more than the specified function. 

3.4.1 Function:  CNV_CNVSPD (PL/I) 
Converts airspeed from one form to another. 

3.4.1.1 Description:   
This function converts a given airspeed to either true airspeed, indicated airspeed, or Mach. The necessary 
inputs supplied to this function are: 

 
Input Speed   ISPD 

 Conversion Code   CODE 
 Coordinates at Conversion  XX, YY, ZZ 
 
If there is atmospheric data available, the function retrieves the temperature and pressure from the 
DB_AIR_AT_POINT function (See Section 3.4.10). 
 
If there is no atmospheric data available, the function uses the CNV_STD_ATMOS function (See Section 
3.4.7) to calculate the standard temperature and pressure at that altitude. 
 
The function then converts the CODE number to correspond to an input airspeed type (i.e. TAS, IAS or 
Mach) and supplies this to the CNV_SPEED function (See Section 3.4.6) along with the input speed, 
altitude, temperature and pressure.  CNV_SPEED then returns the desired output speed (TAS, IAS or 
Mach).  

3.4.2 Function:  CNV_GNOMONIC_STEREO (PL/I)  
Converts gnomonic X,Y coordinates to stereographic X,Y coordinates.  X and Y are in nautical miles.  

3.4.2.1 Description:   
The descriptive information contained here has been obtained from the computer code for this PL/I 
procedure, from the URET Trajectory Modeling Algorithmic Definition document (MTR 96W0000072) 
and from the reference stated in the text.   

3.4.2.1.1 Stereographic Coordinates  
The HCS uses the stereographic coordinate system to locate the aircraft. It is a Cartesian, planar coordinate 
system.  The points on the surface of the earth are projected onto a plane which is tangent to the earth at a 
point within the ARTCC airspace.  This representation of points on a plane when they are really on an 
ellipsoid introduces distortion or errors in position.  However, for points close to the point of tangency, the 
distortion is small and can be ignored.   
 
The latitude and longitude of a point on the earth’s surface are based on a model of the earth as an ellipsoid 
of revolution.  Points on the surface of the ellipsoid are projected onto the surface of a sphere (the 
conformal sphere) having the same center as the ellipsoid.  Then the points on the sphere are projected onto 
the tangent plane using as a focal point the point on the sphere which is directly opposite the point of 
tangency (the antipode).  This projection is illustrated in Figure 3.4.2-1.  The projection is also described 
and illustrated in the description of the function CNV_LLXY.  The location of a point thus placed on the 
tangent plane is specified by its stereographic coordinates.   

3.4.2.1.2 Gnomonic Coordinates  
The gnomonic projection is similar to the stereographic projection.  Points on the sphere are projected onto 
the same tangent plane.  For a gnomonic projection, the focal point is the center of the sphere.  The 
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location of a point projected onto the sphere in this way is specified by its gnomonic coordinates.  The 
gnomonic projection is also illustrated in Figure 3.4.2-1.   

3.4.2.1.3 Coordinate Conversion  
Conceptually, this function, referring to Figure 3.4.2-1, takes a gnomonic point C on the tangent plane, 
reverse projects it to the point B on the conformal sphere, and then projects it (the point B) back onto the 
tangent plane as a stereographic point A.  Given the gnomonic coordinates of the point C, the function 
calculates the stereographic coordinates of the point A.   

3.4.2.1.4 Use of the Gnomonic Projection 
A gnomonic projection of the surface of a sphere onto a plane introduces more distortion that a 
stereographic projection.  However, great circle routes on the sphere are projected as straight lines on the 
tangent plane.  This characteristic is used in the following way.   
 
Let VS and ZS be the starting and ending points of a route.  When an aircraft flies from VS to ZS, it flies the 
shortest distance from VS to ZS which is the great circle route.  VS and ZS are defined by their stereographic 
coordinates.  Great circle routes are approximated on the stereographic plane by a series of straight line 
segments.  The stereographic coordinates of the ends of these line segments are found by first converting 
the stereographic coordinates of VS and ZS to gnomonic coordinates VG and ZG.  The great circle route 
from VS to ZS in gnomonic coordinates is the straight line VGZG.  This straight line from VG to ZG is easily 
divided into a series of shorter line segments - VGWG, WGXG, XGYG, and YGZG.  The gnomonic 
coordinates for WG, XG, YG, and ZG are then converted to their corresponding stereographic coordinates.  
In this way the great circle route from VS to ZS is approximated in the stereographic plane by the straight 
line segments VSWS, WSXS, XSYS, and YSZS.   

3.4.2.1.5 Note 
The function being described in this section, CNV_GNOMONIC_STEREO, converts gnomonic 
coordinates to stereographic coordinates.  A companion function, CNV_STEREO_GNOMONIC, converts 
stereographic coordinates to gnomonic coordinates.   

3.4.2.1.6 Conversion Equations  
The equations, listed later on in the section, are given in NAS-MD-312, Appendix C, page C-2.   
 
The conversion functions in Equation 3.4.2-1 and Equation 3.4.2-2 convert the gnomonic X and Y 
coordinates to stereographic X and Y coordinates relative to the point of tangency.  It is necessary to add 
the values of the stereographic coordinates of the point of tangency to these values to get the values of X 
and Y relative to the origin of the stereographic coordinate system.   

3.4.2.1.7 Constants  
One constant is necessary for the computation.  It is the conformal radius of the earth. 

3.4.2.1.8 Units  
The gnomonic coordinates, the stereographic coordinates, and the radius of the earth are all in nautical 
miles.   
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Table of Variable Definitions 

 
Function Variable Description Math Symbol 

GX, GY  Input variables - Gnomonic X, Y coordinates 
of the point being converted  

X G , YG  

ACP.XTANG, ACP.YTANG Input parameter - Stereographic X, Y 
coordinates of the point of tangency  

X t , Yt  

ACP.RAD_EARTH Input parameter - Conformal radius of the 
earth 

R  

SX, SY Output variable - Stereographic X, Y 
coordinates of the point being converted  

X S , YS  

 

3.4.2.2  Mathematics: 
The following equations are used in the function CNV_GNOMONIC_STEREO to calculate the 
stereographic coordinates of a point, given its gnomonic X and Y coordinates.   
 

 X
X

X Y
R

XS
G

G G
t=

+ +
+

+
2

1 1
2 2

2

 Equation 3.4.2-1 

 

 Y
Y

X Y
R

YS
G

G G
t=

+ +
+

+
2

1 1
2 2

2

 Equation 3.4.2-2 

 
The function correctly calculates the stereographic coordinate values given the gnomonic coordinate 
values. 
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Figure 3.4.2-1:  Gnomonic to Stereographic Projection  
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3.4.3 Function:  CNV_GRDSPD (PL/I) 
Computes the aircraft’s ground speed based on the true airspeed and the wind speed. 

3.4.3.1  Description:   
This function computes the aircraft’s ground speed based on the true airspeed and the wind speed using the 
vector representation.  The two vectors, true airspeed and wind speed, determine the resultant ground speed 
vector.  The effects of wind in both the cross-track and along-track dimensions (cross winds and head/tail 
winds) are considered and a special allowance is made when the cross-track component of wind is greater 
than true airspeed. 

Table of Variable Definitions 
 

Function Variable Description Math Symbol 
WIND_SPEED Scalar value for wind speed Vw  
WIND_BEARING Direction of wind with respect to North θw  
TAS True airspeed Vt  
GROUND_SPEED Ground speed Vg  

TRACK_BEARING The flight path bearing. ψ  
 

3.4.3.2 Mathematics: 
This function defines the ground speed as: 
 

 ( )[ ] ( )V V V Vg t w w w w= − − + −2 2
sin cosΨ Ψθ θ  Equation 3.4.3-1 

  
 with the exception when  
 

 ( )[ ]V Vt w w
2 2

0− − <sin Ψ θ  
 

which indicates that the cross wind speed component is greater than the true airspeed.  In this 
case,  ground speed is approximated with the contribution of the along track wind component only 

 

 ( )V Vg w w= −cos Ψ θ  Equation 3.4.3-2 

 
If we make the following assignment 

 

 θ ψ θrw w= −  Equation 3.4.3-3 

 
where θrw is the relative angle between the course heading of the aircraft and the wind direction, 
Equation 3.4.3-1 can be reoriented as 
 

 V V
V
V

Vg t
w

t
rw w rw= −









 +1

2

sin cosθ θ  Equation 3.4.3-4 
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 Equation 3.4.3-4 is based on the vector representation of ground speed 

 
Vt

Vw
Vg

θrw
θc

 
 and 
  
 V V Vg t c w rw≈ +cos cosθ θ  Equation 3.4.3-5 

 
 where θc is the “crab” angle between the Vt -leg and Vg -leg.   

  
 The relationship 
 

 cos sin sinθ θ θc c
w

t
rw

V
V

= − = −








1 12

2

 

 

 holds true because of the law of sines 
sin sinθ θrw

t

c

wV V
=









  and the basic trigonometric identity. 

 
Equation 3.4.3-4 and Equation 3.4.3-5 are approximations because they assume a small flight path 
angle (i.e. negligible effect from motion in the vertical plane). 

  
Therefore Equation 3.4.3-1 and  Equation 3.4.3-2 appear to be reasonable and coincides with most 
trajectory estimation practices that assume a small flight path angle (rate of descent) and a 
horizontal wind direction. 
 

Assessment Table 
 

REF# Approximation/Assumption Assessment Impact on TJM 

R 3.4.3-1 Small path angle Reasonable, for Commercial 
Aircraft, and a small flight 
path angle  
(i.e. small rate of descent) 

Critical 

R 3.4.3-2 Large cross wind 
approximation 
Equation 3.4.3-2 

Wind speeds that large are 
unlikely and make standard 
calculations very difficult.  
Some tests on this effect could 
be made. 

Important 

R 3.4.3-3 Derived ground speed  
 

Reasonable for the given 
vector representation and 
relative wind and crab angle 
definitions.  Assumes a small 
flight path angle and a 
horizontal wind. 

Minor 
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3.4.4 Function:  CNV_LLXY (PL/I) 
Converts horizontal position coordinates given as a geodetic latitude and a geodetic longitude to 
stereographic X and Y coordinates.  Latitude and longitude are radians.  X and Y are in nautical miles.  

3.4.4.1 Description:   
The descriptive information contained here has been obtained from the computer code for this PL/I 
procedure, from the URET Trajectory Modeling Algorithmic Definition document (MTR 96W0000072), 
and from the references stated in the text.   

3.4.4.1.1 Geodetic Coordinates  
Aircraft are located on the surface of the earth by a latitude and a longitude.  The earth is almost a sphere, 
but not quite.  It is modeled by an ellipsoid of revolution.  This ellipsoid is created by rotating an ellipse 
about its minor axis.  The axis becomes the earth’s polar axis - the line connecting the north pole to the 
south pole.  The International Ellipsoid of Reference is used.  The distance in this model from the center of 
the earth to the north (or to the south)  pole is 3432.4579 nautical miles.  The distance from the center to 
the equator is 3444.0540 nautical miles.  Latitudes and longitudes referred to this ellipsoid model are called 
the geodetic latitudes geodetic longitudes.   

3.4.4.1.2 Stereographic Coordinates  
The HCS uses a different coordinate system to locate the aircraft.  It is called the stereographic coordinate 
system.  It is a Cartesian, planar coordinate system.  The points on the surface of the earth are projected 
onto a plane which is tangent to the earth at a point within the ARTCC airspace.  This representation of 
points on a plane when they are really on an ellipsoid introduces distortion or errors in position.  However, 
for points close to the point of tangency, the distortion is small and can be ignored.   
 
The stereographic coordinate system is an XY plane with the XY grid lined up approximately with the 
lines of latitude and longitude for points near the point of tangency.  The parallel of constant latitude 
passing through the point of tangency is projected onto the stereographic plane as a line of constant Y 
value.  The meridian of constant longitude passing through the point of tangency is projected onto the 
stereographic plane as a line of constant X value.  At other points on the stereographic plane, the 
projections of lines of constant latitude or of constant longitude are curved and do not exactly line up with 
the lines of constant Y or X.   
 
In the northern hemisphere, the line of constant X value on the stereographic plane passing through the 
point of tangency points to true north.  As the Y coordinate of a point increases in value, the point gets 
closer to the north pole.  The projection of the north pole is on this line through the point of tangency.  
Similarly the line of constant Y value passing through the point of tangency points due east.   
 
The origin of the stereographic coordinate system is usually not the point of tangency but, in the 
continental US, is a point in the southwest corner of the ARTCC airspace.   
 
The point of tangency of the stereographic plane is defined by a geodetic latitude, a geodetic longitude, and 
a distance from the center of the ellipsoid.  The location of the point of tangency is determined by the 
locations of the ARTCC’s surveillance radars and is chosen to minimize position errors caused by the 
projection of an ellipsoid onto a plane.   

3.4.4.1.3 Conformal Coordinates  
It is convenient to do the coordinate conversion in two steps.  A point is first converted to an intermediate 
coordinate system, and then converted from this intermediate system to the stereographic system.  The 
intermediate coordinate system is a sphere whose center is the same as the center of the ellipsoid and 
whose radius is based on the locations of the ARTCC’s surveillance radars.  The angles between lines on 
the ellipsoid remain unchanged when they are projected onto the sphere.  Therefore the coordinate 
transformation is a conformal transformation and the values of the latitudes and longitudes in this 
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intermediate coordinate system are referred to as conformal latitudes and longitudes.  The radius of the 
sphere is called the conformal radius of the earth.  The geodetic latitude and longitude are first converted to 
a conformal latitude and longitude, and then the conformal latitude and longitude are converted to the 
stereographic X and Y coordinates.  The conformal longitude is the same as the geodetic longitude; only 
the latitude is changed upon converting from geodetic to conformal coordinates.   

3.4.4.1.4 Geodetic to Conformal Projection  
The ellipsoid and the conformal sphere are concentric  - that is, they have a common center.  The radius of 
the sphere determines the scale of the projection in the stereographic plane and is chosen to minimize the 
errors introduced by the projection.  The geodetic latitude of a point on the ellipsoid is the elevation above 
the equatorial plane of a line perpendicular to a plane tangent to the ellipsoid at that point.   
 
The geometry of the conformal spherical projection is shown in Figure 3.4.4-1. The eccentricity of the 
earth is greatly exaggerated in the figure to show the geometry more clearly.  A point Pg  on the surface of 

the ellipsoid has a geodetic latitude of φg .  This is the angle that a normal to the tangent at the point Pg  

makes with the equator.  The conformal projection of the point Pg  onto the sphere is the point P .  The 

conformal latitude of the point P  is φ .   
 
A conformal projection is one in which the change in scale at a given point is the same in all directions.  
The equation for the projection is derived by making the change in scale in mapping from the ellipsoid to 
the sphere along a meridian of longitude on the sphere equal to the change in scale along a parallel of 
latitude on the sphere.  Since the lines of longitude are orthogonal to the lines of latitude, making the scale 
equal in the directions of constant latitude and constant longitude makes the scale equal in all directions.   
 
The conformal value of a latitude when converted depends only on its original geodetic value and on the 
eccentricity of the ellipsoid.   

3.4.4.1.5 Conformal to Stereographic Projection  
A point on the conformal sphere is projected onto the stereographic plane in the following way.  See Figure 
3.4.4-2.  The focal point for the projection is the point on the sphere which is directly opposite the point of 
tangency (the antipode).  A line is drawn from the focal point to the point on the sphere being projected.  
This line is then extended to intersect the stereographic plane which is tangent to the sphere at the point of 
tangency.  The point of intersection of the line with the tangent plane is the projection of the conformal 
point onto the stereographic plane.    

3.4.4.1.6 Conversion Equations  
The equations described here are listed later in Section 3.4.4.2.  The conversion of the geodetic latitude to a 
conformal latitude is done using a two term power series approximation (Equation 3.4.4-2) to the 
conversion equation.  This equation is given in NAS-MD-312, Appendix D, Section 2.  The original 
equation being approximated is given in NAS-MD-320, Appendix A, Section 3.2.  Both the sine of the 
conformal latitude of the point being converted and the sine of the conformal latitude of the point of 
tangency are calculated using the power series equation. The conversion of the conformal latitude and 
longitude of a point to its XY stereographic coordinates is done using the two equations found also in 
NAS-MD-312, Appendix D, Section 2 (Equation 3.4.4-6 and Equation 3.4.4-7 in this document) and in 
NAS-MD-320, Appendix A, Section 3.1.  Conversion functions  give the X and Y coordinates relative to 
the point of tangency.  It is necessary to add to these values the coordinates of the point of tangency in the 
stereographic plane to get the values of  X and Y relative to the origin of the stereographic coordinate 
system.   
 

3.4.4.1.7 Constants  
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Three constants are necessary for the computation.  They are the conformal radius of the earth, and the 
coefficients of the two terms of the power series equation.   

3.4.4.1.8 Units  
The latitudes and longitudes are angles and are measured in radians.   The conformal radius of the earth is 
measured in nautical miles and therefore the X and Y coordinate values are in nautical miles also.   

3.4.4.1.9 Internal Error Checking  
The absolute values for the sines of the latitudes are checked to make sure that they are less than or equal 
to 1.  Imprecision in the computation may cause a value to exceed 1.  When this occurs the value is reset to 
1.   

3.4.4.1.10 Unit Testing 
A limited amount of unit testing was performed on this function.  It performed correctly for all of the cases 
tested.   

Table of Variable Definitions 
 

Function Variable Description Math Symbol 
LATR, LONGR  
 

Input data - Geodetic latitude and longitude of 
the point being converted (radians) 

φg , λ  

ACP.COORDS.LATIT Input parameter - Geodetic latitude of the 
point of tangency  

φ0g  

LONGITT Input parameter - Geodetic (& conformal) 
longitude of the point of tangency 

λ0  

XT, YT Input parameter - Stereographic X, Y  
coordinates of the point of tangency 

X t , Yt  

RE Input parameter - Conformal radius of the 
earth 

R  

0.9932773 Constant - the first order coefficient in the 
power series expression for the conformal 
latitude in terms of the geodetic latitude  

A  

0.0066625 Constant - the third order coefficient in the 
power series expression for the conformal 
latitude in terms of the geodetic latitude  

B  

N/A Conformal latitude of the point being 
converted 

φ  

SIN_PHI Sine of the conformal latitude of the point 
being converted 

sinφ  

N/A Conformal latitude of the point of tangency φ0  
SIN_PHI0 Sine of the conformal latitude of the point of 

tangency 
sinφ0  

COS_PHI Cosine of the conformal latitude of the point 
being converted 

cosφ  

COS_PHI0 Cosine of the conformal latitude of the point 
of tangency 

cosφ0  

DLONG  The difference in longitude (both geodetic and 
conformal) between the point being converted 
and the point of tangency  

∆λ  

X, Y Output data - Stereographic X, Y coordinates 
of the point being converted 

X , Y  
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3.4.4.2  Mathematics: 
The following equations are used in this function to calculate the stereographic X and Y 
coordinates of a point, given its geodetic latitude and longitude.  First calculate the difference in 
the longitudes.   
 

 ∆λ λ λ= −0  Equation 3.4.4-1 

 
Next , convert the geodetic latitudes of the point being converted and the point of tangency to 
their corresponding conformal latitudes.  Actually the conformal latitudes are not explicitly 
calculated.  Their sines and cosines are calculated.   
 

 sin sin sinφ φ φ= +A Bg g
3  Equation 3.4.4-2  

 

 sin sin sinφ φ φ0 0
3

0= +A Bg g  Equation 3.4.4-3 

 

 cos sinφ φ= −1 2  Equation 3.4.4-4 

 

 cos sinφ φ0
2

01= −  Equation 3.4.4-5 

 
The next two equations convert the conformal latitude φ  and conformal longitude λ  to the 
stereographic coordinates X  and Y .  The first term in each equation is the value of the 
coordinate relative to the point of tangency.  Since the origin of the stereographic coordinate 
system is not at the point of tangency, it is necessary to add to this term the coordinate of the point 
of tangency in the stereographic coordinate system.   
 

 X R X t=
+ +









 +2

1 0 0

sin cos
sin sin cos cos cos

∆
∆

λ φ
φ φ φ φ λ

 Equation 3.4.4-6 

 

 Y R Yt=
−

+ +








 +2

1
0 0

0 0

sin cos cos sin cos
sin sin cos cos cos

φ φ φ φ λ
φ φ φ φ λ

∆
∆

 Equation 3.4.4-7  

 

The power series used in Equation 3.4.4-2 and in Equation 3.4.4-3 is a satisfactory approximation.  The 
function correctly calculates the values of x and y for a given geodetic latitude/longitude coordinate pair.
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Assessment Table 

 
REF# Approximation/Assumption Assessment Impact on 

TJM 

R 3.4.4-1 The point being converted is 
sufficiently near the point of 
tangency for the algorithm to 
work.   

 The points that can be stereographically 
projected from a sphere are limited to the 
hemisphere centered on the point of tangency.  
The point being converted must be within 90 
degrees of the point of tangency.  For 
robustness, the function should do this bounds 
check before proceeding with the calculation 
of X and Y.   

Minor 

R 3.4.4-2 cosφ0g  and cosφg  are 

calculated  

The function unnecessarily calculates the 
cosine of the geodetic latitude of the point of 
tangency and the cosine of the geodetic 
latitude of the point being converted.  This 
code should be deleted.   

Minor  

R 3.4.4-3 cosφ  and cosφ0  are 
compared to 0   

The bounds check on the cosine function is 
unnecessary because the bounds check has 
already been run on the sine calculation.   

Minor 

R 3.4.4-4 The conformal latitude of the 
point of tangency is 
calculated every time the 
function is called.  

This calculation should be done once (for a 
given ARTCC) and the result saved for future 
use.   

Minor 
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Figure 3.4.4-1:  Mapping Geometry - Geodetic to Conformal 
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Figure 3.4.4-2:  Stereographic Projection 
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3.4.5 Function:  CNV_RADDMS (PL/I)  
Converts a latitude or a longitude in radians to degrees, minutes, and seconds.   

3.4.5.1 Description:   
The descriptive information contained here has been obtained from the computer code for this PL/I 
procedure.  The variable names in capital letters in parentheses are from the code.   
 
Internally in URET an angle is represented both in radians and in degrees, minutes, and seconds, and it is 
necessary to convert back and forth between the two formats.  This function converts an angle in radian 
measure to an angle in degrees, minutes, and seconds.  The radian representation is in floating point 
format.  The degrees, minutes, and seconds format is a character string (7 characters).  The first 3 
characters are the degree measure, the next 2 characters are the minutes measure, and the last 2 characters 
are the seconds measure.  The procedure converts the radians into a floating point representation of the 
degrees, minutes, and seconds and then converts the floating point number into a character string.   
 
First the radian value is converted to degrees by dividing by the number of degrees in a radian (DG_RAD).  
This resulting number is rounded up to the nearest second by adding a half second and then converting the 
number of seconds calculated later in the procedure from floating point format to fixed point format.  
(Conversion from floating point format to fixed point format truncates the fractional part of the number.)  
Negative angles are similarly rounded downward.   
 
The integral number of degrees is found by converting the floating point representation of the number of 
degrees (DEGS) to fixed point format (D).  Subtracting the integral number of degrees D from the total 
number of degrees and multiplying by 60 (the number of minutes in a second) leaves the minutes and 
seconds as a remainder (X) expressed as minutes.  Again, converting to fixed point, the integral number of 
minutes are found (M).  Subtracting both the integral number of degrees and the integral number of 
minutes (converted to degrees) from the value for the total degrees and multiplying by 3600, the number of 
seconds in a degree, leaves the number of seconds (X again).  Converting this value into fixed point format 
gives the integral number of seconds (S).   
 
Positive angles have been rounded up to the nearest second; negative angles have been rounded down to 
the nearest second.   
 
The three values, the number of degrees (D), the number of minutes (M), and the number of seconds (S), 
are combined into a single floating point number (FLTDMS) in which the decimal digits for the 1s and 10s 
give the number of seconds, the decimal digits for the 100s and 1000s give the number of minutes, and the 
decimal digits for the 10,000s, 100,000s, and 1,000,000s give the number of degrees.   
 
The floating point representation of the degrees, minutes, and seconds are converted into a character string 
(DMS).   

3.4.5.1.1 Constants 
The procedure uses two constants.  The number of radians in a degree (DG_RAD) is an included external 
constant ;  the value of ½ a second expressed in degrees (RND) is an internal constant.   

3.4.5.1.2 Units 
The input angle is in radians in floating point format.  The output angle is in degrees, minutes, and seconds 
- represented as a character string.   
 

Table of Variable Definitions 
 



   

 93

Function Variable Description Math Symbol 
RAD  Input variable - Angle in radians  φr  
DG_RAD Input constant - Number of radians in a degree K1  
RND  Internal constant - ½ of angular second 

expressed in degrees  
K2  

DEGS  Number of degrees in the input angle  φd  
D  Integral number of degrees in the input angle  D  
X  Remainder of minutes and seconds after the 

integral number of degrees have been 
subtracted from the input angle, units are 
minutes  

R1  

M  Integral number of minutes in the input angle  M  
X  Remainder of seconds after the integral 

number of degrees and the integral number of 
minutes have been subtracted from the input 
angle, units are seconds  

R2  

S  Integral number of seconds in the input angle 
(rounded up or rounded down)  

S  

FLTDMS  Degrees, minutes, and seconds in the input 
angle expressed in floating point format  

DMS fl  

DMS Degrees, minutes, and seconds in the input 
angle expressed as a character string  

DMSst  

3.4.5.2  Mathematics: 
The angular measure in radians is converted to angular measure in degrees by dividing by K1 , the 
number of radians in a degree, and then is prepared to be rounded up by adding K2 , the value of 
½ a second expressed in degrees.  If φr  is negative, the constant K2  is subtracted to round down.   

 φ
φ

d
r

K
K= +

1
2  Equation 3.4.5-1 

 
Then the integral number of degrees D is extracted from φd  by using the PL/I function FIXED .  
This function truncates the fractional part of the number.   
 

 D FIXED d= ( )φ  Equation 3.4.5-2 

 
The remainder of minutes and seconds is obtained by subtraction and is converted from degrees to 
minutes by multiplying by 60.   
 

 R Dd1 60= −( ) *φ  Equation 3.4.5-3 

 
The integral number of minutes M is extracted from R1  by using the PL/I function FIXED.   
 

 M FIXED R= ( )1  Equation 3.4.5-4 

 
The remainder of seconds is obtained by subtraction and is converted from degrees to seconds by 
multiplying by 3600.   
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 R D M
d2 60

3600= − −( ) *φ  Equation 3.4.5-5 

 
The integral number of seconds S is extracted from R2  by using the PL/I function FIXED.   
 

 S FIXED R= ( )2  Equation 3.4.5-6 

 
The values obtained for the integral number of degrees, minutes, and seconds are combined into a 
single floating point number as follows.   
 

 DMS D M Sfl = + +* *10000 100  Equation 3.4.5-7 

 
This floating point number is converted into a character string by a string operation.   
 

 DMS STRING DMSst fl= ( )  Equation 3.4.5-8 

 
The function correctly converts a radian angular value to degrees, minutes, and seconds 
representation. 

3.4.6 Function:  CNV_SPEED ( C ) 
Converts the given speed to its equivalent True Airspeed, Indicated Airspeed, and Mach at the given 
altitude, temperature and pressure. 

3.4.6.1 Description:   
This function converts the given airspeed, at a given altitude, temperature, and pressure, returning Mach, 
True Airspeed and Indicated Airspeed.  Calculation of Indicated Airspeed assumes the speed of sound, 
temperature and pressure at sea level are all standard. 
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Table of Variable Definitions 
 

Function Variable Description Math Symbol 
*temp Temperature at the current altitude (Supplied 

as an input, ºK) 
T1 

pr The pressure ratio of current altitude pressure 
over sea level standard pressure. 

p
ps

1  

_P0 Standard sea level pressure  
(= 29.92126 inches of mercury) 

ps 

*pres Freestream pressure at the current altitude 
(Supplied as an input, inches of mercury) 

p1 

R Universal Gas Constant of Air  
(= 287 m2/s2 ºK) 

R 

CONSTANT_1 Constant (=38.967876 kts/ ° K ) γ R  
_Cso Standard speed of sound at sea level 

(=661.47862 kts) 
as 

cs Speed of sound at the current altitude a1 
*tas True airspeed (If supplied as an input, ft/s.  It 

is returned as ft/s) 
V1 = Vt 

*ias Indicated airspeed (kts) Vias 
*mach Mach number (between 0 and 1) M 

3.4.6.2 Mathematics: 
 This function uses three equations which define Mach, True Airspeed, and Indicated Airspeed 

(Equation 3.4.6-11 , Equation 3.4.6-12, and Equation 3.4.6-13) as a basis.  All three of these 
equations are expressed with common terms, namely:  the speed of sound, a, and the ratio of the 
total and static pressure difference over a static pressure, ( )p p p0 − .  However, the values of a 
and p may be different depending on the airspeed definition of assumed altitude (i.e. Indicated 
Airspeed assumes sea level altitude while Mach and True Airspeed assume the current altitude of 
the aircraft).  

 
 When this function is given a value for an airspeed, it will solve the corresponding airspeed 

equation for ( )p p p0 − .  Using this term, the function then solves the remaining two airspeed 
equations by making the necessary corrections for the altitude assumptions.  (This is shown in 
Sections 3.4.6.2.1, 3.4.6.2.2, and 3.4.6.2.3). 

 
 The derivation of the three airspeed equations from classic thermodynamic and atmospheric 

relationships is provided below. Sections 3.4.6.2.1, 3.4.6.2.2, and 3.4.6.2.3 then show how the 
process of airspeed conversions is performed in the CNV_SPEED function. 

  
 
 NOTE: This function begins by determining the geopotential altitude h, as in Section 3.4.7, but 

then never uses this result anywhere else in the code. 
  
 



   

 96

Derivation: 
  
 Start with the energy equation for a subsonic, isentropic, compressible flow7 
 

 c T V c Tp p1
1
2 1

2
0+ =  Equation 3.4.6-1 

 
 which can also be expressed as  
 

 
T
T

V
c Tp

0

1

1
2

1
1

2
= +  Equation 3.4.6-2 

 
 where  
  cp = the specific heat for a perfect gas at constant pressure,  
  T1 = the temperature at a point in the freestream flow 

V1 = the velocity at a point in the freestream flow.  This is True Velocity. 
  T0 = the temperature at the stagnation point8. 
 
 By definition, cp is expressed as 

 c R
p =

−
γ

γ
 

1
 Equation 3.4.6-3 

 
 where  
  γ = the constant which represents the ratio of specific heats at constant   
   pressure to constant volume c cp v  

  R = the universal gas constant.   
 

Substitute the expression for cp  from Equation 3.4.6-3 into Equation 3.4.6-2, which gives the 
result 

 
( )T

T
V
RT

0

1

1
2

1
1

1
2

= +
−γ

γ 
 Equation 3.4.6-4 

  
 The speed of sound at a point in the freestream flow is defined as 
 

 a RT1
2

1= γ  Equation 3.4.6-5 

 

                                                           
7 An isentropic process is one in which there is neither heat exchange nor effect due to friction.  A 
compressible flow is one in which the density of the fluid (i.e. air) can change from point to point 
8 Velocity at the stagnation point is zero. 
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Since the right hand side of Equation 3.4.6-5 is found in Equation 3.4.6-4, the term a1
2  can be 

substituted, giving the result  

 
( )T

T
V
a

0

1

1
2

1
21

1
2

= +
−γ

 Equation 3.4.6-6 

 
 Mach is defined as 

 M
V
a

= 1

1
 Equation 3.4.6-7 

 
Therefore, since the expression for Mach is found in Equation 3.4.6-6, M1

2  can be substituted, 
giving the result 

 

 
( )T

T
M0

1
1
21

1
2

= +
−γ

 Equation 3.4.6-8 

 
 An isentropically compressed gas has the following relationship 
 

 
p
p

T
T

0

1

0

1

1
=











−
γ

γ
 Equation 3.4.6-9 

 
 Where p0 and p1 represents the pressure at the stagnation and freestream point, respectively. 
 

Therefore, combining Equation 3.4.6-8 and Equation 3.4.6-9 and solving for Mach gives the 
result 

 

 M
p
p1

2 0

1

1

2
1

1=
−









 −

















−

γ

γ
γ

 Equation 3.4.6-10 

 
 which is equivalent to  
 

 M
p p

p1
2 0 1

1

1

2
1

1 1=
−

−
+









 −

















−

γ

γ
γ

 Equation 3.4.6-11 
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Next, substitute Equation 3.4.6-7 into Equation 3.4.6-11 and solve for V1 
   

 
( )

V
a p p

p1
2 1

2
0 1

1

1

2
1 1 1=

−
−

+










 −



















−

γ

γ
γ

 Equation 3.4.6-12 

 
 Calibrated airspeed is the speed the aircraft would be flying if it were at sea level.  By assigning  
 
   a as1 = =  the standard sea level value for the speed of sound  
          ps = the standard sea level value for pressure 
 
 calibrated airspeed Vcas  can be defined using Equation 3.4.6-12  
 

 
( )

V
a p p

pcas
s

s

2
2

0 1

1

2
1 1 1=

−

−
+











 −



















−

γ

γ
γ

 Equation 3.4.6-13 

 
URET assumes no instrument error and makes no distinction between indicated airspeed and 
calibrated airspeed. 

 
 V Vcas ias=  
 

For all of the following conversions, pressure and temperature are calculated using the 
CNV_STD_ATMOS function (see Section 3.4.7) or is measured using the DB_AIR_AT_POINT 
function.  The above derivation was based on Anderson’s Introduction to Flight, 1989. 

3.4.6.2.1 Given Indicated Airspeed, Determine Mach and True Airspeed 
  
 Solve Equation 3.4.6-13 for ( )p p ps0 1−  

 
( ) ( )

A
p p

p
V
as

ias

s
1

0 1
2

2

11
2 1 1=

−
=

−
+











 −

−γ
γ

γ

 Equation 3.4.6-14 

 
 and substitute into Equation 3.4.6-11.  Adjust this result by dividing by the pressure ratio 
 

 M
A p

p
s2 1

1

1

2
1 1 1=

−
+









 −

















−

γ

γ
γ

 Equation 3.4.6-15 

  
 True airspeed is then calculated using Equation 3.4.6-7 
 
 V a Mt = 1  
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3.4.6.2.2  Given True Airspeed, Determine Mach and Indicated Airspeed 
 
 Mach is determined by Equation 3.4.6-7.  Solving Equation 3.4.6-11 for ( )p p p0 1 1−  

 
( ) ( )

A
p p

p M2
0 1

1

2
11

2 1 1=
−

=
−

+










 −

−γ
γ

γ

 Equation 3.4.6-16 

  
 and adjusting A2 by the pressure ratio to get  
 

 
( ) ( )

A PR
p p

p
p
p

p p
ps s

2
0 1

1

1 0 1=
−

=
−

 Equation 3.4.6-17 

 
 Substitute this result into Equation 3.4.6-13  
  

 V
a

A
p
pcas

s

s

2
2

2
1

1

2
1 1 1=

−
+









 −

















−

γ

γ
γ

 Equation 3.4.6-18 

3.4.6.2.3 Given Mach, Determine True Airspeed and Indicated Airspeed 
 

Solve Equation 3.4.6-7 for V1, then use the method in Equation 3.4.6-16 through Equation 3.4.6-
18 to determine Vias 

 
 

Assessment Table 
 

REF# Approximation/Assumption Assessment Impact on 
TJM 

R 3.4.6-1 Indicated airspeed is equivalent 
to calibrated airspeed. 
V Vcas ias= .  Assumes no 
instrument error 

Reasonable.  Instrument error is usually 
negligible in current aircraft. 

Minor 

R 3.4.6-2 Subsonic airspeeds  Reasonable for aircraft flying within 
controlled airspace 

Important 

R 3.4.6-3 Air flow is isentropic and 
compressible. 

Reasonable for subsonic aircraft. These 
assumptions are needed to simplify 
mathematical modeling 

Minor 
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3.4.7 Function:  CNV_STD_ATMOS (PL/I) 
Determines the standard atmospheric temperature and pressure at a specified altitude. 

3.4.7.1 Description:   
Temperature and pressure are functions of altitude for the standard atmosphere.  The variation of 
temperature with respect to altitude is based on experimental evidence (see Figure 3.4.7-1).  Pressure is 
derived from temperature and altitude using the equation of state for a gas and the hydrostatic equation 
(shown in Equation 3.4.7-4 and Equation 3.4.7-3, respectively).  The measured altitude is the geometric 
altitude above sea level and is supplied as an input.  To simplify the calculations, the geometric altitude is 
converted to a geopotential altitude, which assumes that the effect of gravity remains constant over all 
altitudes. 
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Figure 3.4.7-1:  Temperature Distribution in the Standard Atmosphere 
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Table of Variable Definitions 

 
Function Variable Description Math Symbol 

ALT The geometric altitude (Supplied as an input, ft) hG 
HG The geopotential altitude (nmi) h 
HB Base of second altitude layer 

(= 5.9395248 nmi) 
hB 

ERAD The radius of the earth at latitude 45 (nmi). From 
the North American Datum, 1983, r45 = 3438.1693 
nmi 

r 

TM0 Sea level standard temperature  
(= 288.15 K) 

T0 

TB Standard Temperature at the base of the second 
altitude layer (= 216.66 K) 

TB 

TEMP Standard temperature at the current altitude 
(Returned as an output, K) 

T 

LB Temperature gradient of the first altitude layer (= -
12.038K/nmi) 

a 

PR The pressure ratio of current altitude pressure over 
sea level standard pressure. 

p
p0

 

P0 Standard sea level pressure  
(= 29.92126 inches of mercury) 

p0 

PRES Standard pressure at the current altitude (Returned 
as an output, inches of mercury) 

p 

R Universal Gas Constant of Air  
(= 287 m2/s2K) 

R 

G Sea level gravitational acceleration g0 
C2 Constant (= -5.2558761) g

aR
0  

C3 Constant (= 0.223361).  The pressure ratio of the 
standard pressure at the base of the second altitude 
layer over the standard sea level pressure 

p
p

B

0
 

C4 Constant (= 0.29203894) g
RTB

0  

 

3.4.7.2 Mathematics: 
 The CNV_STD_ATMOS function first converts the input geometric altitude from feet to nautical 

miles (hG), then defines geopotential altitude as: 
 

 h r
r h

h
G

G=
+









  Equation 3.4.7-1 

  
 This equation makes the assumption that gravitational acceleration is independent of altitude. 
 
 If the altitude is above sea level but below the first isothermal layer of the standard atmosphere 

( )0 ≤ ≤h hB , there exists a temperature gradient with respect to altitude and temperature which is 
calculated as follows: 
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 ( )T h
h

T T
B

B= −








 −28816 0.  Equation 3.4.7-2 

   
 However, if the altitude is greater than the first isothermal layer of the standard atmosphere 

( )h hB≥ , temperature remains constant9 (T = 216.66 K)  
 
 Pressure is derived by dividing the hydrostatic equation  
 
 dp g dh= −ρ 0  Equation 3.4.7-3 

 
 by the equation of state for a perfect gas 
 

 p RT= ρ  Equation 3.4.7-4 

  
 which gives the result 
 

 dp
p

g
RT

dh= − 0  Equation 3.4.7-5 

  
 where ρ =  air density.  
 
 When altitude is above sea level but below the first isothermal layer of the standard atmosphere 

( )0 ≤ ≤h hB , temperature variation follows a constant rate: 
 

 a dT
dh

≡  Equation 3.4.7-6 

 or 

 dh
a

dT=
1  Equation 3.4.7-7 

  
 Substitute Equation 3.4.7-7 into Equation 3.4.7-5 and integrate to determine the pressure ratio  
  

 dp
p

g
aR

dT
Tp

p

T

T

0 0

0∫ ∫= −  Equation 3.4.7-8 

 

 p
p

T
T

g
aR

0 0

0

=










−





 Equation 3.4.7-9 

                                                           
9 The temperature remains constant until a geopotential altitude exceeds 25 km (82000 ft).  It is assumed 
that controlled aircraft will not exceed this altitude. 
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 These terms can be re-arranged to reflect the equation within the function 
 

 p
p

T
T ah

g
aR

0

0

0

0

=
+

















 Equation 3.4.7-10 

  
 When the altitude is greater than the first isothermal layer of the standard atmosphere ( )h hB≥ , 

the pressure ratio is determined by integrating Equation 3.4.7-5.  
 

 dp
p

g
RT

dh
p

p

B h

h

B B
∫ ∫= − 0  Equation 3.4.7-11 

 

 
( )p

p e
B

g
RT

h h
B

B
=

−








 −0

 Equation 3.4.7-12  

  
 These terms can be re-arranged to reflect the equation within the function 
 

 
( )p

p
p
p eB

g
RT

h h
B

B

0 0

0

=









 −

 Equation 3.4.7-13 

 
Finally, Equation 3.4.7-10 or Equation 3.4.7-13 are solved for p, which is the standard 
atmospheric pressure at that altitude.  Temperature (T) and pressure (p) are returned as outputs of 
the function. 

 
This function appears to be reasonable and follows the classic derivations for the standard 
atmosphere10. 

                                                           
10 Refer to Anderson’s Introduction to Flight, 1989 Chapter 3. 
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Assessment Table 
 

REF# Approximation/Assumption Assessment Impact 
on TJM 

R 3.4.7-1 Equation 3.4.7-1, geopotential altitude. 
Approximates that the gravitational 
acceleration is a constant, independent 
of altitude. 

Reasonable.  This is a classic 
assumption to simplify calculations and 
should have very little impact. 

Minor 

R 3.4.7-2 Equation 3.4.7-2, Equation 3.4.7-3, and 
Equation 3.4.7-4 all assume that the 
geopotential altitude will not exceed 
82021 ft 

Reasonable for aircraft in controlled 
airspace. 

Minor 

 
 

3.4.8 Function:  CNV_STEREO_GNOMONIC (PL/I)  
Converts stereographic X,Y coordinates to gnomonic X,Y coordinates.  X and Y are in nautical miles.  

3.4.8.1 Description:   
The descriptive information contained here has been obtained from the computer code for this PL/I 
procedure, from the URET Trajectory Modeling Algorithmic Definition document (MTR 96W0000072) 
and from the reference stated in the text.   

3.4.8.1.1 Stereographic Coordinates  
The HCS uses the stereographic coordinate system to locate the aircraft. It is a Cartesian, planar coordinate 
system.  The points on the surface of the earth are projected onto a plane which is tangent to the earth at a 
point within the ARTCC airspace.  This representation of points on a plane when they are really on an 
ellipsoid introduces distortion or errors in position.  However, for points close to the point of tangency, the 
distortion is small and can be ignored.   
 
The latitude and longitude of a point on the earth’s surface are based on a model of the earth as an ellipsoid 
of revolution.  Points on the surface of the ellipsoid are projected onto the surface of a sphere (the 
conformal sphere) having the same center as the ellipsoid.  Then the points on the sphere are projected onto 
the tangent plane using as a focal point the point on the sphere which is directly opposite the point of 
tangency (the antipode).  This projection is illustrated in Figure 3.4.8-1.  The projection is also described 
and illustrated in the description of the function CNV_LLXY.  The location of a point thus placed on the 
tangent plane is specified by its stereographic coordinates.   

3.4.8.1.2 Gnomonic Coordinates  
The gnomonic projection is similar to the stereographic projection.  Points on the sphere are projected onto 
the same tangent plane.  For a gnomonic projection, the focal point is the center of the sphere.  The 
location of a point projected onto the sphere in this way is specified by its gnomonic coordinates.  The 
gnomonic projection is also illustrated in Figure 3.4.8-1.   

3.4.8.1.3 Coordinate Conversion  
Conceptually, this function, referring to Figure 3.4.8-1, takes a stereographic point A on the tangent plane, 
reverse projects it to the point B on the conformal sphere, and then projects it (the point B) back onto the 
tangent plane as a gnomonic point C.  Given the stereographic coordinates of the point A, the function 
calculates the gnomonic coordinates of the point C.   
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3.4.8.1.4 Use of the Gnomonic Projection 
A gnomonic projection of the surface of a sphere onto a plane introduces more distortion that a 
stereographic projection.  However, great circle routes on the sphere are projected as straight lines on the 
tangent plane.  This characteristic is used in the following way.   
 
Let VS and ZS be the starting and ending points of a route.  When an aircraft flies from VS to ZS, it flies the 
shortest distance from VS to ZS which is the great circle route.  VS and ZS are defined by their stereographic 
coordinates.  Great circle routes are approximated on the stereographic plane by a series of straight line 
segments.  The stereographic coordinates of the ends of these line segments are found by first converting 
the stereographic coordinates of VS and ZS to gnomonic coordinates VG and ZG.  The great circle route 
from VS to ZS in gnomonic coordinates is the straight line VGZG.  This straight line from VG to ZG is easily 
divided into a series of shorter line segments - VGWG, WGXG, XGYG, and YGZG.  The gnomonic 
coordinates for WG, XG, YG, and ZG are then converted to their corresponding stereographic coordinates.  
In this way the great circle route from VS to ZS is approximated in the stereographic plane by the straight 
line segments VSWS, WSXS, XSYS, and YSZS.   

3.4.8.1.5 Note 
The function being described in this section, CNV_STEREO_GNOMONIC, converts the stereographic 
coordinates to gnomonic coordinates.  A companion function, CNV_GNOMONIC_STEREO, converts 
gnomonic coordinates to stereographic coordinates.   

3.4.8.1.6 Conversion Equations  
The equations, listed later on in the section, are given in NAS-MD-312, Appendix C, page C-1.  (The 
equations are misprinted in the 10 May 1991 edition.)   
 
The conversion functions (Equation 3.4.8-3 and Equation 3.4.8-4) convert X and Y coordinates relative to 
the point of tangency.  It is necessary to subtract the values of the stereographic coordinates of the point of 
tangency from the values of the stereographic coordinates X and Y to get the values of  X and Y relative to 
the origin of the stereographic coordinate system (Equation 3.4.8-1 and Equation 3.4.8-2).   

3.4.8.1.7 Constants  
One constant is necessary for the computation.  It is the conformal radius of the earth 

3.4.8.1.8 Units  
The stereographic coordinates, the gnomonic coordinates, and the radius of the earth are all in nautical 
miles.   
 

Table of Variable Definitions 
 

Function Variable Description Math Symbol 
SX, SY  Input variable - Stereographic X, Y  

coordinates of the point being converted  
X S , YS  

DX, DY Stereographic X, Y coordinates of the point 
being converted relative to the point of 
tangency 

X r , Yr  

ACP.XTANG, ACP.YTANG Input parameters - Stereographic X, Y  
coordinates of the point of tangency  

X t , Yt  

ACP.RAD_EARTH Input parameter - Conformal radius of the 
earth 

R  

GX, GY Output variables - Gnomonic X, Y coordinates 
of the point being converted  

X G , YG  
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3.4.8.2  Mathematics: 
The following equations are used in the function CNV_STEREO_GNOMONIC to calculate the 
gnomonic coordinates of a point, given its stereographic X and Y coordinates.  First the 
coordinate values relative to the point of tangency are obtained.   
 

 X X Xr S t= −  Equation 3.4.8-1 

 

 Y Y Yr S t= −  Equation 3.4.8-2 

 
Then the conversion functions are applied.   

 

 X
X

X Y
R

G
r

r r

=

−
+

1
4

2 2

2

 Equation 3.4.8-3 

 

 Y
Y

X Y
R

G
r

r r
=

−
+

1
4

2 2

2

 Equation 3.4.8-4 

 
The function correctly calculates the gnomonic coordinate values given the stereographic 
coordinate values. 
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Figure 3.4.8-1:  Stereographic to Gnomonic Projection  
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3.4.9 Function:  CNV_XYLL (PL/I)  
Converts the stereographic coordinates X, Y of a point to a geodetic latitude and a geodetic longitude.  The 
X and Y coordinates are in nautical miles from the origin of the ARTCC coordinate system.  Latitude and 
longitude are in radians in the International Ellipsoid of Reference.     

3.4.9.1 Description:   
The descriptive information contained here has been obtained from the computer code for this PL/I 
procedure, from the URET Trajectory Modeling Algorithmic Definition document ( MTR 96W0000072), 
and from the references stated in the text.   

3.4.9.1.1 Stereographic Coordinates  
The HCS uses a stereographic coordinate system to locate the aircraft.  The stereographic coordinate 
system is a Cartesian, planar coordinate system.  The points on the surface of the earth are projected onto a 
plane which is tangent to the earth at a point within the ARTCC airspace.  This representation of points on 
a plane when they are really on an ellipsoid introduces distortion or errors in position.  However, for points 
close to the point of tangency, the distortion is small and can be ignored.   
 
The stereographic coordinate system is an XY plane with the XY grid lined up approximately with the 
lines of latitude and longitude for points near the point of tangency.  The parallel of constant latitude 
passing through the point of tangency is projected onto the stereographic plane as a line of constant Y 
value.  The meridian of constant longitude passing through the point of tangency is projected onto the 
stereographic plane as a line of constant X value.  At other points on the stereographic plane, the 
projections of lines of constant latitude or of constant longitude are curved and do not exactly line up with 
the lines of constant Y or X.   
 
In the northern hemisphere, the line of constant X value on the stereographic plane passing through the 
point of tangency points to true north.  As the Y coordinate of a point increases in value, the point gets 
closer to the north pole.  The projection of the north pole is on this line through the point of tangency.  
Similarly the line of constant Y value passing through the point of tangency points due east.   
 
The origin of the stereographic coordinate system is usually not the point of tangency but, in continental 
US, is a point in the southwest corner of the ARTCC airspace.   
 
The point of tangency of the stereographic plane is defined by a latitude, a longitude, and a distance from 
the center of the ellipsoid.  The location of the point of tangency is determined by the locations of the 
ARTCC’s surveillance radars.   

3.4.9.1.2 Geodetic Coordinates  
Aircraft are located on the surface of the earth by a latitude and a longitude.  The earth is almost a sphere, 
but not quite.  It is modeled by an ellipsoid of revolution.  This ellipsoid is created by rotating an ellipse 
about its minor axis.  The axis becomes the earth’s polar axis - the line connecting the north pole to the 
south pole.  The International Ellipsoid of Reference is used.  The distance in this model from the center of 
the earth to the north (or to the south)  pole is 3432.4579 nautical miles.  The distance from the center to 
the equator is 3444.0540 nautical miles.  Latitudes and longitudes referred to this ellipsoid model are called 
the geodetic latitudes and geodetic longitudes.   

3.4.9.1.3 Conformal Coordinates  
It is convenient to do the conversion in two steps.  A point’s stereographic coordinates are first converted 
to a pair of intermediate coordinates, and then the intermediate coordinates are converted to the geodetic 
coordinates.  The intermediate coordinate system is a sphere whose center is the same as the center of the 
ellipsoid and whose radius is based on the locations of the ARTCC’s surveillance radars.  The angles 
between lines on the sphere remain unchanged when they are projected onto the ellipsoid.  Therefore the 
coordinate transformation is a conformal transformation and the values of the latitudes and longitudes in 
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this intermediate coordinate system are referred to as conformal latitudes and longitudes.  The radius of the 
sphere is called the conformal radius of the earth. The geodetic longitude is the same as the conformal 
longitude; only the latitude is changed upon converting from conformal to geodetic coordinates. The 
stereographic X and Y coordinates are first converted to a conformal latitude and longitude, and then the 
conformal latitude and longitude are converted to the geodetic latitude and longitude. 

3.4.9.1.4 Stereographic to Conformal Projection  
The projection of a point on the stereographic plane onto a point on the conformal sphere is illustrated in 
Figure 3.4.9-1.  The focal point (labeled “FOCUS” in the figure) for the projection is the point on the 
sphere which is directly opposite the point of tangency.  A line of projection is drawn from the focal point 
to the point on the stereographic plane being projected (the “STEREOGRAPHIC POINT”).  The point of 
intersection of this line with the conformal sphere (the “CONFORMAL POINT”) is the projected point.   

3.4.9.1.5 Conformal to Geodetic Projection  
The ellipsoid and the conformal sphere are concentric  - that is, they have a common center.  The radius of 
the sphere determines the scale of the projection in the stereographic plane and is chosen to minimize the 
errors introduced by the projection.  The geodetic latitude of a point on the ellipsoid is the elevation above 
the equatorial plane of a line perpendicular to a plane tangent to the ellipsoid at that point.   
 
The geometry of the conformal spherical projection is shown in Figure 3.4.9-2. The eccentricity of the 
earth is greatly exaggerated in the figure to show the geometry more clearly.  A point P  on the surface of 
the sphere has a conformal latitude of φ .  This is the angle a radius vector makes with the equatorial plane 
of the sphere.  A point Pg  on the surface of the ellipsoid has a geodetic latitude of φg .  In the two  

dimensional drawing of the figure this is the angle that the normal to the tangent at the point Pg  makes 

with the equator.  The conformal projection of the point P on the sphere onto the ellipsoid is the point Pg .  

 
A conformal projection is one in which the change in scale at a given point is the same in all directions.  
The equation for the projection is derived by making the change in scale in mapping from the ellipsoid to 
the sphere along a meridian of longitude on the sphere equal to the change in scale along a parallel of 
latitude on the sphere.  Since the lines of longitude are orthogonal to the lines of latitude, making the scale 
equal in the directions of constant latitude and constant longitude makes the scale equal in all directions.   
 
The geodetic value of a latitude when converted depends only on its original conformal value and on the 
eccentricity of the ellipsoid.   

3.4.9.1.6 Conversion Equations  
The equations described here are listed later on in the section.  Unless otherwise noted the equations in this 
function are found in URET Trajectory Modeling Algorithmic Definition document (MTR 96W0000072, 
Appendix A.4).   
 
The coordinate conversion is done in two steps.  The stereographic coordinates are converted into 
conformal (spherical) coordinates , and then the conformal coordinates are converted into geodetic 
coordinates.  The second conversion is done by two equations (Equation 3.4.9-15 and Equation 3.4.9-20).  
The remaining equations are required to convert the stereographic coordinates to spherical coordinates.   
 
A spherical triangle is formed on the surface of the conformal sphere by the three principal points.  The 
geometry of the triangle is shown in Figure 3.4.9-3.  The three points are the point being converted, the 
point of tangency, and the north pole.  Spherical trigonometry is used to calculate the projection of the 
point on the stereographic plane onto the sphere.  The triangle will be degenerate if the three points are not 
distinct.  If the point of tangency is coincident with the north pole the triangle is degenerate and cannot be 
solved.  Similarly if the point being converted is coincident with the north pole the triangle is degenerate 
and cannot be solved.  In both cases the Law of Cosines has a divide by zero.  If the point being converted 
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is coincident with the point of tangency, the triangle is again degenerate.  However, the equations in this 
case are still valid and will yield a solution.  The value of the angle β  is defined in the code to be zero 
when both X r  and Yr  are zero in Equation 3.4.9-7.   

In the spherical triangle in Figure 3.4.9-3, the lengths of the sides are defined by angular measure.  The 
length of a side is the angle it subtends on the sphere.  The diagram shows that the meridian of longitude 
from the point of tangency to the north pole subtends an angle of γ  radians.  This angle is the complement  
of the latitude of the point of tangency (See Equation 3.4.9-3). 

3.4.9.1.7 Constants  
Three constants are necessary for the computation.  They are the conformal radius of the earth, and the 
coefficients of the two terms of the power series equation for the sine of the conformal latitude in terms of 
the sine of the geodetic latitude.   

3.4.9.1.8 Units  
The X and Y coordinate values and the conformal radius of the earth are measured in nautical miles.     

3.4.9.1.9 Internal Error Checking  
The absolute values for the sines and cosines are checked to make sure that they are less than or equal to 1.  
This is done after the calculations performed by the two power series approximations, the Law of Cosines, 
and by the Law of Sines.  Imprecision and/or approximation in the computation may cause a value to 
exceed 1.  When this occurs the value is reset to 1.   

3.4.9.1.10 Unit Testing   
A limited amount of unit testing was performed on this function.  It performed correctly for all of the cases 
tested.   
 
Note in the following table that ALPHA is used to represent both α   and 2α ,  and that DLATC is used to 
represent φ , sinφg  and φg .   
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Table of Variable Definitions 
 

Function Variable Description Math Symbol 
XPOS, YPOS  
 

Input data - Stereographic X, Y coordinates of the point 
being converted (nautical miles) 

X , Y  

ACP.COORDS.LATIT, 
ACP.COORDS.LONGIT 

Input parameter - Geodetic latitude and longitude of the 
point of tangency  

φ0g , λ0  

ACP.COORDS.XTANG
, 
ACP.COORDS.YTANG 

Input parameter - Stereographic X, Y coordinates of the 
point of tangency 

X t , Yt  

RAD_EARTH Input parameter - Conformal radius of the earth R  
PI Input parameter - number of radians in one half of a 

revolution  
π  

CON_A Constant - the first order coefficient in the power series 
expression for the conformal latitude in terms of the 
geodetic latitude  

A  

CON_B Constant - the third order coefficient in the power series 
expression for the conformal latitude in terms of the 
geodetic latitude  

B  

CON_C Constant - the first order coefficient in the power series 
expression for the geodetic latitude in terms of the 
conformal latitude 

C 

CON_D Constant - the third order coefficient in the power series 
expression for the geodetic latitude in terms of the 
conformal latitude  

D 

CON_E Constant - the fifth order coefficient in the power series 
expression for the geodetic latitude in terms of the 
conformal latitude 

E 

CON_F Constant - the seventh order coefficient in the power 
series expression for the geodetic latitude in terms of the 
conformal latitude 

F 

SIN_PHIg Sine of the geodetic latitude of the point of tangency sinφ0g  

SIN_PHI0 Sine of the conformal latitude of the point of tangency sinφ0  
PHI0 Conformal latitude of the point of tangency φ0  
GAMMA Angular distance from the north pole to the point of 

tangency 
γ  

COS_GAMMA Cosine of the angular distance from the north pole to the 
point of tangency  

cosγ  

SIN_GAMMA  Sine of the angular distance from the north pole to the 
point of tangency 

sin γ  

X, Y Stereographic X, Y coordinates of the point being 
converted relative to the point of tangency 

X r , Yr  

ALPHA One half of the angular distance from the point of 
tangency to the point being converted 

α  

COS_ALPHA Cosine of the angular distance from the point of tangency 
to the point being converted 

cos2α   
 
 

SIN_ALPHA Sine of the angular distance from the point of tangency to 
the point being converted 

sin 2α  

BETA Angle between the meridian of longitude passing through 
the point of tangency and the line joining the point of 
tangency to the point being converted  

β  
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COS_DELTA Cosine of the angular distance from the north pole to the 
point being converted  

cosδ  

DELTA Angular distance from the north pole to the point being 
converted  

δ  

SIN_DELTA Sine of the angular distance from the north pole to the 
point being converted 

sinδ  

DLATC Conformal latitude of the point being converted φ  
SIN_EPS Sine of the angle at the north pole between the meridian 

of longitude going through the point of tangency and the 
meridian of longitude going through the point being 
converted 

sin ε  

COS_EPS Cosine of the angle at the north pole between the 
meridian of longitude going through the point of 
tangency and the meridian of longitude going through the 
point being converted 

cosε  

EPSILON Angle at the north pole between the meridian of 
longitude going through the point of tangency and the 
meridian of longitude going through the point being 
converted 

ε  

LONGC Output data - conformal (and geodetic) longitude of the 
point being converted  

λ  

SIN_PHI Sine of the conformal latitude of the point being 
converted 

sinφ  

DLATC Sine of the geodetic latitude of the point being converted  sinφg  

DLATC Geodetic latitude of the point being converted  φg  

LATC  Output data - geodetic latitude of the point being 
converted  

φg  

3.4.9.2  Mathematics: 
The following equations are used in the function CNV_XYLL to calculate the geodetic latitude 
and longitude of a point, given its stereographic X and Y coordinates.   
 
The angle γ  is needed to solve the spherical triangle connecting the point being converted, the 
point of tangency, and the north pole.  γ  is found from the conformal latitude of the point of 
tangency φ0  whose sine is given by the following equation from NAS-MD-312, Appendix D, 
Section 2. 

 sin sin sinφ φ φ0 0
3

0= +A Bg g  Equation 3.4.9-1 

 
The angle γ  is given then by these two equations  
 

 φ φ0
1

0= −sin  Equation 3.4.9-2 

 

 γ π φ= −
2 0  Equation 3.4.9-3 

 
The stereographic coordinates X and Y are translated to an X and Y measured relative to the point 
of tangency by subtracting the stereographic coordinates of the point of tangency.   
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 X X Xr t= −  Equation 3.4.9-4 

 

 Y Y Yr t= −  Equation 3.4.9-5 

 
The geometry for the angle α   can be seen in Figure 3.4.9-1.  On the stereographic plane the 
point being converted, called the stereographic point in the figure, is offset from the point of 
tangency by its relative coordinates X r  and Yr .  The equation for calculating α  is  
 

 α =
+

+ +
−sin 1

2 2

2 2 24
X Y

X Y R
r r

r r
 Equation 3.4.9-6 

 
The geometry for calculating β   can be seen in Figure 3.4.9-3. β  is the angle between the 
meridian of longitude passing through the point of tangency and the line on the sphere joining the 
point of tangency with the point being converted.  This angle is unchanged when these two lines 
are projected onto the stereographic plane.  On the stereographic plane, note that β  is measured 
from the positive Y  axis.  The equation for calculating β   is then  
 

 β =








−tan 1 X

Y
r

r
 Equation 3.4.9-7 

 
If X r  and Yr  are both zero, β  is defined to be zero.   
 
The angle δ  is the angular distance of the point being converted from the north pole.  The Law of 
Cosines for spherical triangles is used to find its value using the previously calculated values for 
α  and β .  See Figure 3.4.9-3.   
 

 cos cos cos sin sin cosδ α γ α γ β= +2 2  Equation 3.4.9-8 

 
The conformal latitude of the point being converted is found from the angle δ .   
 

 δ δ= −cos (cos )1  Equation 3.4.9-9 

 

 φ π δ= −
2

 Equation 3.4.9-10 

 
The difference in longitudes of the point of tangency and the point being converted is the interior 
angle of the spherical triangle at the north pole - ε .  See Figure 3.4.9-3.  Its value is found by 
applying both the Law of Sines and the Law of Cosines for spherical triangles in the following 
way.   
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 sin sin sin
sin

ε α β
δ

=
2  Equation 3.4.9-11 

 

 cos
cos cos cos

sin sin
ε

α γ δ
γ δ

=
−2

 Equation 3.4.9-12 

 
 

 ε ε
ε

= 





−tan sin
cos

1  Equation 3.4.9-13 

 
The longitude, conformal and geodetic,  is obtained from the angle ε  and the longitude of the 
point of tangency.   
 

 λ λ ε= −0  Equation 3.4.9-14 

 

The conformal latitude has been found above in Equation 3.4.9-10.  It is converted to the geodetic 
latitude by the following Equation 3.4.9-15.  This equation is the reversion of Equation 3.4.9-1 
above.  That is the power series in Equation 3.4.9-1 is inverted to obtain Equation 3.4.9-15.   

 sin sin sin sin sinφ φ φ φ φg C D E F= − + −3 5 7  Equation 3.4.9-15 

 
The coefficients C, D, E, and F are functions of the coefficients A and B and are calculated from 
the following equations.   
 

 C
A

=
1  Equation 3.4.9-16 

 

 D B
A

= 4  Equation 3.4.9-17 

 

 E B
A

=
3 2

7  Equation 3.4.9-18 

 

 F B
A

=
12 3

10  Equation 3.4.9-19 
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The geodetic latitude φg is obtained by the inverse sine function.   

 

 φ φg g= −sin (sin )1  Equation 3.4.9-20 

 
The function correctly calculates the geodetic latitude and longitude of a given stereographic X and Y  
coordinate pair.   
 

Assessment Table 
 

REF# Approximation/Assumption Assessment Impact on TJM 

R 3.4.9-1 The conformal latitude φ0  
and colatitude γ  of the point 
of tangency are calculated by 
Equation 3.4.9-1, Equation 
3.4.9-2, and Equation 3.4.9-3 
every time the function is 
called. 

This calculation should be done 
once (for a given ARTCC) and the 
results saved for future use.   
 

Minor  

R 3.4.9-2 The variable names ALPHA 
and DLATC are used to 
represent more than one 
variable. 

Distinct variables should have 
distinct variable names.   
 

Minor  

R 3.4.9-3 Truncated power series are 
used to calculate angles.   

The power series approximations, 
Equation 3.4.9-1 and Equation 
3.4.9-15 are adequate.  

Critical.  
Coordinate 
conversion is 
basic to the 
conflict probe 
calculations.  

R 3.4.9-4 It is assumed that neither the 
point being converted nor the 
point of tangency are at the 
north pole.   

Neither the point of tangency nor 
the point being converted may be 
at the north pole.  The function 
should check the input data for 
these two cases.   
 

Minor  
This case does not 
occur within the 
U.S.  
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Figure 3.4.9-1:  Stereographic Projection Details 

 
 
 

2α

α

α
R

R

R

 
CONFORMAL 
   SPHERE  

 
 
 
CENTER 

 
 
 
           FOCUS 

 
 
 POINT  OF      
TANGENCY 

 
 
STEREOGRAPHIC 
POINT  

 
 
CONFORMAL 
      POINT 

 
 
   LINE  OF  
PROJECTION  

STEREOGRAPHIC 
PLANE 



   

 117

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4.9-2:  Mapping Geometry - Conformal to Geodetic  
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Figure 3.4.9-3:  Spherical Triangle on the Conformal Sphere  
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3.4.10 Function:  DB_AIR_AT_POINT (PL/I) 
Determines the wind, temperature, and pressure at the specified point. 

3.4.10.1 Description:   
Determines the wind, temperature, and pressure at the specified point.  It uses the values at the closest grid 
point. 

3.4.10.2 Mathematics: 
 

-Interpolation is turned off in D1.1 
-Indices are calculated based on max, min and increments in the x, y, and z coordinates 
-All indices truncate the decimals during calculation, therefore a 1 is added to the  expression to 
ensure there is no zero index calculated 

 
-If  (x - xmin) >or= 1/2 xinc, use the next increment index 

 
-If  (x - xmin) < 1/2 xinc, use the current increment index 

 
Use the index values for 

    WIND_X_AT_PT 
    WIND_Y_AT_PT 
    TEMPERATURE_AT_PT 
    PRESSURE_AT_PT 
 

Indices are calculated as: 
 

 I =
− +





+
x x

xy

xy

inc

inc

min 2 1 

  

J =
− +





+
y y

xy

xy

inc

inc

min 2 1  

 

K =
− +





+
z z

z

z

inc

inc

min 2 1 

 
These indices correspond to the values in the AIR database 

 
Assumes that weather is a constant throughout a weather grid, 50nmi x 50nmi x 1000ft in (x, y, z). 

 

3.4.11 Function:  DB_CDMERG (PL/I) 
This function inserts a Clearance Directive (CD, otherwise known as a Planned Action, PA) into a linked 
list of CDs. 
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3.4.12 Function:  DB_FIND _AUD_PTR (PL/I) 
This function returns a pointer to a specified aircraft unique data (AUD) data structure as well as the 
structure’s size.  The AUD data structure is specified by an index number. 

3.4.13 Function:  GM_BRNG (PL/I) 
Computes the bearing from the origin to a specified point. 

3.4.13.1 Description:   
Computes the bearing from the origin to a specified point. 
 

Table of Variable Definitions 
 

Function Variable Description Math Symbol 
X, Y Components of the specified point x, y 
MAGNITUDE The scalar magnitude of the heading vector x y2 2+  
BEARING Bearing with respect to North ψ  
 

3.4.13.2  Mathematics: 
The function performs the following simple calculations and logic. 
 
If  x = 0 
  If y ≥ 0  thenψ = 0   
  If y < 0  thenψ π=   
 
Else 

  If  x y2 2 0+ >  then ψ =










+















−cos 1
2 2

x
x

y

x y
 

  Else   ψ = 0  
 

   If x < 0   then add π  to ψ  
 

These calculations and logic appear to be reasonable and are based on sound trigonometric 
identities. 

 

3.4.14 Function:  GM_CONVEX ( C ) 
This function determines if a test point (xt, yt) is inside a polygon region defined by the boundary points 
(vertices: ver[n][2]). 
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3.4.14.1 Description:   
The algorithm to detect if a point lies within an octagon is based on the following theorem: 

 
A point Pt(xt, yt) is outside an octagon if and only if: 

 

 
( )Q V V Pt

i n
V V

i i

n

− ≤

=
=

1

0

0
1 2

, , ;
, ,...,  

 where the octagon vertices are listed in a counterclockwise manner 
 

The function checks the inequality for every point in the octagon, ensuring that the point is not outside the 
polygon region.   
 

 
Table of Variable Definitions 

 
Function 
Variable 

Description Math Symbol 

xt, yt x, y coordinates of the test point xt, yt 
ver 2 dimensional array containing the coordinates of the matrices (i.e. 

ver[0][0] = X0 , ver[0][1]=Y0, …) 
Xi, Yi 

n number of boundary points (or number of vertices) n 
OUT status return variable of function, OUT=0 means test point is 

outside octagon 
 

IN status return variable of function, IN=1 means test point is inside 
octagon 

 

3.4.14.2 Mathematics: 
As stated previously in the description, the function utilizes the following theorem to evaluate if a 
test point lies outside an octagon. 

 

 
( )Q V V Pt

i n
V V

i i

n

− ≤

=
=

1

0

0
1 2

, , ;
, ,...,  Equation 3.4.14-1 

  (where the octagon vertices are listed in a counterclockwise manner) 
 
For the octagon polygon, the matrix determinant Q is evaluated for each i=1, 2, .. 8 and if any of 
the boundary points has a determinant less than or equal to zero, then the test point is outside the 
octagon.  The function uses a fairly straightforward loop illustrated in Figure 3.4.14-2.   
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Derivation: 
 
 
 
 
 
 
 
 

Figure 3.4.14-1:  Side of octagon and test point 
 
 
The function loops around each linear segment of the octagon in a counterclockwise direction.  
The loop starts with the first linear segment, illustrated in Figure 3.4.14-1 above.  The vertices are 
the end points of the linear segment.  These end points are used to set up a linear equation: 
 

 
y y
x x

y y
x x

1 2

1 2

2

2

−
−









 =

−
−









  Equation 3.4.14-2 

 where x, y are the coordinates of the test point and  
 the vertices are the coordinates x1, y1 to x2, y2  
 
The above equation can be expanded to a similar form as the determinant, as shown below. 
 

 y y
x x

x
y y
x x

x y y1 2

1 2

1 2

1 2
2 2

−
−









 −

−
−









 + =  

 

 y y
x x

x
y y
x x

x y y1 2

1 2

1 2

1 2
2 2

−
−









 −

−
−









 −









 =  

 ( ) ( )y y
x x

x
y y x y x x

x x
y1 2

1 2

1 2 2 2 1 2

1 2

−
−









 −

− − −

−









 =  

 y y
x x

x
x y y x

x x
y1 2

1 2

1 2 1 2

1 2

−
−









 +

−
−









 =  

 
 ( ) ( ) ( )y y x x y y x y x x1 2 1 2 1 2 1 2− + − = −  Equation 3.4.14-3 

 
 

x1,y1

x2,y2 

Test 
point 

Octagon 
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The equation above expressed in determinant becomes: 
 

 
x y
x y
x y

1
1
1

01 1

2 2

= , if x, y on the line segment 

 

 x
y
y

y
x
x

x y
x y

1

2

1

2

1 1

2 2

1
1

1
1

0− + =  

 
 ( ) ( ) ( )x y y y x x x y y x1 2 1 2 1 2 1 2 0− − − + − =  

 
 
Referring back to Equation 3.4.14-3, if the equation is rearranged and the difference in the y axis 
between the line and the test point is calculated, the equation becomes: 
 

 ∆. y
y y
x x

x
x y y x

x x
y=

−
−









 +

−
−









 −1 2

1 2

1 2 1 2

1 2
 Equation 3.4.14-4 

 
Referring back to Figure 3.4.14-1, there are three cases that the above Equation 3.4.14-4 will 
evaluate: 
 

1. If ∆. y < 0,  then the test point y is above the line and outside the octagon. 
2. If ∆. y > 0,  then the test point is below the line and inside the octagon. 
3. If ∆. y = 0,  then the test point is on the line and on the octagon exactly. 

 
The function iterates for each side of the octagon and the orientation remains the same, since the 
direction of the iteration is constant.  For the case 3, the function considers the test point outside 
the octagon (a conflict on the octagon exactly meets separation standards and is not a violation). 
 

Assessment Table 
 

REF# Approximation/Assumption Assessment Impact 
on APD 

R 3.4.14-1 The method description listed in the comment 
section of the function states that the test point is 
inside the polygon if the Q determinant is less 
than or equal to zero.  This is exactly opposite 
the code what the code does. 

Needs 
correction. 
 

Minor 
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For loop begins at i=0, with i<n,
and incrementing i by 1

Increment for next
vertex
j=i+1

Is j=n?

Yes

No

Reset to start of
polygon region, j=0

Is Eq. 1 <=0

Yes

Test point is outside
region, set flag

No

 Is i<n?
Yes

No

Function ends with
outside point found

Function ends with
inside point found  

Figure 3.4.14-2:  GM_CONVEX Main Function Loop
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3.4.15 Function:  GM_INSEC ( C ) 
Computes the intersection point of two line segments. 

3.4.15.1 Description: 
The function receives the end point x and y coordinates for two line segments or points.  It first determines 
if the two line segments or points intersect and then categorizes for the following cases: 

0. Line 1 is a point and line 2 is also a point. 
1. Line 1 is a point and line 2 is a line. 
2. Line 1 is a line and line 2 is a point. 
3. Line 1 and line 2 are parallel or collinear. 
4. Line 1 and line 2 intersect. 

 
The function calculates the intersection point based on the case type defined above.  There is a distinction 
made between the given line segments and the calculated infinite lines containing those segments.  For 
example, an intersection may take place on the line, without taking place on the line segment, and if that 
case was determined, the status variable would return a value 1 or 2.  
 
 

Table of Variable Definitions 
 

Function Variable Description Math 
Symbol 

x1, y1 Initial x, y coordinates of segment 1 x1, y1 
x2, y2 Second x, y coordinates of segment 1 x2, y2 
x3, y3 Initial x, y coordinates of segment 2 x3, y3 
x4, y4 Second x, y coordinates of segment 2 x4, y4 
ratio1 ratio of intersection to line 1;   

= distance between one end point and the intersection 
point / length of the line segment; 
ratio = 9999, indicates ratio has no meaning 

ratio1 

ratio2 ratio of intersection to line 2;  (same as above) ratio2 
delta1, delta2, delta3, delta4 difference values for each set of line end points, 

= (y1 - y2) , = (x1 - x2), = (y3 - y4), = (x3 - x4), 
respectively 

δ1, δ2, δ3, δ4 

delta = (δ1) ∗ (δ4) − (δ2) ∗ (δ3) δ 
 
 

3.4.15.2 Mathematics 
Initial Function Check 
The function begins by checking if the two given lines do not intersect.  Using the following 
expression, the two lines will not intersect if δ equals zero. 

 

 δ = (δ1)(δ4) − (δ2)(δ3) Equation 3.4.15-1 
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If δ = 0, either the line’s slopes are equal to each other, making them parallel or collinear, or one 
(or both) of the lines is actually a point.  This can be derived setting δ to zero and rearranging the 
terms in Equation 3.4.15-1 

 
 0 = (y1 - y2)(x3 - x4) - (x1 - x2)(y3 - y4)  

 
  (y1 - y2)(x3 - x4) = (x1 - x2)(y3 - y4) 

 
 (y1 - y2)/(x1 - x2) = (y3 - y4)/(x3 - x4)  

 

 m1=m2 Equation 3.4.15-2 

 
In Equation 3.4.15-2, the slope of line 1 equals m1 and slope line 2 equals m2.  The function uses 
this result, but protects against single precision round off error by using the following inequality 
and areas.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 

   

Figure 3.4.15-1:  Example of area diagram for δ’s 

 
The function utilizes the δ by the following inequality.  If the statement is false, the lines must 
intersect. 
 
 δ2 <= (ε2 temp) 
 where temp = (δ1

2 + δ2
2)(δ3

2 + δ4
2);  ε = 0.0001 

 
From Figure 3.4.15-1, the distance of the line 1 is δ5 = δ δ1

2
2

2+ and  the line 2 is δ6 =  

δ δ3
2

4
2+ , so temp = (δ5

2)(δ6
2).  The inequality is comparing the squared areas, or the ratio 

between temp (the area defined by the two lines) and the difference in the areas created by the δ 
terms (shaded areas in Figure 3.4.15-1).    If the squared ratio, δ2 / temp, is greater than the epsilon 
value squared, the shaded area in the Figure 3.4.15-1 should be approximately zero, which 
produces the same result as Equation 3.4.15-2. 
 
The algorithm continues by examining each case separately, and determining the intersection 
point if one exists. 

 

δ3 
δ1 

δ4 

δ2 

δ5 

δ6 
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Case 0 
For Case 0 (TWO_POINTS) both lines are points, therefore if both points are equal an 
intersection is evaluated at that point.  If both points do not equal, then no intersection status is 
evaluated. 

 
 

Case 1-2 
For Case 1 and 2 (ONE_POINT_TWO_LINE or ONE_LINE_TWO_POINT), one of the lines is a 
point and the other is a line segment.  For Case 1, the point at x1 and y1 is determined to be on the 
other line, on the line segment, or not on the line at all.  If the point 1 at (x1, y1) lies on the line 2 
from (x3, y3) to (x4, y4), the slope of a line from point 1 to (x3, y3) must be equal to the slope of line 
2.  Therefore, the function assumes an intersection does occur if the following equation is 
evaluated true. 

 (y3 - y1)(x4 - x3) =  (y4 - y3)(x3 - x1) Equation 3.4.15-3 

 
This is true only if the slopes are equivalent, specifically: 
 

 (y4 - y3)/(x4 - x3) = (y3 - y1)/(x3 - x1)  Equation 3.4.15-4 

 
If the intersection point lies on the line segment, the point 1 must be between the points 3 and 4 or 
(x3, y3) and (x4, y4), which returns the SEG_INSEC value.  If the point 1 lies outside the line 
segment’s end points,  the intersection point is the same, but the status is returned with the 
intersection on the extension (SEG1_EXT2_INSEC). 

 
For the Case 2, the line is defined for line segment 1 (points x1, y1 to x2, y2) and the point 2 (x3, y3).  
The function loop is identical to the description for Case 1. 

 
 

Case 3 
For Case 3, the two lines are parallel and the function determines if they are collinear.  The sum 
for the x coordinates is calculated and checked for the zero condition.  If the sum adds to zero, the 
lines are evaluated as collinear, since the slopes are equivalent.  If the sum is not equal to zero, the 
lines may still be collinear only if the following equation for δ is equal to zero. 

 

 δ = (δ4) (y3 - y1) - (δ3)(x3 - x1) Equation 3.4.15-5 

 
Derivation: 
Show that the two point slope line equations with equal slopes and solved simultaneously for the 
same x and y (representing the collinear case) reduce to Equation 3.4.15-5. 

 
Equation for line 1:  (y - y1) / (x - x1) = (y2 - y1) / (x2 - x1) 
Equation for line 2:  (y - y3) / (x - x3) = (y4 - y3) / (x4 - x3)   

 
Rearrange the terms for line 1 equation and substitute δ values: 
 
 y = [((y2 - y1) / (x2 - x1) )x ]- [((y2 - y1) / (x2 - x1))x1 - y1)] 
 

 y = [(δ1/ δ2)x ]- [(δ1/ δ2) x1 - y1] Equation 3.4.15-6 

 
It can also be shown for line 2 equation that: 
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 y = [(δ3/ δ4) x ]- [(δ3/ δ4)x3 - y3] Equation 3.4.15-7 

 
By equating Equation 3.4.15-6 and Equation 3.4.15-7, the two line equations are being set 
collinear, if the slopes are equal.  With the slopes equal, let m = (δ1/ δ2) = (δ3/ δ4).  Therefore, 
solve this equation to determine the δ from Equation 3.4.15-5. 
 
 [mx ]- [(mx1) - y1] = [mx ]- [(mx3) - y3] 

 
 0 = mx1 - mx3 + y3 - y1 

 

 m(x3 - x1) = (y3 - y1) Equation 3.4.15-8 

 
By using m = (δ3/ δ4) from above, Equation 3.4.15-8 reduces to Equation 3.4.15-5:  
 

 (δ3/ δ4) (x3 - x1) = (y3 - y1) 
 

 0 = [δ4(y3 - y1)] - [δ3(x3 - x1)] Equation 3.4.15-9 

 
To show that the x coordinate sum can be used to check for collinear lines,  determine if the line 
equations for both lines are equivalent and thus collinear when the sum of the x coordinates is 
equal to zero. 

 
Let, xs = x1 + x2 + x3 + x4 = 0, so : 

 
For the x values to sum to zero, they either all must be zero or the variables must have both 
positive and negative values.  Unless there are other assumptions relating to the source of the x 
coordinates, the sum and the equivalent slopes do not ensure that the lines are collinear.  This 
check may only be an error trap for all zero values for the x coordinates and used for single 
precision arithmetic, but this assumes all the x coordinates are positive (in the first quadrant).  
Therefore, there is no reason for keeping this portion of the source code at this time. 

  
 

Case 4 
For Case 4, the lines do intersect, so the function will return both the intersection coordinates and 
the status category.  The status is based on whether the two lines intersect either within the two 
segments (SEG_INSEC), on one segment and the other line extension (i.e. SEG1_EXT2_INSEC), 
or both line extensions (EXT_NO_INSEC).  The function calculates the ratios between the 
distance of the intersection point to the beginning segment point and the total segment length.  
This ratio is calculated for both lines and used to determine the intersection point and what status 
is returned.  The function expresses the following formula for the ratio of the intersection distance 
to the segment length of line 1. 

 

 ratio1 = [(x3 -x1)(δ3) - (y3 - y1)(δ4)] / (δ) Equation 3.4.15-10 
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Derivation: 
To solve for Equation 3.4.15-10, it is first necessary to derive general intersection equations from 
the two line equations, again: 

 
Equation for line 1:  (y - y1) / (x - x1) = (y2 - y1) / (x2 - x1) 
Equation for line 2:  (y - y3) / (x - x3) = (y4 - y3) / (x4 - x3) 

 
Solve for y for each line: 

 y = m1x - m1x1 + y1                         Equation 3.4.15-11 

 y = m2x - m2x3 + y3 Equation 3.4.15-12 

  
 As in Equation 3.4.15-2, the slopes are: 
 
 m1= (y2 - y1) / (x2 - x1);  m2= (y4 - y3) / (x4 - x3) 
 
 Equate Equation 3.4.15-11 and Equation 3.4.15-12 and then solve for x: 
 

 x = (m1x1 - m2x3 + y3 - y1) / (m1 - m2) Equation 3.4.15-13 

 
Now, it is necessary to represent the ratio1 in terms of the x coordinates.  This can be 
accomplished by using similar triangles as illustrated in the following diagram. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
   
 

Figure 3.4.15-2:  Ratio of Distance B to A 

  
As illustrated in Figure 3.4.15-2 above, the ratio of Equation 3.4.15-10 can be expressed as the 
ratio of distance B to A.  From similar triangles, the ratio B/A is equivalent to E/D.  This second 
ratio can be expressed as: 
 

 ratio1 = E / D = (x - x1) / (x2 - x1) Equation 3.4.15-14  

 

D 

A 

C 

 
 B 

  E F 
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Using Equation 3.4.15-13, the ratio can be shown to be equivalent to Equation 3.4.15-10.  First, 
substitute the variable x from Equation 3.4.15-13 into the following equation for the ratio E/D: 
   
 ratio1  = E / D = (x - x1) / (x2 - x1) =  

 = [(y3 - y1 + m1x1 - m2x3) - x1(m1-m2)] /  [(m1 - m2)(x2 - x1)]  Equation 3.4.15-15 

Multiply and cancel the terms in the numerator to get the following, 
 

 ratio1 = [m2(x1-x3) + y3 - y1] /  [(m1 - m2)(x2 - x1)] 
 
Now, multiplying the slopes:  m1= (y2 - y1) / (x2 - x1) and  m2= (y4 - y3) / (x4 - x3) in the numerator 
and denominator, provides the following expression for the ratio1: 
 
= [((y4 - y3)/(x4 - x3))(x1-x3) + y3 - y1] / [((y2 - y1)(x4 - x3)+(y4 - y3)(x1 - x2))/(x4 -x3)] 
 
= [(y4 - y3)(x1- x3)+(y3 - y1)(x4 - x3)] / [(y2 - y1)(x4 - x3)+(y4 - y3)(x1 - x2)] 
 
= [(y3 - y4)(x3 - x1) - (y3 - y1)(x3 - x4)] / [(y1 - y2)(x3 - x4) - (y3 - y4)(x1 - x2)] 
  
Thus, by substituting the δ terms the Equation 3.4.15-10 is returned. 
 
 ratio1 = [(δ3)(x3 -x1) - (y3 - y1)(δ4)] / [δ] 
 
An analogous argument can be shown for the ratio2 for line 2’s intersection.  The ratio is the 
intersection to endpoint distance to segment distance, so if the ratio is greater than one, the 
intersection is certainly outside the segment.  The function evaluates the ratios to determine if the 
intersection is outside the segment.  The function uses the following expression, returning a true 
value when the intersection is outside the given segment: 
 

 [Absolute value (ratio2 - 0.5)] > [0.5 + ε] Equation 3.4.15-16 

 
The epsilon (ε) value is a small value (i.e. 0.0001) for approximation in the comparison.  If the 
intersection is outside one of the line segments and located on the line extension, the ratio may not 
be greater than one (although a ratio greater than one always proves that the intersection is outside 
the line segment).  When the intersection distance is within the segment length but outside the line 
segment, depending on the orientation of the points, the ratio will either be greater than 1 or a 
negative number.  This negative value will ensure that Equation 3.4.15-16 returns true, the correct 
result.  
 
Note:  In GM_PTLINE, another approach was used to calculate the intersection point to a line.  
In summary, GM_PTLINE used Equation 3.4.15-13 and the point slope equation of the line to find 
the intersection point.  A ratio was not used in this algorithm to determine if the intersection took 
place inside the line segment, but a simple check in the x coordinates was utilized. 
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Assessment Table 

 
REF# Approximation / Assumption Assessment Impact 

on APD

R 3.4.15-1 Two flight segments have the same slope, but 
may not have the same sum for collinear lines.  
It assumes the coordinates are only positive, 
which stems from an early version of URET. 

Incorrect 
assumption. 

Minor* 

R 3.4.15-2 The check for the intersection of the lines, the 
check for parallel/collinear line pairs, and the 
final determination of the intersection point all 
incorporate adjustments to minimize the effect 
of floating point arithmetic error in single 
precision.  The problem is that these 
adjustments are undocumented in the code. 

Need more 
documentation 
or comments 
explaining these 
adjustments. 

Minor 

*Minor impact in APD since the consequence may produce either a parallel or collinear line 
which results in the same outcome in only one APD function call, the CFP_FINE function.  
However, the impact of GM_INSEC’s assumptions on other module’s functions is yet to be 
determined. 

 

3.4.16 Function:  GM_PTLINE (PL/I) 
Finds the relationship between a point and a line. 

3.4.16.1 Description:   
This function will calculate the minimum distance between a point and a line and will indicate if the point 
is actually on the line.  The GM_PTLINE function takes the coordinates of two end-points of a line 
segment and the coordinates of the point as inputs.  The function returns the shortest distance from the 
point to the line, the coordinates of the point where the normal line, from the point to the line, intersects the 
line segment, and a status indicator which signals if the point lies on the line segment. 

 
 

Table of Variable Definitions 
 

Function Variable Description Math Symbol 
X1, Y1 The two dimensional Cartesian coordinates of 

the first point which defines the line segment 
x y1 1,  

X2, Y2 The two dimensional Cartesian coordinates of 
the last point which defines the line segment 

x y2 2,  

X3, Y3 The two dimensional Cartesian coordinates of 
the point 

x y3 3,  

XI, YI The two dimensional Cartesian coordinates of 
the point projected onto the line segment 

x yint int,  

D The minimum distance from the point to the 
line segment 

d 

S1 Slope of the line segment m1  
S2 Slope of the normal line to the line segment m2  
 

3.4.16.2 Mathematics: 
Find the slope an equation for the line (L) which includes the line segment. 
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 Slope = m
y y
x x1

2 1

2 1
=

−
−

  Equation 3.4.16-1 

 ( )L  : y y m x x= + −1 1 1  Equation 3.4.16-2 

  
Find the equation for the line ( )′L through the point (x3 , y3) which is perpendicular to L.  

 The slope of ′ =L = - 1

1
2m

m   Equation 3.4.16-3  

 ( )′ = + −L  : y y m x x3 2 3  Equation 3.4.16-4 

  
Find the point where ′L  crosses L by solving their equations simultaneously. 

 

 x
y y m x m x

m mint =
− + −

−
3 1 1 1 2 3

1 2
 Equation 3.4.16-5 

 ( )y m x x yint int= − +1 1 1  Equation 3.4.16-6 

 
 Determine if ( )x yint int,   fall on the line segment. 
 
In this function, if the line segment is not determined to be vertical or horizontal, there seems to be an 
inaccurate assumption that ( )x yint int,   will be on the line segment, between ( )x y1 1,   and  ( )x y2 2,  , if one 
of the following equations are satisfied: 
  

 
( ) ( )

( ) ( )

x x x

x x x

1 2

2 1

1 1

1 1

− ≤ ≤ +

− ≤ ≤ +

int

int

or  Equation 3.4.16-7 

 
This assumption is incorrect anytime xint  is greater than the largest x value along the segment (either x1 
or x2) or if it is less than the smallest x value along the segment.   
  
However, if the function determines that ( )x yint int,   is indeed on the line segment then calculate the 
distance 
   

 ( ) ( )d x x y y= − + −3
2

3
2

int int  Equation 3.4.16-8  

 
If the function determines that ( )x yint int,   is not on the line segment, it will return the smaller distance 
between the point and either end-point of the line segment. 
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 ( ) ( ) ( ) ( )d x x y y x x y y= − + − − + −





min 3 1
2

3 1
2

3 2
2

3 2
2 or  Equation 3.4.16-9   

 
The function then returns d, the coordinates of the point ( )x yint int,  , and a status indicator whether 

( )x yint int,   is on the line segment. 
 
This approach is closed form and correct except for the assumption made in Equation 3.4.16-7, which will 
need further explanation. 

 
Assessment Table 

 
REF# Approximation/Assumption Assessment Impact on TJM 

R 3.4.16-1 Equation 3.4.16-7 Assumes a larger line segment in the x 
dimension.  Appears to be incorrect. 

Minor 

 

3.4.17 Function:  GM_REGN (PL/I) 
In the x-y plane, this function determines if a test point (xt, yt) lies within a polygon region defined by the 
a set of boundary points (x[n], y[n]). 

3.4.17.1 Description:   
The function uses the PL/I random number generator to create a random number.  The function uses this 
random number and the maximum and minimum x and y coordinates of the region to create a point outside 
the polygon region.  The outside point is joined with the test point to form a line segment.  The test line is 
checked for intersections against the segments defining the circumference of the polygon region.  The 
function results in a number of intersections.  The function makes n number of random number calls 
(currently 8 maximum) if the intersection point is too close to the end of a polygon segment.  The 
maximum number of intersection checks is therefore n  times the number of polygon vertices.  If the 
number of intersections is even, the test point is outside the region.  If the number of intersections is odd, 
the test point is inside the region.
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Table of Variable Definitions 
 

Function Variable Description Math Symbol 
xmin, xmax minimum and maximum x coordinates of the 

polygon region in feet 
xmin, xmax 

ymin, ymax minimum and maximum y coordinates of the 
polygon region in feet 

ymin, ymax 

rv random number value rv 
xr, yr x, y coordinates of random generated point in feet xr, yr 
*x1, y1 x, y coordinates of the start point of the line (ft) x1, y1 
x2, y2 x, y coordinates of the end point of the line (ft) x2, y2 
xt, yt x, y coordinates of the test point  (ft) xt, yt 
xi, yi x, y coordinates of the intersection point  (ft) xi, yi 
p, t ratio’s returned by gm_insec  p, t 
pton point on line status;  pton=1 point is on a line 

segment of the boundary region’s polygon, pton=0 
point is not on a line of this boundary 

pton 

istat intersection status; istat=0 line segments intersect 
between endpoints 

istat 

i, k loop counters i, k 
pntsep constant used as delta separation allowed to 

consider a point on a line;  currently set at 1 ft.; 
used for the TKM_GM_TSTPNT 

pntsep 

eps epsilon value used as effective difference of zero; 
currently = 0.001 

ε  

nrpt number of random point tries that function iterates nrpt 
n number of polygon end points n 

3.4.17.2  Mathematics: 
The function determines if a test point lies within a polygon region in the x-y plane defined by the 
arrays of boundary points (x[n], y[n]).   
 
The first step in the function is to determine the minimum and maximum boundary distances.  
These extreme points are used to perform a gross check for the test point.  If the test point lies 
outside the extreme points of the polygon, the function returns an outside the region result for the 
test point.  However, if the test point is equal to or inside the extreme points, a random number is 
generated.  The number is used to define a random point outside the polygon region by using the 
extreme points already defined.   
 
The function generates the random number by the RAND function in an overall loop structure i 
from 1 to 8.  The value of i is MOD by 4.  Therefore, the result is expressed in Table 3.4.17-1 
where each MOD value is carried out a maximum of twice. 
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Iteration 
number 

MOD value Resulting random point is 
generated 

1 1 point above the region 
2 2 point to the right of the region 
3 3 point below the region 
4 0 point to the left of the region 
5 1 point above the region 
6 2 point to the right of the region 
7 3 point below the region 
8 0 point to the left of the region 

Table 3.4.17-1:  Iteration key GM_REGN 

 
For i = equals 4 or 8, the random point is generated to the left of the polygon region.  The 
expression to determine this point is :   
 

 ( )xr x x x= − −min . max min1005  Equation 3.4.17-1 

 ( )yr y rv y y= + −min max min  Equation 3.4.17-2 

 
For the x dimension, the point is placed 0.5% to the left of the length of the polygon.  For the y 
dimension, the point is placed a uniform random variable distance within the width of the 
polygon. 
 
For the other directions (i.e. to the right, below, and above), the calculation is performed 
analogously to Equation 3.4.17-1 and Equation 3.4.17-2. 
 
After each random point is generated, the function runs a second loop for each segment of the 
polygon.  For each segment, the GM_TSTPNT is called to determine if the test  point is on the 
segment.  If it is, the test point is considered inside the region and the function ends with an inside 
result.  However, if the GM_TSTPNT determines the point is not on the line the test point is 
combined with the current random point to form a segment.   
 
Now, GM_INSEC is called to determine if an intersection takes place between the test point to 
random point segment versus the polygon segment.  A counter is incremented (icnt) for each 
intersection found.  If an intersection is found, but the ratio of the distance to the end point of the 
polygon segment is less than ε  or greater than 1− ε  , then the loop ends without finishing the 
rest of the polygon segments and the next random point is generated.   The i loop ends with either 
nrpt random points generated or a successful iteration through the k loop, where each polygon 
segment is checked.   
 
The function ends by returning the MOD value of icnt by 2.  This value will return a 0 or 1 for the 
number of intersections determined to be even or odd, respectively.  If an odd number of 
intersections are found, the test point does lie inside the region.  If the number of intersections is 
an even number, the test point lies outside the region.   The flow chart  in Figure 3.4.17-1 
illustrates the logic for this function. 
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Find the max and min
values for the polygon

shape.

Is the test point
within the max and

min values?

Yes

No
Return( outside the

polygon)

Random point outside
polygon generated

Main loop begins:
k=0 from k to (n-1)

Call GM_TSTPNT for
test point on polygon

segment

Is test point outside
polygon segment?

Yes

No
Return( inside the
polygon segment)

Call GM_INSEC and is
intersection found?

Is intersection
found too close to

end point?

Yes

No

Break out of k loop:
generate an other

random point

k loop ends

Yes

Return (MOD icnt by 2)

No

Main loop begins: i=1
from i to nrpt maximum

 

Figure 3.4.17-1:  Logic of GM_REGN 
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Assessment Table 

 
REF# Approximation/Assumption Assessment Impact  

on APD 

R 3.4.17-1 The ε  value assumes the value 
for the ratio returned by 
GM_INSEC is approximately 1 
or 0.  The value currently 
chosen is 0.001 which is very 
reasonable.  

A reasonable choice for the parameter has 
been chosen and if the intersection point is 
effectively on the end point of the polygon 
line segment, an other random point is 
chosen (total of nrpt of them) 

Minor 

R 3.4.17-2 The choice of nrpt random 
point iterations seems 
reasonable, though if more are 
required the result will be to 
falsely determine the point is 
outside the region (return 0). 

The number nrpt=8 chosen seems 
reasonable and can only be verified by 
unit testing. 

Important 

R 3.4.17-3 This function is subject to the 
critical and important 
approximations of 
TKM_GM_TSTPNT, since it 
uses this function to check if 
the test point lies on each 
polygon line segment. 

Refer to the GM_TSTPNT function’s 
Assessment Table.  They will directly 
effect this function GM_REGN. 

Critical 

 

3.4.18 Function:  GM_TSTPNT (PL/I) 
This function determines if a point lies on a specified line.  To lie on this line, the point may be a small 
epsilon distance from the line and still be considered on the line.    

3.4.18.1 Description:   
Given the x and y coordinates (in feet) of the end points of the line and the x and y coordinates of a point 
(in feet), the function first determines the location of an intersection point which forms a perpendicular line 
from the given point to the given line (refer to Figure 3.4.18-1).  Next, the function determines the distance 
of this perpendicular line and compares it to the minimum epsilon distance.  If the distance of the normal 
line is less than the minimum distance, the point is considered on the line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4.18-1:  Diagram of test point to line distance 

 

x1, y1 

x2, y2 

xt, yt 

xi, yi 

distance from 
point to line 
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Table of Variable Definitions 
 

Function Variable Description Math Symbol 
x1, y1 x, y coordinates of the start point of the line (ft) x1, y1 
x2, y2 x, y coordinates of the end point of the line (ft) x2, y2 
xt, yt x, y coordinates of the test point  (ft) xt, yt 
pntsep separation allowed between 2 points pntsep 
delx delta difference of the line in x dimension (ft) δ . x  
dely delta difference of the line in y dimension (ft) δ . y  
s1 slope of the line from x1,y1  to  x2,y2 m 
s2 slope of the normal line from xt, yt to xi, yi -1/m 
xi, yi x, y coordinates (ft) of intersection point of test 

point to line 
xi, yi 

eps epsilon value for considering the line to vertical 
or horizontal (currently set at 100 feet) 

ε  

d perpendicular distance (ft) from the test point to 
the line 

d 

3.4.18.2  Mathematics: 
The function starts by calculating the delta differences of each dimension of the line.   These 
variables include the following: 
 

 δ . x x x= −2 1  Equation 3.4.18-1 

 δ . y y y= −2 1  Equation 3.4.18-2 

 
These deltas are used to determine if the line is a vertical line or horizontal line.  For the x 
dimension, if the line’s δ . x  is less an ε   value, consider the line to be a vertical line.  The 
function checks if the test point is greater than the distance pntsep in the x dimension and if so 
considers it not on the line.  If the test point is less than the distance pntsep in the x dimension and 
is within the y dimensions of the line, it is considered on the line.  An analogous check is made for 
the y dimension. 
 
Now, the line is not a vertical or horizontal line and the perpendicular distance will need to be 
calculated between the test point and the line.  The first step is to determine the following slope 
equations: 
 

 s m y
x

1 = =
δ
δ

.

.
 Equation 3.4.18-3 

 s
m

x
y

2 1
= − = −

δ
δ

.

.
 Equation 3.4.18-4 

 
The equation of the line is expressed for the given line and the line formed by drawing a 
perpendicular line from the test point to the line.  By solving these two equations simultaneously 
for x and y, the resulting formulas give the x and y coordinates of the intersection point used in 
the function to solve for the distance d. 
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 The given line:   

 ( )y y m x x− = −1 1   Equation 3.4.18-5 

  
The normal line from the test point to the line:  
 

  ( )y yt
m

x xt− = − −
1  Equation 3.4.18-6 

 
Solving them simultaneously for x (note the x below is equivalent to xi in the code): 
 

 ( ) ( )m x x y yt
m

x xt− + − = −





−1 1
1   

 mx mx x
m

xt
m

yt y− + − = −1 1  

 x m
m

yt y xt
m

x m+





= − + +
1

1 1  

 x
yt y xt

m
x m

m
m

=
− + +

+





1 1

1
 Equation 3.4.18-7 

 
Now, solve for y (or yi in the code) for the intersection point using the x value in Equation 3.4.18-
7 and use Equation 3.4.18-5 to solve for y. 
 
The last check determines the distance of the intersection point using the general distance formula: 
 

 ( ) ( )d xt x yt y2 2 2= − + −  Equation 3.4.18-8 

The function proceeds by checking this distance d against the pntsep distance, and if this distance 
is greater than the pntsep distance the test point is evaluated as not on the given line.  However, if 
the distance is less than pntsep, the test point is checked to determine if it is between the end 
points of the line.  For example, this checks for cases when the distance in Equation 3.4.18-8  
is zero because the test point is collinear with the given line, but not within the line segment and  
could actually be a large distance from the endpoints of the line.  (NOTE:  To determine if the test 
point is within the line segment, the function extends the line by the pntsep value, currently 1 
foot.)
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Assessment Table 

 
REF# Approximation/Assumption Assessment Impact  

on TJM 

R 3.4.18-1 If the test point is less than a 
distance  pntsep from the given 
line, the point is evaluated to be 
between the end  points of the 
given line segment.  However, 
the line is extended by pntsep 
for the PL/I version and by ε   
for the TKM version of 
GM_TSTPNT in C.  The 
pntsep value is 1 foot and the 
ε  value is 100 feet. 

The transfer from C to PL/I will provide 
different results not because of coding in a 
different language, but because different  
comparison values are used.  An 
investigation into the potential reasons for 
the change are necessary and should be 
documented. 

Important  

R 3.4.18-2 The check carried out to 
determine if a point is between 
the end points of the line 
segment when the line segment 
is either vertical or horizontal 
uses the pntsep value to extend 
the lines under the PL/I version 
but not for the C version here. 

It is actually more accurate not to use the 
pntsep value, but this may cause errors due 
to round off during floating point arithmetic.  
Therefore, an investigation is required to 
determine why this was not used in the C 
version and used in this PL/I version only. 

Important 

  

3.4.19 Function:  GM_TURN (PL/I) 
Determines the turn angle to go from one bearing to another. 

3.4.19.1 Description:   
This function will take the difference between an initial bearing and a final bearing, supplied as inputs, and 
return the turn angle, where right turns are positive and left turns are negative. 
 

Table of Variable Definitions 
 

Function Variable Description Math Symbol 
INITIAL_BRNG The initial bearing, in radians, from  north Ψi 
FINAL_BRNG The final bearing, in radians, from north Ψf 
TURN_ANGLE The turn angle, in radians.  Right turns are 

positive, left turns are negative 
φ 

3.4.19.2 Mathematics: 
The function performs the following simple calculations and logic. 
 
First it determines the difference between the two bearings. 
 

 φ = −Ψ Ψf i  Equation  3.4.19-1 
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The function then limits the range to be between -2π and 2π by using the MOD function 
 

 ( ) ( )φ φ φ π= sign MOD   , 2  Equation  3.4.19-2 

 
It then guarantees that any angle in the first or second quadrant is positive.  Conversely, it ensures 
any angle in the third or fourth quadrant is negative.  For instance, if the angle was greater than π , 
the function subtracts 2π , resulting in a negative (left turn).  If the angle was less than -π , the 
function adds 2π , resulting in a positive (right turn). 
 
The value for turn angle, in radians, is returned from this function.  There are no assumptions or 
approximations of significance to be noted. 

3.4.20 Function:  LO_FIND (PL/I) 
Finds the index of a specified name in a specified table. 

3.4.20.1 Description:   
This function finds the index of a specified name in a specified database table. 
 
The following is a list of the database tables which can currently be searched using this function. This list 
includes the database name, description, and the name of the subfunction, if any, which is invoked to 
search the particular database table.  

 
Database Description Calling  

Sub-Function 
ACD Aircraft Class Data LO_BSACD 
ALINE A-Line preferred arrival routes LO_BSALINE 
APT Airports LO_APT 
BAS Blocked Airspace DB_LOC_FIRST 
DLINE D-Line preferred departure routes LO_BSDLINE 
NODE Fixes LO_BSFIX 
RTE Routes LO_BSRTE 
SATAPT Satellite Airports LO_BSSATAPT 
SEC Sectorization Data  

 
All of the “LO_” subdirectories use a binary search technique to speed the search. 
 

3.4.21 Function:  ST_ARD_SSGDATA (PL/I) 
Finds various SSG values (time, x, y, altitude, ground speed, true airspeed, pointer to the SSG) for a given 
ARD. 

3.4.21.1 Description:   
Given an ARD, this function will return the time, position data (x, y), altitude, ground speed, and true 
airspeed from the SSG which encompasses the given ARD.  There is a check to ensure the ARD does not 
go beyond the total length of the route.  Otherwise, the above values are interpolated (non-linearly in the 
case of accelerations) from the start and end point data of the SSG.   Since aircraft which are in a hold are 
assigned a value of zero for their segment length, hold segments will not be considered. 
 

 
Table of Variable Definitions 
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Function Variable Description Math Symbol 

X, Y Coordinates of the aircraft at the given ARD (ft) x, y 
SSG.X(1), SSG.Y(1), 
SSG.X(2), SSG.Y(2) 

Coordinates of the start and end points of the state 
segment (ft) 

x1, y1 
x2, y2 

ALT Altitude of the aircraft at the given ARD (ft) z 
SSG.Z(1), SSG.Z(2) Altitude of the aircraft at the start and end points 

of the state segment (ft) 
z1, z2 

GSPD_ACC Ground Speed acceleration (ft/s/s) ag 
TAS_ACC Aircraft true airspeed acceleration (ft/s/s) at 
GSPD Ground speed of the aircraft at the given ARD 

(ft/s/s) 
Vg 

SSG.GSPD(1), SSG.GSPD(2) Ground speed of the aircraft at the start and end 
points of the state segment (ft/s/s) 

Vg1, Vg2 

TSPD True airspeed of the aircraft at the given ARD 
(ft/s/s) 

Vt 

SSG.TSPD(1), SSG.TSPD(2) True airspeed of the aircraft at the start and end 
points of the state segment (ft/s/s) 

Vt1, Vt2 

XTIME The time the aircraft will be at the given ARD 
(seconds) 

t 

SSG.TIME(1), SSG.TIME(2) Time associated with the start and end points of 
the state segment (seconds) 

t1, t2 

SSG.SEG_LNG The length of the state segment (ft) l 
SSG.ARD Along Route Distance (ft) ard 
SSG.TOTDIST ARD at the beginning of the SSG (ft) ard1 
SSG.GRADIENT The gradient value of the SSG (ft/ft) g 

3.4.21.2 Mathematics: 
The function performs the following simple calculations and logic. 
 
First it determines which SSG intervals includes the given ARD.   

  
 ard ard< +1 l  Equation  3.4.21-1 

 
 The first SSG that satisfies the above condition will then be used in the following processing. 

 
Initially the function finds the ratio of the length the aircraft traveled from the start of the SSG to 
the ARD over the total length of the SSG 
 

 r
ard ard

=
− 1

l
 Equation  3.4.21-2 
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The function uses this ratio to interpolate the x and y coordinates at the ARD position from the 
SSG endpoints. 
 

 ( )x x r x x= + −1 2 1  Equation  3.4.21-3 

 ( )y y r y y= + −1 2 1  Equation  3.4.21-4 

 
Next, the function supplies the ST_XYTOTIME function (See 3.4.34) with the x, y coordinates 
and SSG pointer to determine the time, t, at the given ARD position. 
 
Altitude is simply determined by multiplying the gradient by the increment of horizontal distance 
traveled from the start of the SSG to the ARD and then added to the altitude at the start of the 
SSG. 
 

 ( )z z g ard ard= + −1 1  Equation  3.4.21-5 

 
Finally true airspeed and ground speed are calculated.  First the function determines the  
accelerations in true airspeed or ground speed by finding the difference of these values at the start 
and end points of the SSG and dividing by the SSG time interval.  
 

 a
V V

t tg
g g=

−

−
2 1

2 1
  Equation  3.4.21-6 

 a
V V

t tt
t t=

−
−

2 1

2 1
 Equation  3.4.21-7 

 
The function uses these values in a simple kinematic equation of motion to determine the current 
velocities at the ARD position. 

  

 ( )V V a t tg g g= + −1 1  Equation  3.4.21-8 

 ( )V V a t tt t t= + −1 1  Equation  3.4.21-9 

 
The values for x, y, z, Vg , Vt , t and a pointer to the associated SSG are returned from this 
function.   
 
 

Assessment Table 
 

REF# Approximation/Assumption Assessment Impact on 
TJM 

R 3.4.21-1 Equation  3.4.21-6 and 
Equation  3.4.21-7 assume a 
constant acceleration over the 
entire length of the segment. 

This assumption could cause accuracy 
problems when complex accelerations and 
variable winds are present 

Important 
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3.4.22 Function:  ST_CHK_VP (PL/I) 
This function determines any entry and exit points of an aircraft into the airspace defined in the VP_IN 
structure given the aircraft’s trajectory represented by SSG data structure. 

3.4.22.1 Description:   
The function first determines if the first trajectory segment is inside the airspace volume, and if it is indeed 
inside, marks it as the entry point into the airspace.    The next step is to enter a loop on the trajectory state 
segments.  Next, the function proceeds into the two filters.  First, it enters the gross filter to determine if 
each segment potentially is inside the airspace volume.  If the state segment passes the gross filter, it enters 
the fine filter to determine the specific intersection coordinates. 
 

• GROSS FILTER TEST:  The gross filter part of this function first assigns the minimum and 
maximum boundary points of the airspace from the VP_IN structure.  It also assigns the 
minimum and maximum end point dimensions of the particular iteration’s state segment.  The 
next step is to compare each dimension’s (i.e. x, y, z) minimum and maximum boundaries for 
overlap.  If the state segment has overlap with the airspace, it proceeds in the function to the 
next filter.  If the state segment does not have any overlap, the loop proceeds to the next state 
segment. 

• FINE FILTER TEST:  The fine filter part of this function loops through the airspace segments 
and calls GM_INSEC to determine if the flight state segment intersects with one or more of 
the airspace segments.  The fine filter determines if there are any intersections with the 
horizontal dimensions in the x-y plane, then determines if there are intersections with the top 
of the volume (maximum altitude), and finally determines if there are intersections with the 
bottom of the volume 

 
Following the fine filter, the last segment is checked and flagged if inside the airspace volume.  The 
records in the VP_OUT structure which contain the entry and exit points of the aircraft into the airspace are 
sorted by time.  Any duplicate intersection points are eliminated as well.   
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Table of Variable Definitions 
 

Function Variable Description Math Symbol 
VP_IN  Structure data variable which contains the pre-

calculated information on the airspace volume’s 
boundary points 

VP_IN 

VP_OUT Structure data variable which is filled with entry and 
exit information into the given airspace 

VP_OUT 

VP_MAX_PTS Maximum and minimum coordinates of the airspace 
volume 

maxz, minz, maxx, 
minx, maxy, miny 

SSG.X(1), SSG.Y(1), 
SSG.X(2), SSG.Y(2) 

Coordinates of the start and end points of the state 
segment (ft) 

x1, y1 
x2, y2 

SSG.Z(1), SSG.Z(2) Altitude of the aircraft at the start and end points of 
the state segment (ft) 

z1, z2 

XI, YI, ZI Temporary variables for the coordinates of the 
intersection point 

xi, yi, zi 

MIN_SSG_X Minimum x distance (ft) within the given state 
segment 

min_ssgx 

MAX_SSG_X Maximum x distance (ft) within the given state 
segment 

max_ssgx 

SSG_RATIO Ratio along the state segment that marks the 
horizontal intersection point  

ssg_ratio 

RATIO Ratio for the distance in the vertical dimension of the 
determined altitude intersection used in Fine Filter to 
interpolate for the corresponding x and y coordinates 

ratio 

REGN_IND Flag variable used as output of the GM_REGN 
function where 0 = outside, 1 = inside the airspace 

regn_ind 

SSG.TIME(1) Time associated with the start point of the state 
segment (seconds) 

ti 

SSG.SEG_LNG The length of the state segment (ft) l 
SSG.ARD Along Route Distance (ft) ard 
SSG.TOTDIST ARD at the beginning of the SSG (ft) ard1 

3.4.22.2 Mathematics: 
Pre-Filter Processing 
The function starts by initializing a few variables and then checking to see if the first state 
segment is inside the airspace volume.  This step calls GM_REGN to determine if the point is 
inside the airspace volume.  If this point is within the volume, the VP_OUT structure is updated 
with this point and defined as an END_IN_AIRSPACE condition.  The next step is the main loop 
which starts the iteration through the state segments of the aircraft trajectory (The current function 
only examines linear segments not segments associated with a hold called box state segments.).   
 
Gross Filter 
Now, the function starts the check for an intersection with the volume.  Any intersections found in 
the gross filter or fine filter algorithms are defined by the CROSSING condition.  First, the flag 
variable FILTER is initialized to zero.  There are three checks in the Gross Filter algorithm, one 
for each dimension x, y, and z.  For example, the check for the x dimension first defines the 
minimum and maximum x value for the state segment, min_ssgx and max_ssgx.  These values are 
compared to the airspace volumes minimum and maximum x values and if the check is true the 
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FILTER variable is incremented by 1.  The check is as follows: 
 

 ( ) ( )[ ]NOT ssgx x or x ssgxmax_ min max min_< <  Equation 3.4.22-1 

 
The same comparison is made in the y and z dimensions and the FILTER variable is incremented 
accordingly. 
 
Fine Filter 
 
1.  Check for horizontal intersections with the sides of the airspace volume. 
If the state segment passed the Gross Filter with the FILTER variable resulting in 3, the Fine Filter 
begins with a loop to check for horizontal intersections with the state segment and each segment 
of the airspace volume.  It calls the GM_INSEC function to determine if and where a horizontal 
(x, y) intersection takes place between the trajectory state segment and the airspace segment.  If an 
intersection does take place, the GM_INSEC function provides the ratio along the trajectory state 
segment.  This ratio is used to interpolate in the altitude dimension (z), as follows: 
 

 ( )zi z ssg ratio z z= + −1 2 1_  Equation 3.4.22-2 

Therefore, zi is the altitude that the state segment intersects a segment of the airspace volume.  
The zi altitude is checked to be within the vertical limits of the airspace volume and if so, the 
intersection is stored in the VP_OUT structure.  The function ST_FINDARD is called to 
determine the along route distance of the intersection point and ST_ARD_SSGDATA is called to 
find the time of the intersection based on the along route distance. 
 
 
2.  Check for an intersection with the top of the airspace volume. 
If the end point altitudes of the trajectory state segment intersect the top of the airspace volume’s 
altitude (maxz), the altitude z1 must be greater than maxz while the z2 altitude must be less than 
maxz or altitude z2 must be greater than maxz and the z1 altitude must be less than maxz.  The 
expression for the top intersection check is as follows: 
 

 ( ) ( )[ ] ( ) ( )[ ]z z and z z or z z and z z1 2 2 1> ≤ > ≤max max max max  Equation 3.4.22-3  

 
The ratio of the distance between z1and the maxz to the altitude range of the state segment is 
calculated next.  The equation for this ratio is presented  in Equation 3.4.22-4. 
 

 ( ) ( )ratio z z z z= − −max 1 2 1  Equation 3.4.22-4  

 
The ratio is used to interpolate for the x and y coordinates of the altitude intersection.  The two 
linear equations are solved for the xi and yi coordinates of the altitude intersection and zi is set to 
maxz.  
 

 ( )xi x ratio x x= + −1 2 1  Equation 3.4.22-5 

 ( )yi y ratio y y= + −1 2 1  Equation 3.4.22-6 
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The function GM_REGN is called to determine if the altitude intersection is within the airspace 
boundary in the x-y plane.  If it is, the along route distance (ARD) and time are calculated by 
ST_FINDARD and ST_ARD_SSGDATA.  Finally, the ARD, time, and the intersection 
coordinates are stored in the VP_OUT structure. 
 
3. Check for an intersection with the bottom of the airspace volume. 
For the bottom intersection, the function is calculated in the same manner as the top intersection 
was calculated.  The check and interpolation equations are analogous to the top intersection and 
listed here only for reference. 
 

 ( ) ( )[ ] ( ) ( )[ ]z z and z z or z z and z z1 2 2 1≥ < ≥ <min min min min  Equation 3.4.22-7 

 ( ) ( )ratio z z z z= − −min 1 2 1  Equation 3.4.22-8 

 
Post Filter Processing 
 
1.  Following the Fine Filter test, the last end point of the trajectory is checked, using 

GM_REGN, to determine whether it is inside or outside the airspace volume.  If it is inside, 
the state segment end point information is stored in the VP_OUT structure.   

2.  The next step is the sort loop (Bubble Sort technique) that sorts the intersection points in 
ascending order of time.   

3.  Next, the intersection points are examined for duplicates and if found they are eliminated 
from the list.  Both points must be category Crossing, the X and Y dimensions must both be 
within 1000 feet of each other, and the intersection must occur within 10 seconds of each 
other. 

4.  If the trajectory begins inside the airspace and has a crossing point near this entry point (X 
and Y within 1000 feet and within 10 seconds time of the intersections) and there are more 
than two intersection points, eliminate these two points.  In other words, eliminate the 
beginning entry point and crossing point if there are more than two points in the VP_OUT  
structure and are close to the boundary.   

5.  If the trajectory ends inside the airspace and there exists a crossing point that is close to the 
end point (within 1000 feet horizontally and 10 seconds in time) and there is greater than or 
equal to 2 points in VP_OUT, these two points are eliminated.  In other words, eliminate a 
pair of near intersections if they are at the end of the trajectory and are very close to the 
boundary. 

6.  The next loop defines the type field of the VP_OUT structure for each intersection point.  The 
type field defines whether each intersection is associated with an entry or an exit (the 
VOL_ENTRY and VOL_EXIT fields). 

7.  If there is only one intersection point (a crossing point), it must be a point of tangency so the 
point is eliminated. 

8.  A final check is made for other points of tangency (crossing points only).  If the function 
determines an odd number of crossing intersections, it determines if the trajectory is within 10 
seconds before the crossing point and outside the boundary 10 seconds after the crossing 
point occurs.  The ST_TIME_SSGDATA function is called to determine the coordinates 
along the trajectory for the specific time. The GM_REGN function determines if these points 
(trajectory location 10 seconds before and after the intersection) are within the airspace 
volume.  If the point does not meet the conditions of being inside and outside the airspace 
within the 10 second window, the crossing intersection point is eliminated from the VP_OUT 
structure, since it must be a point of tangency.   

 
 

Assessment Table 
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REF# Approximation/Assumption Assessment Impact  
on APD 

R 3.4.22-1 Linear interpolation is used 
to estimate the specific 
coordinates of each 
intersection point. 

The solution of a given set of coordinates 
based on the end point coordinates and the 
known distance of one dimension (X, Y, or Z) 
is a reasonable approximation assuming the 
segment is small and the aircraft is only 
accelerating moderately. 

Important 

R 3.4.22-2 A small parameter distance 
(1000 feet horizontally and 
10 seconds in time)  is used 
to assume a pair of 
intersection points are alike. 

The small parameter distance allows an aircraft 
to be considered outside the airspace if it is 
inside by a distance smaller than the parameter 
distance.  The 1000 feet / 10 seconds seem like 
reasonable choices for an epsilon value.    

Important 

R 3.4.22-3 A global variable should be 
used as the small parameter 
distance. 

The small parameter value 1000 feet / 10 
seconds should be defined by a global variable 
to be consistent with other algorithms and 
improve the readability of the code. 

Minor 

 

3.4.23 Function:  ST_CLIMB_DIST (PL/I) 
Computes the distance required for a climb 

3.4.23.1 Description:   
This function calculates the horizontal distance required for a climb without the effect of wind.  

 
Table of Variable Definitions 

 
Function Variable Description Math Symbol 

NEXT_ALT The lower level of the altitude layer (ft) h1 
ALT The current altitude of the aircraft (ft) h0 
TARGET_ALT The target altitude for the descent (ft) ht 
GRADIENT The ratio of the change in altitude over the 

distance traveled in the horizontal plane. (ft/ft) 
gr 

CLIMB_GRAD_FACTOR A multiplier which effects the climb gradient.  
This value is found from the AMC table for a 
particular aircraft. 

CGF 

DIST The total horizontal distance the aircraft would 
fly in still air (ft) 

Dtot 

 

3.4.23.2 Mathematics:  
 This function uses Equation 3.4.23-2 to compute the horizontal distance an aircraft would be 

required to travel to complete a given climb.  In the Aircraft Control Characteristics (ACC) table 
each aircraft has various altitude layers and corresponding climb gradients assigned to each layer.  
Therefore, this function must calculate the horizontal distance required for each altitude layer the 
aircraft climbs through, and aggregate these distances into a total. 

 
 The method used is described below.  Since the method is simple in form, no derivations were 

needed for this description. 
  

The process begins at the current altitude and loops through every altitude layer until the target 
altitude is reached. At each altitude layer, the function calls ST_CLIMB _GRADIENT (see 
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Section 3.4.24) to get the assigned altitude gradient, gr.  If the higher level of the altitude layer, h1, 
is higher than the target altitude, ht, then assign 

 

 h ht1 =  Equation 3.4.23-1 

 
 Add the distance required for the aircraft to climb through the current climb layer 

 
( )

D D
h h
C gtot prev

GF r
= +

−1 0 1  Equation 3.4.23-2 

     
where CGF is the climb gradient factor found in the Aircraft Modeling Characteristics (AMC) table 
for the particular aircraft. 

 
This process continues to “loop” though every altitude layer between the starting altitude and the 
target altitude, keeping track of the total horizontal distance traveled by the aircraft.  At the end of 
each iteration, the current altitude, h0, is assigned the value of the higher level of the current 
altitude layer, h1 (i.e. let h0 = h1, then the next loop starts with the next altitude layer). 

 
This function’s accuracy completely depends on the accuracy of the climb gradients and the climb 
gradient factor.  The accuracy of these values and their impact on TJM will need to be studied, 
tested and proven. 

 
Assessment Table 

 
REF# Approximation/Assumption Assessment Impact  

on TJM 

R 3.4.23-1 The accuracy of the altitude 
layer climb gradients supplied 
by 
ST_DESCENT_GRADIENT. 

This issue must be verified to be as close to 
“typical” as possible to minimize 
reconformances.  Justification of these 
values may fall under an analysis of the 
Aircraft Characteristics and Adaptation 
subsystems 

Critical 

R 3.4.23-2 The accuracy of the aircraft’s 
climb gradient factor supplied by 
the AMC table 

This issue must be verified to be as close to 
“typical” as possible to minimize 
reconformances.  Justification of these 
values may fall under an analysis of the 
Aircraft Characteristics and Adaptation 
subsystems 

Critical 
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3.4.24 Function:  ST_CLIMB_GRADIENT (PL/I) 
Computes the climb gradient and IAS (or Mach) for a given aircraft type, altitude, engine, temperature and 
aircraft weight, assuming zero wind. 

3.4.24.1 Description:   
This function simply searches the ACC table for the climb gradient and IAS (or Mach) which corresponds 
to the given altitude and temperature and the aircraft type, engine, and weight.  The processing begins by 
finding the tables which are associated with the given aircraft engine type. Then it searches for the table 
with the temperatures and weights which represent the given input temperature and weight.  If the input 
values fall between two table values, then the function uses linear interpolation to calculate the climb 
gradient and airspeed from the two closest table values.  
 
In the current URET version (D1.1), each aircraft type is given a default value for weight found in the 
AMC table.  This default weight (or effective weight) is the simple average of the Nominal Takeoff Weight 
and the Nominal Landing Weight found in the ACD data table.   
 

 
Assessment Table 

 
REF# Approximation/Assumption Assessment Impact  

on TJM 

R 3.4.24-1 The accuracy of the altitude 
layer climb gradients and the 
IAS (or Mach) in the ACC 
table. 

This issue must be verified to be as close to 
“typical” as possible to minimize 
reconformances.  Justification of these 
values may fall under an analysis of the 
Aircraft Characteristics and Adaptation 
subsystems 

Critical 

 

3.4.25 Function:  ST_DESCENT_DIST (PL/I) 
Computes the distance required for a descent 

3.4.25.1 Description:   
This function calculates the distance required for a descent.  If the aircraft descends through a parameter 
altitude which has an associated speed limit restriction (for example, the 250 knot indicated airspeed (IAS) 
speed limit for aircraft flying below 10000ft, CFR 91.117) the distance traveled during the deceleration is 
also calculated. 
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Table of Variable Definitions 

 
Function Variable Description Math Symbol 

NEXT_ALT The lower level of the altitude layer (ft) h1 
ALT The current altitude of the aircraft (ft) h0 
TARGET_ALT The target altitude for the descent (ft) ht 
DESCENT_IASMACH The current aircraft indicated airspeed (kts) Vias 
DESCENT_TAS The current aircraft true airspeed (ft/s) Vt 
SPEED_LIMIT The altitude speed limit (in indicated airspeed, 

kts) 
Vsl 

SPEED_LIMIT_TAS The altitude speed limit (in true airspeed, ft/s) Vt_sl 
DECEL_TIME The time needed for deceleration (secs) T 
IDLE_DECEL The idle deceleration rate for the aircraft ai_dec 
DECEL_DIST The horizontal distance the aircraft traveled 

during the deceleration (ft) 
Ddecel 

GRADIENT The ratio of the change in altitude over the 
distance traveled in the horizontal plane. (ft/ft) 

gr 

DESCENT_GRAD_FACTOR A multiplier which affects the descent 
gradient.  This value is found from the AMC 
table for a particular aircraft. 

CGF 

DIST The total horizontal distance the aircraft would 
fly in still air (ft) 

Dtot 

 

3.4.25.2 Mathematics: 
 This function uses Equation 3.4.25-6 to compute the horizontal distance an aircraft would be 

required to travel to complete a given descent.  In the ACC table each aircraft has various altitude 
layers and corresponding descent gradients assigned to each layer.  Therefore, this function must 
calculate the horizontal distance required for each altitude layer the aircraft descends through, and 
aggregate these distances into a total. 

 
 This function also takes into account the horizontal distance an aircraft travels while it decelerates 

to a speed limit at or below a parameter speed limit altitude (Equation 3.4.25-2 to Equation 
3.4.25-5).   

 
 The method used is described below.  Since the method is simple in form, no derivations were 

needed for this description. 
  

The process begins at the current altitude and loops through every altitude layer until the target 
altitude is reached. At each altitude layer, the function calls ST_DESCENT_GRADIENT (see 
Section 3.4.26) to get the assigned altitude gradient, gr.  If the lower level of the altitude layer, h1, 
is lower than the target altitude, ht, then assign 

 

 h ht1 =  Equation 3.4.25-1 
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3.4.25.2.1 Calculate the Distance Traveled During Deceleration 
 

The function determines if the aircraft crosses the speed limit altitude (10000 ft) and its current 
speed exceeds the speed limit (250 kts)11 

   
    If 
     h0 10000≥  
    and h1 10000<    

 and  Vias > 250  Equation 3.4.25-2  

 then, convert the IAS and speed limit to True Airspeed ( Vt and Vt_sl ) at that altitude, using 
(CNV_CNVSPD, see Section 3.4.1) and calculate the time needed for the deceleration. 

 

 
( )

T
V V

a
t t sl

i dec

=
− _

_

 Equation 3.4.25-3  

 where ai dec_  is the absolute value of the idle deceleration rate found in the ACC table for each 

particular aircraft type.   
 

Next, calculate the horizontal distance, Ddecel , the aircraft traveled during the deceleration by 
finding the average deceleration speed over the deceleration time 

   

 D
V V

Tdecel
t t sl=

+







 ×_

2
 Equation 3.4.25-4 

 
 and add this result to the total horizontal distance traveled 
 

 D D Dtot prev decel= +  Equation 3.4.25-5  

   
where Dtot is the total horizontal distance traveled up to and including this point and Dprev is the 
total horizontal distance traveled previous to this point. 

3.4.25.2.2 Calculate the Total Distance Traveled 
   
 Add the distance required for the aircraft to descend through the current descent layer 

 
( )

D D
h h
C gtot prev

GF r
= +

−0 1 1  Equation 3.4.25-6 

     
where CGF is the descent gradient factor found in the AMC table for the particular aircraft. 

 
This process continues to “loop” though every altitude layer between the starting altitude and the 
target altitude, keeping track of the total horizontal distance traveled by the aircraft.  At the end of 

                                                           
11 This restriction is based on the Code of Federal Regulations, Title 14, part 91.117, May 1996. 
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each iteration, the current altitude, h0, is assigned the value of the lower level of the current 
altitude layer, h1 (i.e. let h0 = h1, then the next loop starts with the next altitude layer). 

 
This function’s accuracy completely depends on the accuracy of the descent gradients, the descent 
gradient factor, and the estimation of the aircraft’s idle deceleration rate.  The accuracy of these 
values and their impact on TJM will need to be studied, tested and proven. 

     
 

Assessment Table 
 

REF# Approximation/Assumption Assessment Impact  
on TJM 

R 3.4.25-1 The accuracy of the altitude 
layer descent gradients and the 
aircraft’s idle deceleration rate 
supplied by 
ST_DESCENT_GRADIENT 
and the ACC table. 

This issue must be verified to be as close to 
“typical” as possible to minimize 
reconformances.  Justification of these 
values may fall under an analysis of the 
Aircraft Characteristics and Adaptation 
subsystems 

Critical 

R 3.4.25-2 The accuracy of the aircraft’s 
descent gradient factor supplied 
by the AMC table 

This issue must be verified to be as close to 
“typical” as possible to minimize 
reconformances.  Justification of these 
values may fall under an analysis of the 
Aircraft Characteristics and Adaptation 
subsystems 

Critical 

 

3.4.26 Function:  ST_DESCENT_GRADIENT (PL/I) 
Computes the descent gradient and IAS (or Mach) for a given aircraft type, altitude and aircraft weight 
assuming zero wind. 

3.4.26.1 Description:   
This function simply searches the ACC table for the descent gradient and IAS (or Mach) which 
corresponds to the given altitude and the aircraft type and weight.  If the weight of the aircraft is a value 
which falls between two given weight values in the table, this function will linearly interpolate values for 
the descent gradient and IAS (or Mach) using these two weights. 
 
In the current URET version (D1.1), each aircraft type is given a default value for weight found in the 
AMC table.  This default weight (or effective weight) is the simple average of the Nominal Takeoff Weight 
and the Nominal Landing Weight found in the ACD data table.   
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Assessment Table 

 
REF# Approximation/Assumption Assessment Impact  

on TJM 

R 3.4.26-1 The accuracy of the altitude 
layer descent gradients and the 
IAS (or Mach) in the ACC 
table. 

This issue must be verified to be as close to 
“typical” as possible to minimize 
reconformances.  Justification of these 
values may fall under an analysis of the 
Aircraft Characteristics and Adaptation 
subsystems 

Critical 

 

3.4.27 Function:  ST_FINDARD (PL/I) 
This function computes the ARD of a given point in the x and y plane for a specific aircraft trajectory.  The 
function uses as input the minimum and maximum ARD that the given point should be along the trajectory.   

3.4.27.1 Description:   
Given the x and y coordinates of a given point and the minimum and maximum ARD for the specified 
aircraft trajectory, the function will compute the ARD of the aircraft to reach this point.  The function uses 
a minimum and maximum parameter set to start and end the search.  This prevents errors due to a circular 
route in which the route may be at a particular point several times during the route and thus have multiple 
locations at the given point.   
 

Table of Variable Definitions 
 

Function Variable Description Math Symbol 
XX, YY Coordinates of the given point (ft) xx, yy 
SSG.X(1), SSG.Y(1), 
SSG.X(2), SSG.Y(2) 

Coordinates of the start and end points of the 
state segment (ft) 

x1,  y1 
x2,  y2 

MIN_ARD Minimum ARD the given point can result in min_ard 
MAX_ARD Maximum ARD the given point can result in max_ard 
AUD_PTR Pointer to aircraft’s unique data structure aud_ptr 
ARD Along route distance of given point ard 
DARD  Distance from point to closest state segment 

(or ORS) in the x and y dimensions  
dard 

D Distance from point to current ORS d 
XI, YI Coordinates in x and y dimensions of point of 

closest approach (returned from GM_PTLINE 
function) 

xi, yi 

PTLINE_STAT Status of point returned by GM_PTLINE 
function which returns 1 if the point is on the 
segment and 0 otherwise 

pt_status 

3.4.27.2  Mathematics: 
The function searches the ORS structure of the specific aircraft for the ARD for a given point.  
The function starts by initializing a few flag variables and starting the main function loop which 
increments through the segment list.  The next step checks the current ORS ARD’s against the 
minimum and maximum ARD’s  (min_ard and max_ard).  If the current ORS is not within the 
limits, the function iterates to the next ORS.   
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If current ORS ARD’s are within the limits, the function first assigns the end point coordinate 
variables (i.e. x1, y1, x2, y2).  The next step is a call to the GM_PTLINE function which returns the 
closest distance of the point to the line and the status (i.e. pt_status)  of whether the closest 
approach point is on the segment or not.  It also returns the coordinates of the closest approach 
point.  If this closest approach point is on the segment, the function  increments the ard distance 
as follows: 

 ( ) ( )( )ard ors accum dist xi x yi y= + − + −. _ 1
2

1
2  Equation 3.4.27-1 

The Equation 3.4.27-1 adds the ORS current ARD to the distance from the segments beginning 
point of closest approach point.  Under this case, the closest approach point is the point of 
intersection of a line from the given point and perpendicular to the flight segment line.  For a 
situation where the given point is on the line segment, the closest approach point is equivalent to 
the given point’s coordinates (i.e. xx =xi and yy = yi), and the distance d  is 0.  This is illustrated in 
the Figure 3.4.27-1. 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 3.4.27-1:  Diagram of closest approach point (xi, yi) which is on the flight segment 

 
 
If the closest approach point is not on the line segment but somewhere on the line, the distance 
from each end point (i.e. x1, y1 and x2, y2) is calculated to determine the minimum distance 
between the given point and line.  The following equations are calculated and the minimum dard 
chosen: 
 
  Minimum of: 

 ( ) ( )( )dard xx x yy y= − + −1
2

1
2  Equation 3.4.27-2 

 ( ) ( )( )dard xx x yy y= − + −2
2

2
2  Equation 3.4.27-3 

 
For the equation of dard for the first end point, the function will calculate the ard as the 
ors.accum_dist  for that flight segment.  For the dard  for the second end point, the function 
simply adds the length of the flight segment to the ors.accum_dist. 
 

x1, y1 

x2, y2 

xx,yy 

xi, yi 

distance from 
point to line 
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Assessment Table 

 
 

REF# Approximation/Assumption Assessment Impact  
on APD  
and TJM 

R 3.4.27-1 For the second loop where the 
GM_PTLINE found the closest approach 
point not on the flight segment, the 
distance calculation for the first end point 
has an error.  The second term for the y 
dimension of the first end point in the 
code is listed as y2 where it should be y1. 

The result of this error could 
return an incorrect ARD by 
as much as one segment 
length, since the minimum 
and maximum ARD values 
restricts the search. 

Critical  

 

3.4.28 Function:  ST_IASALT (PL/I) 
Iteratively searches for the altitude at which an aircraft, which is accelerating and either climbing or 
descending, attains a desired IAS. 

3.4.28.1 Description:    
This function performs an iterative search to determine the altitude an aircraft will be when it attains a 
desired IAS.   The acceleration supplied to the function describes the TAS acceleration. This acceleration is 
calculated from both the change in altitude and the aircraft’s speed change. 
 
Since the function is attempting to capture a desired IAS, there is no closed form solution to solving the 
motion equations as long as the acceleration is with respect to TAS.  Instead, this function logically 
searches for the desired IAS and altitude by trying to surround the solution with a narrowing time interval.   
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Table of Variable Definitions 

 
Function Variable Description Math Symbol 

ACCEL The aircraft’s acceleration due to both a level 
cruise acceleration and a TAS acceleration due 
to the change in altitude.  This is given in units 
of (ft/s2) 

a 

EXTREME_TAS The maximum TAS possible with the given 
target IAS.  In this case, the corresponding 
TAS associated with a target IAS at the 
maximum altitude possible 
(MAX_ALTITUDE = 60000ft) 

Vt_extr 

TMAX, TMIN Iterative time variables used to locate the time 
the aircraft captures the target IAS 

tmax, tmin 

TT The test time which the function tries in 
determining when the aircraft captures the 
target IAS.  This is calculated as the average 
of tmax and  tmin 

t 

TEST_IAS The resultant IAS that the function calculates 
from the given iteration 

Vi_test 

TARGET_IAS The desired IAS Vi 
TEST_HT The test altitude that the function tries in 

determining where the aircraft captures the 
target IAS 

ht 

TEST_TAS The test TAS that the function tries in 
determining where the aircraft captures the 
target IAS 

Vt_test 

IAS_EPSILON A small parameter value used to determine if 
two IAS values are close (currently set to 1) 

ε 

CURRENT_Z The current altitude of the aircraft (ft) h 
CURRENT_TAS The current TAS at the current altitude Vt 
GRADIENT The altitude gradient .  This value is the ratio 

of the change in altitude over the change in 
horizontal distance traveled.  (ft/ft) 

g 

 
 

3.4.28.2 Mathematics: 
The function begins by determining if the aircraft is accelerating, decelerating, or has a constant 
true airspeed (TAS).  If the aircraft is accelerating, it is known that the final TAS should be larger 
than the current TAS.  The function must ensure that the estimated time interval includes the 
solution.  Therefore, the function calculates the amount of time it would take for the aircraft to 
accelerate from its current TAS to the largest TAS that could be obtained using the desired IAS at 
the maximum allowable altitude (60000 ft).  Conversely, if the aircraft were decelerating the 
function would calculate the amount of time it would take for the aircraft to decelerate from its 
current TAS to a minimal TAS value of 0. The above time is then assigned to the variable tmax and 
the corresponding airspeed is referred to as the “extreme TAS”.  The variables tmin and the initial 
test IAS, Vi_test are both initialized to zero. 
 

 t
V V

amax
t extr t=

−_  Equation 3.4.28-1 
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t
V

min

i test

=
=
0

0_
 

 
As a result, the following initial time interval is created.  Within this time interval exists the time 
which it would take the aircraft to accelerate or decelerate to the target IAS. 

 
 
 
 
 
 

 
 

As long as the difference between the target IAS and the test IAS is greater than a small epsilon 
value (in this case 0.5) and the interval between tmax and tmin is greater than 1, the function will 
continue to iteratively search for a solution within a logical loop. 
 

While    

( )V Vi i test− >_
ε
2

 and ( )t tmax min− > 1    

  Process Loop 
    
 
 
BEGIN LOOP 
The first step in this loop takes the average (midpoint) of the current time interval [tmin, tmax]. 
 

 t
t tmax min=

+
2

 Equation 3.4.28-2 

Next, the function extrapolates the altitude at which the aircraft would be after this amount of 
time, t, has elapsed.  The extrapolation uses the following equation in the function’s source code:  
 

 h h V t at gt t= + +





1
2

2  Equation 3.4.28-3 

Where the gradient, g, is the change in altitude over the change in the horizontal distance 

 g h
x

=
∆
∆

 Equation 3.4.28-4 

 and the change in horizontal distance is based on the basic Newtonian motion equation 
 

 ∆x V t att= +
1
2

2  Equation 3.4.28-5 

0 

tmin tmax 

The time when 
target IAS is 
reached 

?
The time when 
extreme TAS is 
reached 
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Therefore, Equation 3.4.28-3 can be expressed as 

 

 h h x h
xt = + ∆

∆
∆

 Equation 3.4.28-6 

 or simply, 

 h h ht = + ∆  Equation 3.4.28-7 

 
It is important to note here that Equation 3.4.28-5 assumes that true airspeed and acceleration exist 
completely in the horizontal plane and have no component in the vertical dimension.  This 
assumption is probably made because the descent/ascent angles are usually small resulting in very 
small vertical velocity and acceleration components.  However, there are cases when the angle of 
climb or descent is significant (i.e. as much as 25°).  By ignoring the vertical component of true 
airspeed and acceleration, Equation 3.4.28-3 could be in error by as much as 6%.   
 
The solution to this anomaly is to address the vertical and horizontal components of true airspeed 
separately.  The angle of descent or ascent is simply a trigonometric function of the gradient. 
 

 ( )φ = arcsin g  
 
 The horizontal and vertical components of true airspeed are expressed as 
 
 vertical:     ( )Vt sin φ  

 horizontal: ( )Vt cos φ  
 
 

 
 

 
 
 
 
 
 
 
This approach should also be used when the acceleration, a, is calculated. Acceleration could 
then be expressed in both horizontal and vertical components, ah and av, respectively.  
Subsequently, Equation 3.4.28-3 would be written as 
 

 ( )h h V t a t gt t h= + +





cos φ 1
2

2  (suggested Equation 3.4.28-3) 

 
 
For the special case when the test altitude is above the maximum allowable altitude (parameter 
ACP.MAX_ALTITUDE) or below an altitude of 0, the function solves  Equation 3.4.28-3 for the 
time when either ht = [MAX_ALTITUDE or 0].  Since Equation 3.4.28-3 is quadratic, the 
function uses the quadratic formula to solve for the time roots. 

Vt 

φ

h 

x 

Vt cos(φ)

Vt sin(φ) 
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Equation 3.4.28-3 is solved for 0 

 
( )1

2
02at V t

h h
gt

t+ +
−

=  Equation 3.4.28-8 

Where 

    

AA a

BB V

CC
h h

g

t

t

=

=

=
−

1
2

 

 
AA, BB, and CC are then used in the GM_QUADRATIC function as the quadratic coefficients.  
GM_QUADRATIC will return the number of real roots (either 1, 2 or 0).  ST_IASALT will then 
use the smallest, non-negative root as the test time, t.  Note that there is no error condition 
handler here if GM_QUADRATIC returns 0 real roots.  This error could cause an infinite loop 
since the variable TT would never change its value. 
 
Next, the true airspeed at the altitude, ht,  is calculated using the given acceleration, a, time, t, and 
the current true airspeed. 
 

 V V att test t_ = +  Equation 3.4.28-9 

Using Vt test_  and ht , the associated indicated airspeed, Vi test_ , is calculated using the 

CNV_CNVSPD function. 
  
 The function then makes the following logical assignments: 
 

• Condition 1: If the aircraft has a positive acceleration, and the test IAS is less than the target 
IAS, then the aircraft was not given enough time to accelerate to the target IAS; therefore 
initialize the start of the new time interval with this time. 

 
    Condition 1:    a > 0 and V Vi test i_ <  

    Result:            tmin = t 
   

Condition 1 example: Aircraft descending 
 

 
Altitude vs. Time 

 
 
 
 
 
 
 
 
 
 
 

Vi

Vi test_

h 

ht 

tmin = t tmax 
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• Condition 2: If the aircraft has a positive acceleration, and the test IAS is greater than (or 

equal to) the target IAS, then the aircraft may have been given too much time, and accelerated 
to a speed faster than the target IAS; therefore initialize the end of the new time interval with 
this time. 

 
    Condition 2:    a > 0 and V Vi test i_ ≥  

    Result:            tmax = t 
 

 
Condition 2 example: Aircraft descending 

 
Altitude vs. Time 

 
 
 
 
 
 
 
 
 
 
 

• Condition 3: If the aircraft is decelerating (or has no acceleration), and the test IAS is greater 
than the target IAS, then the aircraft was not given enough time to decelerate to the target 
IAS; therefore initialize the start of the new time interval with this time. 

 
    Condition 3:    a < 0 and V Vi test i_ >  

    Result:            tmin = t 
 
Condition 3 example: Aircraft ascending 

 
Altitude vs. Time 

 
        (Note: In this figure, Vi < Vi_test) 
         
 
 
 
 
 
 
  

Vi

Vi

Vi test_

Vi test_

h 

h 

ht 

ht 

tmin 

tmin = t 

tmax = t 

tmax 
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• Condition 4: If the aircraft is decelerating (or has no acceleration), and the test IAS is less 

than (or equal to) the target IAS, then the aircraft may have been given too much time, and 
decelerated to a speed slower than the target IAS; therefore initialize the end of the new time 
interval with this time. 

 
    Condition 4:    a ≤ 0  and V Vi test i_ ≤  

    Result:            tmax = t 
 

Condition 4 example: Aircraft ascending 
 

Altitude vs. Time 
 
        (Note: In this figure, Vi ≥  Vi_test) 
         
 
 
 
 
 
 
 

Conditions 1 and 3 include an error trapping routine which checks for impossible situations, such 
as a climbing aircraft exceeding its maximum allowable altitude or a descending aircraft going 
below an altitude of 0.  If either of these conditions are true, it makes the determination that the 
target IAS is unattainable with the given constraints and terminates the function.  The last ht and t 
that were calculated are then returned from this function. 
 
It should be noted  that this “unattainable condition” does not record an error code.  Therefore it 
is unknown how many times this situation takes place. 

 
 END LOOP 

 
The following example shows the iteration steps ST_IASALT uses to find a solution 
 

 Numerical Example: 
 
 Aircraft: B737 
 Current Altitude = 31000ft Current TAS  = 643 ft/s 
 Target IAS = 280 nm/h Gradient = -0.07 ft/ft 
 Acceleration = 1.227 ft/s/s 
  
 Initial steps:  

Extreme TAS = Target IAS at 60000 ft = 1279 ft/s 
Tmax = (1279-643)/1.227 = 517.9 s 

 

Vi
Vi test_

h 

ht 

tmin tmax = t 
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Values at Each Iteration 

Iteration # Tmax Tmin TT Test HT Test TAS (ft/s) Test IAS (nm/h) 

1 517.9 0 258.9 16454.9 961.3 460.4 
2 258.9 0 129.5 24445.3 802.5 336.1 
3 129.5 0 64.8 27902.7 723.1 283.7 
4 64.8 0 32.4 29496.4 683.4 259.8 
5 64.8 32.4 48.6 28710.9 703.2 271.6 
6 48.6 32.4 40.5 29106.3 693.3 265.7 
7 48.6 40.5 44.5 28909.1 698.3 268.66 
8 48.6 44.52 46.5 28810.2 700.7 270.1 

 
 
 
 

Time Interval at Each Iteration

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8

Interation

Ti
m

e 
(s

ec
on

ds
)

Tmax

Tmin

TT

 
 



   

 164
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Assessment Table 
 

REF# Approximation/Assumption Assessment Impact  
on TJM 

R 3.4.28-1 Equation 3.4.28-5assumes true 
airspeed and acceleration exist 
only in the horizontal plane 

During steep ascent or descents this 
assumption could cause estimation error.  A 
simple solution is provided in the analysis 

Critical 

R 3.4.28-2 For the special case when 
GM_QUADRATIC is called to 
solve for the time roots 
(Equation 3.4.28-8), there is no 
condition handler for the case 
when there are zero real roots 
returned. 

This could cause an infinite loop error. 
A test could be made where 
 

( )
V a

h h
gt

t2 2<
−

 

(A slow, decelerating aircraft climbing 
several thousand feet) 

Critical 

R 3.4.28-3 The function will not model 
aircraft trajectories above 
60,000 ft or below 0 ft.   

It is possible for aircraft to exceed these 
constraints, however unlikely.  Aircraft 
exceeding these altitude constraints would 
not be probed anyway. 

Minor 

R 3.4.28-4 There are no monitors to 
determine the number of 
“unattainable conditions” that 
occur when altitude constraints 
are exceeded 

Extreme altitude conditions may be poorly 
modeled.  URET has no way to record this 
problem. 

Important 

 

3.4.29 Function:  ST_MACHALT (PL/I) 
Iteratively searches for the altitude at which an aircraft, which is accelerating and either climbing or 
descending, attains a desired mach airspeed. 

3.4.29.1 Description:    
This function performs an iterative search to determine the altitude an aircraft will be when it attains a 
desired mach airspeed .   The acceleration supplied to the function describes the true airspeed (TAS) 
acceleration. This acceleration is calculated from both the change in altitude and the aircraft’s speed 
change. 
 
Since the function is attempting to capture a desired mach, there is no closed form solution to solving the 
motion equations as long as the acceleration is with respect to TAS.  Instead, this function logically 
searches for the desired mach and altitude by trying to surround the solution with a narrowing time 
interval.   
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Table of Variable Definitions 

 
Function Variable Description Math Symbol 

ACCEL The aircraft’s acceleration due to both a level 
cruise acceleration and a TAS acceleration due 
to the change in altitude.  This is given in units 
of (ft/s2) 

a 

EXTREME_TAS The maximum TAS possible with the given 
target mach.  In this case, the corresponding 
TAS associated with a target mach at the 
maximum altitude possible 
(MAX_ALTITUDE = 60000ft) 

Vt_extr 

TMAX, TMIN Iterative time variables used to locate the time 
the aircraft captures the target mach 

tmax, tmin 

TT The test time which the function tries in 
determining when the aircraft captures the 
target mach.  This is calculated as the average 
of tmax and  tmin 

t 

TEST_MACH The resultant mach that the function calculates 
from the given iteration 

Vm_test 

TARGET_MACH The desired mach Vm 
TEST_HT The test altitude that the function tries in 

determining where the aircraft captures the 
target mach 

ht 

TEST_TAS The test TAS that the function tries in 
determining where the aircraft captures the 
target mach 

Vt_test 

MACH_EPSILON A small parameter value used to determine if 
two mach values are close (currently set to 
0.0001) 

ε 

CURRENT_Z The current altitude of the aircraft (ft) h 
CURRENT_TAS The current TAS at the current altitude Vt 
GRADIENT The altitude gradient .  This value is the ratio 

of the change in altitude over the change in 
horizontal distance traveled.  (ft/ft) 

g 

 

3.4.29.2 Mathematics: 
 
The function begins by determining if the aircraft is accelerating, decelerating, or has a constant 
TAS.  If the aircraft is accelerating, it is known that the final TAS should be larger than the 
current TAS.  The function must ensure that the estimated time interval includes the solution.  
Therefore, the function calculates the amount of time it would take for the aircraft to accelerate 
from its current TAS to the largest TAS that could be obtained using the desired mach at sea level 
(0 ft).  Conversely, if the aircraft were decelerating the function would calculate the amount of 
time it would take for the aircraft to decelerate from its current TAS to a minimal TAS value of 0. 
The above time is then assigned to the variable tmax and the corresponding airspeed is referred to 
as the “extreme TAS”.  The variables tmin and the initial test mach, Vm_test are both initialized to 
zero. 
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 t
V V

amax
t extr t=

−_  Equation 3.4.29-1 

  
t
V

min

m test

=
=
0

0_

 

 
As a result, the following initial time interval is created.  Within this time interval exists the time 
which it would take the aircraft to accelerate or decelerate to the target mach. 

 
 
 
 
 
 

 
 

As long as the difference between the target mach and the test mach is greater than a small epsilon 
value (in this case 0.0001) and the interval between tmax and tmin is greater than 1, the function will 
continue to iteratively search for a solution within a logical loop. 
 

While    
( )V Vm m test− >_ ε  and ( )t tmax min− > 1    

  Process Loop 
    
 
 
BEGIN LOOP 
The first step in this loop takes the average (midpoint) of the current time interval [tmin, tmax]. 
 

 t
t tmax min=

+
2

 Equation 3.4.29-2 

Next, the function extrapolates the altitude at which the aircraft would be after this amount of 
time, t, has elapsed.  The extrapolation uses the following equation in the function’s source code:  
 

 h h V t at gt t= + +





1
2

2  Equation 3.4.29-3 

Where the gradient, g, is the change in altitude over the change in the horizontal distance 

 g h
x

=
∆
∆

 Equation 3.4.29-4 

 and the change in horizontal distance is based on the basic Newtonian motion equation 
 

 ∆x V t att= +
1
2

2  Equation 3.4.29-5 

 

0 

tmin tmax 

The time when 
target mach is 
reached 

?
The time when 
extreme TAS is 
reached 
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Therefore, Equation 3.4.29-3 can be expressed as 
 

 h h x h
xt = + ∆

∆
∆

 Equation 3.4.29-6 

 or simply, 

 h h ht = + ∆  Equation 3.4.29-7 

 
It is important to note here that Equation 3.4.29-5 assumes that true airspeed and acceleration exist 
completely in the horizontal plane and have no component in the vertical dimension.  This 
assumption is probably made because the descent/ascent angles are usually small resulting in very 
small vertical velocity and acceleration components.  However, there are cases when the angle of 
climb or descent is significant (i.e. as much as 25°).  By ignoring the vertical component of true 
airspeed and acceleration, Equation 3.4.29-3 could be in error by as much as 6%.   
 
The solution to this anomaly is to address the vertical and horizontal components of true airspeed 
separately.  The angle of descent or ascent is simply a trigonometric function of the gradient. 
 

 ( )φ = arcsin g  
 
 The horizontal and vertical components of true airspeed are expressed as 
 
 vertical:     ( )Vt sin φ  

 horizontal: ( )Vt cos φ  
 
 

 
 

 
 
 
 
 
 
 
This approach should also be used when the acceleration, a, is calculated. Acceleration could 
then be expressed in both horizontal and vertical components, ah and av, respectively.  
Subsequently, Equation 3.4.29-3 would be written as 
 

 ( )h h V t a t gt t h= + +





cos φ 1
2

2  (suggested Equation 3.4.29-3) 

 
 
For the special case when the test altitude is above the maximum allowable altitude (parameter 
ACP.MAX_ALTITUDE) or below an altitude of 0, the function solves Equation 3.4.29-3 for the 
time when either ht = [MAX_ALTITUDE or 0].  Since Equation 3.4.29-3 is quadratic, the 
function uses the quadratic formula to solve for the time roots.

Vt 

φ

h 

x 

Vt cos(φ)

Vt sin(φ) 
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Equation 3.4.29-3 is solved for 0 

 
( )1

2
02at V t

h h
gt

t+ +
−

=  Equation 3.4.29-8 

Where 

    

AA a

BB V

CC
h h

g

t

t

=

=

=
−

1
2

 

 
AA, BB, and CC are then used in the GM_QUADRATIC function as the quadratic coefficients.  
GM_QUADRATIC will return the number of real roots (either 1, 2 or 0).  ST_MACHALT will 
then use the smallest, non-negative root as the test time, t.  Note that there is no error condition 
handler here if GM_QUADRATIC returns 0 real roots.  This error could cause an infinite loop 
since the variable TT would never change its value. 
 
Next, the true airspeed at the altitude, ht,  is calculated using the given acceleration, a, time, t, and 
the current true airspeed. 
 

 V V att test t_ = +  Equation 3.4.29-9 

Using Vt test_  and ht , the associated mach airspeed, Vm test_ , is calculated using the 

CNV_CNVSPD function. 
  
 The function then makes the following logical assignments: 
 

• Condition 1: If the aircraft has a positive acceleration, and the test mach is less than the target 
mach, then the aircraft was not given enough time to accelerate to the target mach; therefore 
initialize the start of the new time interval with this time. 

 
    Condition 1:    a > 0 and V Vm test m_ <  

    Result:            tmin = t 
   

Condition 1 example: Aircraft descending 
 

 
Altitude vs. Time 

 
 
 
 
 
 
 
 
 
 

Vm

Vm test_

h 

ht 

tmin = t tmax 
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• Condition 2: If the aircraft has a positive acceleration, and the test mach is greater than (or 

equal to) the target mach, then the aircraft may have been given too much time, and 
accelerated to a speed faster than the target mach; therefore initialize the end of the new time 
interval with this time. 

 
    Condition 2:    a > 0 and V Vm test m_ ≥  

    Result:            tmax = t 
 

 
Condition 2 example: Aircraft descending 

 
Altitude vs. Time 

 
 
 
 
 
 
 
 
 
 
 

• Condition 3: If the aircraft is decelerating (or has no acceleration), and the test mach is greater 
than the target mach, then the aircraft was not given enough time to decelerate to the target 
mach; therefore initialize the start of the new time interval with this time. 

 
    Condition 3:    a < 0 and V Vm test m_ >  

    Result:            tmin = t 
 
Condition 3 example: Aircraft ascending 

 
Altitude vs. Time 

 
       (Note: In this figure, Vm < Vm_test)  
   
 
 
 
 
 
 
   

Vm

Vm test_

h 

ht 

tmin tmax = t 

Vm
Vm test_

h 

ht 

tmin = t tmax 
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• Condition 4: If the aircraft is decelerating (or has no acceleration), and the test mach is less 

than (or equal to) the target mach, then the aircraft may have been given too much time, and 
decelerated to a speed slower than the target mach; therefore initialize the end of the new time 
interval with this time. 

 
    Condition 4:    a ≤ 0  and V Vm test m_ ≤  
    Result:            tmax = t 

 
Condition 4 example: Aircraft ascending 
 

Altitude vs. Time 
       (Note: In this figure, Vm ≥  Vm_test)  
 
        
         
 
 
 
 
 
 
 

Conditions 1 and 3 include an error trapping routine which checks for impossible situations, such 
as a climbing aircraft exceeding its maximum allowable altitude or a descending aircraft going 
below an altitude of 0.  If either of these conditions are true, it makes the determination that the 
target mach is unattainable with the given constraints and terminates the function.  The last ht and 
t that were calculated are then returned from this function. 
 
It should be noted  that this “unattainable condition” does not record an error code.  Therefore it 
is unknown how many times this situation takes place. 

 
 END LOOP 

 
The following example shows the iteration steps ST_MACHALT uses to find a solution 
 

 For a numerical example, see Section 3.4.28, ST_IASALT. 

Vm
Vm test_

h 

ht 

tmin tmax = t 
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Assessment Table 

 
REF# Approximation/Assumption Assessment Impact  

on TJM 

R 3.4.29-1 Equation 3.4.29-5 assumes true 
airspeed and acceleration exist 
only in the horizontal plane 

During steep ascent or descents this 
assumption could cause estimation error.  A 
simple solution is provided in the analysis 

Critical 

R 3.4.29-2 For the special case when 
GM_QUADRATIC is called to 
solve for the time roots 
(Equation 3.4.29-8), there is no 
condition handler for the case 
when there are zero real roots 
returned. 

This could cause an infinite loop error. 
A test could be made where 
 

( )
V a

h h
gt

t2 2<
−

 

(A slow, decelerating aircraft climbing 
several thousand feet) 

Critical 

R 3.4.29-3 The function will not model 
aircraft trajectories above 
60,000 ft or below 0 ft.   

It is possible for aircraft to exceed these 
constraints, however unlikely.  Aircraft 
exceeding these altitude constraints would 
not be probed anyway. 

Minor 

R 3.4.29-4 There are no monitors to 
determine the number of 
“unattainable conditions” that 
occur when altitude constraints 
are exceeded 

Extreme altitude conditions may be poorly 
modeled.  URET has no way to record this 
problem. 

Important 

 

3.4.30 Function:  ST_MAXTAS (PL/I) 
Finds the maximum TAS for an aircraft at a given altitude. 

3.4.30.1 Description:   
This function simply searches the ACC table for the maximum True Airspeed which corresponds to the 
given altitude and the aircraft type.  The processing begins by finding the tables which are associated with 
the given aircraft engine type. Then it searches the Max_TAS_in_Alt_Layer table for the range of altitude 
layers which include the given altitude.  If the input values fall between two table values, then the function 
uses linear interpolation to calculate maximum TAS value from the two closest table values.  
  
The maximum TAS values are based on the aircraft manufacturers’ tables. 
 

3.4.31 Function:  ST_MINTAS (PL/1) 
Finds the minimum TAS for an aircraft at a given altitude. 

3.4.31.1 Description:   
This function simply searches the ACC table for the minimum True Airspeed which corresponds to the 
given altitude and the aircraft type.  The processing begins by finding the tables which are associated with 
the given aircraft engine type. Then it searches the Min_TAS_in_Alt_Layer table for the range of altitude 
layers which include the given altitude.  If the input values fall between two table values, then the function 
uses linear interpolation to calculate minimum TAS value from the two closest table values.  
  
The minimum TAS values are based on the aircraft manufacturers’ tables. 
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3.4.32 Function:  ST_TIME_SSGDATA (PL/I) 
Finds various SSG values (ARD, x, y, altitude, ground speed, true airspeed, pointer to the SSG) for a given 
time. 

3.4.32.1 Description:   
Given a time, this function will return the ARD, position data (x, y), altitude, ground speed, and true 
airspeed from the appropriate SSG which encompasses the given input time.  If the time is between the 
start and end time of the SSG, but not actually coincident with the start or end time, this function will 
interpolate the output values over the segment interval.  If the aircraft is determined to be in a hold at this 
time, the modeled hold values are assigned and ground and true airspeeds are taken from the state segment 
either before or after the hold state segment. 
 

Table of Variable Definitions 
 

Function Variable Description Math Symbol 
X, Y Coordinates of the aircraft at the given time 

(ft) 
x, y 

SSG.X(1), SSG.Y(1), 
SSG.X(2), SSG.Y(2) 

Coordinates of the start and end points of the 
state segment (ft) 

x1, y1 
x2, y2 

SSG_BOX.XPOS, 
SSG_BOX.YPOS 

Coordinates of the assumed aircraft position 
during a hold (ft) 

xh, yh 

ALT Altitude of the aircraft at the given time (ft) z 
SSG.Z(1), SSG.Z(2) Altitude of the aircraft at the start and end 

points of the state segment (ft) 
z1, z2 

SSG_BOX.ZPOS(1) The assumed aircraft altitude at the beginning 
of a hold (ft).  Since altitude is not modeled 
during holds, the altitude at the start and end 
of the hold are assumed to be equal 

zh 

A Ground Speed acceleration (ft/s/s) ag 
SSG.ACC Aircraft true airspeed acceleration parameter 

(ft/s/s) 
at 

GSPD Ground speed of the aircraft at the given time 
(ft/s/s) 

Vg 

SSG.GSPD(1), SSG.GSPD(2) Ground speed of the aircraft at the start and 
end points of the state segment (ft/s/s) 

Vg1, Vg2 

TSPD True airspeed of the aircraft at the given time 
(ft/s/s) 

Vt 

SSG.TSPD(1), SSG.TSPD(2) True airspeed of the aircraft at the start and 
end points of the state segment (ft/s/s) 

Vt1, Vt2 

XTIME Given time at which to find the resultant 
output values (seconds) 

t 

SSG.TIME(1), SSG.TIME(2) Time associated with the start and end points 
of the state segment (seconds) 

t1, t2 

SSG.SEG_LNG The length of the state segment (ft) l 
SSG.ARD Along Route Distance (ft) ard 
SSG.TOTDIST ARD at the beginning of the SSG (ft) ard1 
SSG_BOX.TOTDIST ARD at the beginning of the hold SSG (ft) ardh 
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3.4.32.2  Mathematics: 
The function performs the following simple calculations and logic. 
 
First it determines which SSGs start and end time interval includes the given input time.   
 
The function also checks if the SSG is in a hold or not. If the SSG is not in a hold, the following 
process takes place.  
 
Not in a Hold 
 
The ground speed acceleration over that SSG is calculated by the following equation: 
 

 a
V V

t tg
g g=

−

−
2 1

2 1

 Equation  3.4.32-1   

 Then the time interval, from the start of the SSG to given time, is calculated 
 

 ∆t t t= − 1  Equation  3.4.32-2 

 
The above two values are then used in the simple kinematic equation for constant acceleration to 
get the ground distance traveled over the above time interval  
 

 ( )d Vg t ag t= +1
1
2

2∆ ∆    Equation  3.4.32-3 

 
and added to the total distance traveled by the aircraft at the beginning of the SSG to get the ARD 
 

 ard ard d= +1  Equation  3.4.32-4 

  
This distance is then used in calculating a ratio of the distance traveled over the total length of the 
state segment. 
 

 r d
=

l
 Equation  3.4.32-5 

 
Note: There is no check made here to ensure that the total length of the state segment is not zero 
(as in the ST_ARD_SSGDATA module).  This is a software issue that could cause errors under the 
right conditions. 
 
This ratio is then used as a multiplier in calculating the new coordinates of the aircraft position, 
along the state segment, at the given time. 
 

 ( )x x r x x= + −1 2 1  

 ( )y y r y y= + −1 2 1  Equation  3.4.32-6 
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The new altitude can also be calculated with this multiplier, since the trajectory modeler models 
the change in altitude based on a gradient.  This gradient is defined as the change in vertical 
distance over the change in horizontal distance traveled.  This gradient is constant over the entire 
segment, therefore the change in altitude up to the given time can be calculated with the same 
ratio multiplier (which is based on horizontal movement, in units of feet).  Therefore, the 
following equation can be used to calculate the new altitude at the given time. 
 

 ( )z z r z z= + −1 2 1  Equation  3.4.32-7 

 
Next the function performs the following logic: 

 
  If the True Airspeed acceleration is equal to zero 
 
    If  

 at = 0 , Equation  3.4.32-8 

 
Then assign the ground speed and true airspeed at the first cusp of the state segment 
equal to the ground speed and true airspeed at the given time. 

 
   Then 

 V Vg g= 1  Equation  3.4.32-9 

 V Vt t= 1  Equation  3.4.32-10 

 
Note: This appears to be an incorrect assumption.  If the true airspeed acceleration is zero, the 
ground speed could still change over the segment because of changes in wind.  The ground speed 
should be calculated with the ground speed acceleration calculated earlier in the code (i.e. 
Equation  3.4.32-1).  A more accurate, however more processing intensive, method would be to 
use the same true airspeed along with the DB_AIR_AT_POINT, GM_BRNG, and CNV_GRDSPD 
functions to calculate the exact ground speed at the given time with the known wind conditions. 

 
Otherwise, the function will use the calculated accelerations for ground speed and true 
airspeed to determine the new ground speed and true airspeed at the given time 
 
 Else 

 V V a tg g g= +1 ∆  Equation  3.4.32-11 

  

 V V
V V

t t
tt t

t t= +
−
−









1

2 1

2 1
∆  Equation  3.4.32-12 
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If the SSG is in a hold, the following process takes place.  
 
In a Hold 
 
The position, altitude and ARD are all assigned the assumed aircraft positions during the hold. 
 

 ard ardh=  
 x xh=   
 y yh=  

 z zh=  Equation  3.4.32-13 

  
The ground speed and the true airspeed are simply assigned either the values of the true airspeed 
and ground speed of the previous SSG (previous to the hold SSG) if it exists, or the next SSG 
(after the hold) if it exists. 
 
Finally, the function returns the values for position (x, y), altitude (z), along route distance (ard), 
ground speed (Vg), true airspeed (Vt), and a pointer the state segment which contained the given 
input time. 
 
Note:  In the beginning comments of this module, under outputs, the description for FOUND 
states “Indicates whether the ARD exists on Route”  This should say “Indicates whether the 
XTIME exists during the route”. 
 

Assessment Table 
 

REF# Approximation/Assumption Assessment Impact 
on TJM 

R 3.4.32-1 Equation  3.4.32-9 assumes 
ground speed remains 
constant if true airspeed 
remains constant 

This assumption appears to be incorrect if 
wind values were to change over the length of 
the state segment. 

Important
.   

R 3.4.32-2 Equation  3.4.32-5 does not 
protect against division by a 
zero segment length 

This is a software (robustness) issue which 
could cause processing errors under the proper 
conditions.  There are other areas in this 
module which also do not protect against 
dividing by zero (i.e. Equation  3.4.32-1 and 
Equation  3.4.32-12) 

Important 

3.4.33 Function:  ST_TRANSLATE_ARD (PL/I) 
This function translates a full route ARD to an ORS ARD and vice versa. 

3.4.33.1 Description:   
This function will either translate a full route ARD (defined by the RTE_ORS data structure) to the current 
ORS ARD (defined by the ORS data structure) or vice versa, depending on the value of an input variable 
(TRAN_TYPE).  The supplied ARD need not be at the end point of either the RTE_ORS or ORS segment.  
The RTE_ORS data structure is defined by the initial trajectory which was built based on the flight plan (or 
amendment) route string.  The ORS data structure could be different from the RTE_ORS because of a later 
reconformance.  This function will take the difference between the full route ARD (defined by the 
RTE_ORS data structure) and the ORS ARD (defined by the ORS data structure) and either add or subtract 
this difference to the given ARD (supplied as an input), depending on the TRAN_TYPE value.
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Table of Variable Definitions 
 

Function Variable Description Math Symbol 
IN_ARD The ARD given as the input ardin 
OUT_ARD The ARD supplied as the output ardout 
ORS_END_ARD ARD at the end of the given ORS segment ardoe 
RTE_ORS_END_ARD ARD at the end of the full route, RTE_ORS, 

segment 
ardre 

ORS.ACCUM_DIST ARD at the beginning of the given ORS 
segment 

ardos 

RTE_ORS.ACCUM_DIST ARD at the beginning of the full route, 
RTE_ORS, segment 

ardrs 

ORS.LNGTH The length of the ORS segment lo 
RTE_ORS.LNGTH The length of the RTE_ORS segment lr 
 

3.4.33.2 Mathematics: 
For instance, if TRAN_TYPE = 1 the function will translate a full route ARD to a ORS ARD, if 
TRAN_TYPE = 2 the function will translate a ORS ARD to a full route ARD. 
 
For TRAN_TYPE = 1, the function first finds the ARD at the end point of both the ORS and 
RTE_ORS segments by adding the length of the segment to the ARD at the beginning of the 
segment. 

 ard ard loe os o= +  Equation  3.4.33-1 

 ard ard lre rs r= +  Equation  3.4.33-2   

 
 The function then takes the difference of these two values 
 

 d ard ardre oe= −  Equation  3.4.33-3 

 
 and subtracts this difference from the given ARD 
 

 ard ard dout in= −  Equation  3.4.33-4 

 
The function will then check to ensure ardout is not less than zero or greater than ardoe . If it is the 
value of zero or the ardoe would be assigned, respectively, in its place.   
 
In the case when TRAN_TYPE = 2, all the above steps are about the same except that the function 
adds the difference to the given ARD 
 

 ard ard dout in= +  Equation  3.4.33-5 

 
 and checks are made with respect to the RTE_ORS endpoints. 
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There are no assumptions or approximations made in this module which would have significant impact on 
the algorithms.  

 

3.4.34 Function:  ST_XYTOTIME (PL/I) 
Finds the time of a given (x, y) from an SSG. 

3.4.34.1 Description:   
This function will take a pointer to a particular state segment and a set of x, y coordinates and returns the 
time it would take for the aircraft to travel along its route to the given coordinates.  This function calculates 
this time by representing the motion of the aircraft with a simple kinematic equation.  If ground speed 
acceleration is close to zero, the function simply  calculates an increment of time to be added to the start of 
the state segment by using a distance ratio.  If there is an acceleration, the kinematic equation becomes a 
quadratic, and the roots of the quadratic are then solved (using the quadratic formula).  Any meaningful 
roots are used as a solution.  If there are no meaningful roots (i.e. both roots fall outside the state segment 
time interval), then the time associated with state segment end-point that is closest to one of the roots is 
used.   

 
This function is based on classic physics and mathematics.  It assumes a constant ground speed 
acceleration over the entire length of the segment. 

 
 

Table of Variable Definitions 
 

Function Variable Description Math Symbol 
XX, YY Coordinates of the aircraft position supplied as 

inputs to the function (nm) 
x, y 

SSG.X(1), SSG.Y(1), 
SSG.X(2), SSG.Y(2) 

Coordinates of the start and end points of the 
given SSG, respectively (nm) 

x1 , y1 
x2 , y2 

SSG.SEG_LNG The horizontal length of the SSG l 
SSG.GSPD(1), SSG.GSPD(2) The ground speed of the aircraft at the start 

and end points of the given SSG, respectively 
(ft/s/s) 

Vg1 , Vg2 

 

3.4.34.2 Mathematics: 
 This function solves a basic kinematic equation of motion in the form of a quadratic to determine 

the time roots.  The motion equation used is 
 

 d V t atg= +1
1
2

2  Equation  3.4.34-1  

or equivalently, 

 1
2

2 0a t V t dg g+ − =  Equation  3.4.34-2 

 
where ag is the calculated ground speed acceleration over the course of the segment, and is 
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calculated as (assumes constant acceleration) 
 

 a V
t

V V
t tg
g g= =

−

−
∆
∆

2 1

2 1
 Equation  3.4.34-3 

 
 and d is the horizontal distance traveled by the aircraft from the start of the SSG to the given x, y 

position. 
 

 ( ) ( )d x x y y= − + −1
2

1
2  Equation  3.4.34-4 

 
The function attempts to solve the quadratic in Equation  3.4.34-2 by breaking it up into the 
appropriate terms of the quadratic formula.  
 

 A a= 1
2  

 B Vg= 1  
 C d= −  
   solve for t in 

 At Bt C2 0+ + =  Equation  3.4.34-5 

  
If A ≈ 0  the function assumes a constant ground speed and uses a simple ratio of distance over 
segment length to interpolate a time increment. 
 

 ( )t t t
d
l= −2 1  Equation  3.4.34-6 

  
 Otherwise, the function solves the two roots of the classic quadratic formula 
 

 t B B AC
A

=
− ± −2 4

2
 Equation  3.4.34-7 

  
 Upon solving this formula, there are several conditions that are handled that should be noted 
 

• If the term inside the radical, B2-4AC, is less than 0, the function assigns a zero value to this 
term and the quadratic simplifies to  

 t B
A

=
−
2

 

• If the first root is between the SSG time interval, the function uses this real root. 
 

  If ( )0 1 2 1≤ ≤ −t t troot  
 

• Else if the second root is between the SSG time interval, the function uses this real root. 
• If neither root is within the SSG time interval, the function uses the time associated with the 

SSG endpoint which is closest to one of the root solutions. 
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Finally, the calculated time increment, t, is added to the time at the start of the SSG, to arrive at 
the total time for the aircraft to reach the given coordinates along its route. 
 

 t t ttotal = +1  Equation  3.4.34-8 

 
Assessment Table 

 
REF# Approximation/Assumption Assessment Impact 

on TJM 

R 3.4.34-1 Equation  3.4.34-3 assumes a 
constant ground speed 
acceleration 

This assumption may be incorrect when 
various winds could have inconsistent effects 
on the ground speed over the length of a 
segment.  The proper modeling of this could 
result in a considerable increase in 
processing (i.e. a new segment at every 
change in wind direction/speed) 

Important 
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4. Assessment Findings and Observations 
This section provides a summary of the assessment findings and observations.  The URET D1.1 limitations 
and assumptions determined through the independent assessment effort are provided, as well as a summary 
of the algorithmic assessment tables contained in Section 3.   ACT-250’s suggested improvements to the 
source code are also provided, as well as recommendations for future analysis.   

4.1 URET D1.1 Limitations 
The following limitations should be considered restricted or non-existing capabilities of the URET D1.1 
conflict probe.  This section lists these limitations to give the reader a clearer understanding of what URET 
can and cannot do.  It is not intended to imply that these limitations are right or wrong, but rather leaves 
these issues open for future discussion.  (Note:  if it is known that the limitation is being addressed in 
URET Delivery 2 (D2), this is so noted). 
 
• URET D1.1 does not probe all aircraft in the AERA boundary (only categories A, B and inbound F) 
• URET D1.1 does not monitor the conformance of, or reconform, all aircraft trajectories (only 

categories A and sometimes B). 
• URET D1.1 does not probe or reconform aircraft determined to be in vertical drift 
• URET D1.1 does not probe the holding trajectories 
• URET D1.1 performs an event driven conflict probe for a fixed distance into the future.  It does not 

continuously reprobe all aircraft pairs (URET D2  performs a periodic reprobe).  The events that cause 
a conflict probe of an aircraft are:  entry into the ARTCC airspace where the trajectory is first created, 
or a trajectory re-modeling.  The probe does not examine the entire trajectory for aircraft-to-aircraft 
conflicts.  It examines only a window of time into the future, called the look ahead time.  Therefore, if 
an event does not take place over the length of the look ahead time window, any future conflicts will 
not be detected. The consequence is a missed or delayed alert. 

• In the lateral reconformance logic, there is no unique solution to reconform unreported holds or a track 
which is offset parallel to the trajectory. 

• The coordinate system used in D1.1 allows for the system to only function in one ARTCC airspace.  
Significant changes must be made to enhance URET D1.1 to work in a multi-ARTCC environment 

• URET D1.1 assumes that all SUAs are active.  The system does not allow the user to disable conflict 
detection for inactive sectors. 

• URET D1.1 notifies the user about any detected conflicts, regardless of the likelihood of the conflict  
(URET D2 incorporates new notification logic which considers conflict likelihood). 

• The horizontal route conversions cannot account for Type 2 or 4 coded routes. 
• The trajectory modeler can only model one interim altitude at a time per flight plan. 
• URET D1.1 has problems with modeling climb interim altitudes since it assumes the aircraft will 

remain at that altitude for the remainder of the flight. 
• TKM documentation was minimal or outdated.   TKM was continuously evolving through multiple 

URET deliveries during the course of the assessment. 
• The time and position of the minimum separation is not an option to be presented by the display. 
 

4.2 URET D1.1 Assumptions 
The following are some noteworthy assumptions made in URET D1.1. 
 
Trajectory modeling assumptions: 
 
• Aircraft weight is assumed to be constant throughout the entire flight. 
• The value of 3.00 is used for the maximum descent factor for all aircraft types. 
• The value of 1.67 is used for cruise acceleration and idle deceleration for all aircraft types. 
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• The temperature determined at the beginning of the State Segment is assumed to be constant over the 
length of the segment. 

• Acceleration and altitude gradient are constant over the entire trajectory segment. 
• Trajectories are built with a geometric altitude, while aircraft actually fly pressure altitudes above 

18000 feet. 
• The use of stereographic projection introduces small errors in aircraft position estimates because it is 

approximating part of the surface of a sphere with a plane.  The errors increase toward the edges of the 
ARTCC airspace. 

• Aircraft descent and climb characteristics (gradient, speeds) are dependent on temperature deltas from 
standard atmosphere.  If the temperature falls between two delta values, linear interpolation is done to 
approximate these values. 

• Turns are modeled as an instantaneous change in heading instead of modeling a turn radius.  Aircraft 
trajectories are approximated with a series of linear segments. 

• The climb, descent, and speed profiles are based on the aircraft manufacturer’s recommended profiles 
for that aircraft type. 

• External data sources, such as wind and track positions, are assumed to be accurate.  However, 
inaccuracies in the external data will have significant impact on the accuracy of the trajectories 
modeled. 

 
 
Conflict Prediction Assumptions: 
 
• The conflict probe assumes accurate trajectory and track data within conformance bounds. 
• APD always assumes aircraft are within the rectangular uncertainty region (i.e. conformance bounds) 

which is centered on the monitored trajectory of the aircraft. 
• At any specific unit of time, URET assumes an aircraft is within a region of uncertainty.  These 

regions are represented by a series of conformance boxes along the predicted trajectory of the aircraft.  
The conflicts predicted are based on whether the pair of aircraft conformance boxes are less than 
separation distance, not whether the pair of trajectory centerlines are less than separation. 

• URET assumes larger conformance regions around the trajectory centerline during a turn, climb, or 
descent.  These larger distances account for the increased uncertainty associated with the maneuver of 
the aircraft. 
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4.3 Summary of Algorithmic Assessment Tables 
As described in Section 3, the actual source code was examined for assumptions and approximations.  
These assumptions and approximations are presented in tables following each specific algorithm analyzed.  
The following table consolidates and summarizes all these assessment tables.   It is sorted first by impact 
category, then module name, and finally function name.  The reference number for each assessment item 
refers to the section number where the item first appears in Section 3. 
 
REF# Function Name Impact 

Category 
Module Brief Description 

R 3.1.4-1 CFP_MIDDLE_HORIZ ( C ) Critical APD Acceleration is assumed minor 
over the segment and only one of 
the end point position vectors is 
used to check the separation. 

R 3.4.17-3 GM_REGN (PL/I) Critical APD Accuracy of algorithm directly 
related to the GM_TSTPNT 
function. 

R 3.4.27-1 ST_FINDARD (PL/I) Critical APD, 
TJM 

Closest approach point not on the 
flight segment has an error in the 
distance calculation. 

R 3.3.1-1 CNV_GRD_TO_TAS (PL/I) Critical TJM Assumes small inertial path angle. 
R 3.4.3-1 CNV_GRDSPD (PL/I) Critical TJM Assumes small path angle. 
R 3.4.9-3 CNV_XYLL (PL/I) Critical TJM Approximates angles using a 

power series. 
R 3.2.2-1 EGRAD (PL/I)  Critical TJM A small flight path angle is 

assumed. 
R 3.2.2-3 EGRAD (PL/I) Critical TJM Approximation in gradient 

calculation. 
R 3.4.23-1 ST_CLIMB_DIST (PL/I) Critical TJM Assumes altitude layer climb 

gradients. 
R 3.4.23-2 ST_CLIMB_DIST (PL/I) Critical TJM Assumes the aircraft’s climb 

gradient factor supplied by the 
AMC table. 

R 3.4.24-1 ST_CLIMB_GRADIENT 
(PL/I) 

Critical TJM Assumes altitude layer climb 
gradients and the IAS (or Mach) in 
the ACC table. 

R 3.4.25-1 ST_DESCENT_DIST (PL/I) Critical TJM Assumes altitude layer descent 
gradients and the idle deceleration 
rate. 

R 3.4.25-2 ST_DESCENT_DIST (PL/I) Critical TJM Assumes descent gradient factor 
supplied by the AMC table. 

R 3.4.26-1 ST_DESCENT_GRADIENT 
(PL/I) 

Critical TJM Assumes altitude layer descent 
gradients and the IAS (or Mach) in 
the ACC table. 

R 3.4.28-1 ST_IASALT (PL/I) Critical TJM Assumes true airspeed and 
acceleration exist only in the 
horizontal plane. 

R 3.4.28-2 ST_IASALT (PL/I) Critical TJM There is no condition handler for 
the case when there are zero real 
roots returned for the quadratic 
equation calculation. 
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REF# Function Name Impact 
Category 

Module Brief Description 

R 3.4.29-1 ST_MACHALT (PL/I) Critical TJM Assumes true airspeed and 
acceleration exist only in the 
horizontal plane. 

R 3.4.29-2 ST_MACHALT (PL/I) Critical TJM There is no condition handler for 
the case when there are zero real 
roots returned for the quadratic 
equation calculation. 

R 3.3.12-4 TKM_GM_REGN( C ) Critical TKM Accuracy of algorithm directly 
related to the TKM_GM_TSTPNT 
function. 

R 3.3.13-2 TKM_GM_TSTPNT ( C ) Critical TKM Unprotected return case for an if 
statement. 

R 3.3.13-3 TKM_GM_TSTPNT ( C ) Critical TKM Potential division by zero problem 
in code. 

R 3.1.1-1 CFP_COARSE_HORIZ ( C ) Important APD Assumes aircraft in a hold are 
stationary not flying a holding 
pattern. 

R 3.1.2-1 CFP_FINE ( C ) Important APD Approximates the velocity in the 
relative velocity vector calculation 
with average ground velocity. 

R 3.1.2-2 CFP_FINE ( C ) Important APD Checks for the round off case 
where the number of intersections 
equals zero or the maximum ratio 
is <=0. 

R 3.1.2-3 CFP_FINE ( C ) Important APD The case where the P and Q 
vectors are outside the octagon 
and the GM_INSECS finds one 
intersection is assumed round off 
error. 

R 3.1.4-2 CFP_MIDDLE_HORIZ ( C ) Important APD Assumes constant acceleration  to 
approximate the velocity in the 
relative velocity vector calculation 
with average ground velocity. 

R 3.1.4-3 CFP_MIDDLE_HORIZ ( C ) Important APD Checks in place for floating point 
rounding errors in CFP_POSIT, 
which may cause failure of 
algorithm. 

R 3.1.5-1 CFP_MIDDLE_VERT ( C ) Important APD Round off problems have caused 
errors due to single precision 
accuracy as expressed in the 
comments. 

R 3.1.5-2 CFP_MIDDLE_VERT ( C ) Important APD Potential for incorrect number of 
roots for particular geometric 
situation returned by CFP_V_INT 
(a sub-function call by the middle 
filter). 

R 3.1.5-3 CFP_MIDDLE_VERT ( C ) Important APD Assumes prior filter check for 
equal adjusted interval cusp times. 

 
REF# Function Name Impact 

Category 
Module Brief Description 
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R 3.1.9-1 CFP_POSIT ( C ) Important APD Assumes constant acceleration 
over the interval. 

R 3.1.6-1 CFP_RELVEC  ( C ) Important APD Assumes constant acceleration for 
the segment. 

R 3.1.8-1 CFP_V_INT ( C ) Important APD Algorithm uses an  ε value to 
define a time cutoff value of a 
conflict. 

R 3.1.8-2 CFP_V_INT ( C ) Important APD Both the aircraft altitude changes 
and boundaries are assumed linear.

R 3.4.17-2 GM_REGN (PL/I) Important APD The choice of  the cut off value for 
the number of algorithm iterations 
(nrpt=8). 

R 3.4.18-1 GM_TSTPNT (PL/I) Important APD Difference in ε  and pntsep  
variable distances between C and 
PL/I version. 

R 3.4.18-2 GM_TSTPNT (PL/I) Important APD Difference in the TKM C version 
of the algorithm and the PL/I 
version,  pntsep value was not 
used in C version. 

R 3.4.22-1 ST_CHK_VP (PL/I) Important APD Linear interpolation is used to 
estimate the specific coordinates 
of each intersection point. 

R 3.4.22-2 ST_CHK_VP (PL/I) Important APD Small parameter distances are used 
to assume intersection points are 
alike. 

R 3.4.3-2 CNV_GRDSPD (PL/I) Important TJM Uses large cross wind 
approximation. 

R 3.4.6-2 CNV_SPEED ( C ) Important TJM Models subsonic airspeeds only. 
R 3.2.2-2 EGRAD (PL/I) Important TJM Approximation in ground speed 

calculation. 
R 3.4.21-1 ST_ARD_SSGDATA (PL/I) Important TJM Assumes a constant acceleration 

over the entire length of the 
segment. 

R 3.4.28-4 ST_IASALT (PL/I) Important TJM There are no monitors to 
determine the number of 
“unattainable conditions” that 
occur when altitude constraints are 
exceeded. 

R 3.4.29-4 ST_MACHALT (PL/I) Important TJM There are no monitors to 
determine the number of 
“unattainable conditions” that 
occur when altitude constraints are 
exceeded. 

R 3.4.32-1 ST_TIME_SSGDATA (PL/I) Important TJM Assumes ground speed remains 
constant if true airspeed remains 
constant. 

R 3.4.32-2 ST_TIME_SSGDATA (PL/I) Important TJM Does not protect against division 
by a zero segment length. 

R 3.4.34-1 ST_XYTOTIME (PL/I) Important TJM Assumes a constant ground speed 
acceleration. 

 
REF# Function Name Impact 

Category 
Module Brief Description 
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R 3.3.12-1 TKM_GM_REGN( C ) Important TKM Algorithm efficiency difference 
between TKM version and general 
utility version 

R 3.3.12-3 TKM_GM_REGN( C ) Important TKM The choice of  the cut off value for 
the number of algorithm iterations 
(nrpt=8). 

R 3.3.13-1 TKM_GM_TSTPNT ( C ) Important TKM Difference in ε   variable 
distances between C and PL/I 
version. 

R 3.3.13-4 TKM_GM_TSTPNT ( C ) Important TKM Difference in the TKM C version 
of the algorithm and the PL/I 
version,  pntsep value was not 
used in C version. 

R 3.3.15-1 TKM_TK_HDG ( C ) Important TKM The function does not protect 
against a β1 value equal to zero in 
a denominator. 

R 3.3.15-2 TKM_TK_HDG ( C ) Important TKM Assumes all headings are with 
respect to true North. 

R 3.1.1-2 CFP_COARSE_HORIZ ( C ) Minor APD Since aircraft is assumed at a point 
in a holding pattern, the strip 
distance is calculated using a 
slightly different perpendicular 
line than the other cases. 

R 3.1.1-3 CFP_COARSE_HORIZ ( C ) Minor APD Approximation of minimum 
segment length to determine if 
aircraft is in a hold. 

R 3.1.1-4 CFP_COARSE_HORIZ ( C ) Minor APD Misleading comments for the 
description of perpendicular 
distances. 

R 3.1.3-1 CFP_INTERSECT_TIME   
( C ) 

Minor APD Assumes no acceleration is present 
since only called for relative 
velocity calculation. 

R 3.1.4-4 CFP_MIDDLE_HORIZ ( C ) Minor APD The dot product of V is not the 
normal of the velocity vector.  It is 
the squared magnitude of the 
relative velocity vector.  Comment 
needs adjustment. 

R 3.1.6-2 CFP_RELVEC  ( C ) Minor APD Assumes current relative velocity 
vector if no acceleration is present. 

R 3.1.7-1 CFP_TRIM  ( C ) Minor APD  Assumes all aircraft segments that 
enter algorithm have overlapping 
time intervals. 

R 3.1.7-2 CFP_TRIM  ( C ) Minor APD All accuracy and calculation 
specifically carried in CFP_POSIT 
algorithm. 

R 3.1.8-3 CFP_V_INT ( C ) Minor APD The variable names, zll, zl1, zul, 
and zu1, are very difficult to 
distinguish between when 
reviewing the code. 

 
REF# Function Name Impact 

Category 
Module Brief Description 

R 3.4.14-1 GM_CONVEX ( C ) Minor APD Comment is incorrect and needs 
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correction.  
R 3.4.15-1 GM_INSEC ( C ) Minor APD Assumes the coordinates are only 

positive. 
R 3.4.15-2 GM_INSEC ( C ) Minor APD Floating point adjustments need 

documentation for the function. 
R 3.4.17-1 GM_REGN (PL/I) Minor APD The ε   value provides the ratio of 

the segment distance which 
considers a random point is on the 
polygon. 

R 3.4.22-3 ST_CHK_VP (PL/I) Minor APD A consistent global variable 
should be used as the small 
parameter distance 

R 3.4.3-3 CNV_GRDSPD (PL/I) Minor TJM Approximation in derivation of 
ground speed.  

R 3.4.4-1 CNV_LLXY (PL/I) Minor TJM The point being converted is 
sufficiently near the point of 
tangency. 

R 3.4.4-2 CNV_LLXY (PL/I) Minor TJM The function unnecessarily 
calculates the cosφ0g  and cosφg . 

R 3.4.4-3 CNV_LLXY (PL/I) Minor TJM The check for bounds on the 
cosine function is unnecessary. 

R 3.4.4-4 CNV_LLXY (PL/I) Minor TJM The conformal latitude of the point 
of tangency can be a stored value. 

R 3.4.6-1 CNV_SPEED ( C ) Minor TJM Assumes no instrument error. 
R 3.4.6-3 CNV_SPEED ( C ) Minor TJM Air flow is isentropic and 

compressible. 
R 3.4.7-1 CNV_STD_ATMOS (PL/I) Minor TJM Approximates the gravitational 

acceleration as a constant, 
independent of altitude. 

R 3.4.7-2 CNV_STD_ATMOS (PL/I) Minor TJM Assumes that the geopotential 
altitude will not exceed 82021 ft. 

R 3.4.9-1 CNV_XYLL (PL/I) Minor TJM The conformal latitude and 
colatitude of can be calculated 
only once and stored. 

R 3.4.9-2 CNV_XYLL (PL/I) Minor TJM The variable names ALPHA and 
DLATC are used for multiple 
variables. 

R 3.4.9-4 CNV_XYLL (PL/I) Minor TJM It is assumed that neither the point 
being converted nor the point of 
tangency are at the north pole. 

R 3.4.16-1 GM_PTLINE (PL/I) Minor TJM Assumes larger line segment for x. 
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REF# Function Name Impact 

Category 
Module Brief Description 

R 3.4.28-3 ST_IASALT (PL/I) Minor TJM The function will not model 
aircraft trajectories above 60,000 
ft or below 0 ft. 

R 3.4.29-3 ST_MACHALT (PL/I) Minor TJM The function will not model 
aircraft trajectories above 60,000 
ft or below 0 ft. 

R 3.3.12-2 TKM_GM_REGN( C ) Minor TKM The ε   value provides the ratio of 
the segment distance which 
considers a random point is on the 
polygon. 

 
 

4.4 Suggested Improvements 
It is expected that with prototype code there will be areas of dead code, lack of proper error trapping, 
inconsistent variable definitions, inaccurate source code comments and even some low impact logic errors. 
While reviewing the source code of the URET D1.1 algorithms, several anomalies were observed and 
recorded.  This section lists the name of the source code modules where anomalies were observed, a brief 
description of the anomaly, and recommended solutions (if any) to the problem.  If the problem was also 
described in the assessment table of the module, the reference number used in the assessment table is 
included. 
 
This section provides the developer an easy way to identify and trace any coding issues raised in this 
report.  It assumes that the reader has some knowledge of the concepts in these functions and its code 
structure.  For a more detailed description of each of the referenced source code modules, refer to Section 
3. 

4.4.1 CFP_COARSE_HORIZ  
There are misleading comments and documentation description of Case 2 and 3 perpendicular distance.  
The numerators: Z3, Z4, H3, and H4 are not equivalent to Case 1 perpendicular, but defined as the adjacent 
side of the right triangle (i.e. A1 to P to B1).  The code needs more descriptive comments and 
documentation for the use of the adjacent side distance.  This comment addresses the code’s clarity and 
readability not it’s performance.  (See R 3.1.1-4) 

4.4.2 CFP_MIDDLE_HORIZ 
As suggested in the code’s comments, the Q dot Q should be checked and if either are less than m, the 
function should result in a detected conflict.  The comments suggest that only one vector check is 
sufficient, however if round off problems are present both vectors should be checked against m.  The 
comments also state that the check is for the “norm” equal to zero, however the V dot V (vdotv variable) is 
equivalent to the magnitude of the relative velocity squared not the normal vector.  If this magnitude is 
equal to zero, the position vectors P and Q should be equivalent, since there is no relative movement for 
the time interval of the flight segment (the aircraft would be trailing or parallel).  (See R 3.1.4-4). 

4.4.3 CFP_V_INT 
The variables should be renamed for better readability.  For the definition of zll, zl1, zul, and zu1, the 
variable names chosen are very difficult to distinguish between.  For traceability and clarity changing the 
names or using capitol letters would be much more appropriate.  (See R 3.1.8-3) 
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4.4.4 CNV_LLXY 
(1) The points that can be stereographically projected from a sphere are limited to the hemisphere centered 

on the point of tangency.  The coordinate point being converted by the function must be within 90 
degrees of the point of tangency.  For robustness, the function should do this bounds check before 
proceeding with the calculation of X and Y.  (See R 3.4.4-2) 

  
(2) The function unnecessarily calculates the cosine of the geodetic latitude of the point of tangency and 

the cosine of the geodetic latitude of the point being converted.  This code should be deleted.  (See R 
3.4.4-3) 

  
(3) The bounds check on the cosine function is unnecessary because the bounds check has already been 

run on the sine calculation.   (See R 3.4.4-4) 

4.4.5 CNV_SPEED 
The code which determines the geopotential altitude in the beginning of this module is never used and 
should be eliminated. 

4.4.6 CNV_XYLL 
(1) The calculation of the conformal latitude of the point of tangency of the stereographic plane by 

CNV_LLXY and CNV_XYLL should be done only once for a given ARTCC and the results saved for 
future use.   (See R 3.4.9-2) 

  
(2) Distinct variables should have distinct variable names.  (See R 3.4.9-3) 
  
(3) Neither the point of tangency of the stereographic plane nor a coordinate point being converted may be 

at the north pole.  The function should check its input data for these two cases.   
 (See R 3.4.9-5)  

4.4.7 GM_CONVEX  
The method description listed in the comment section of the function states that the test point is inside the 
polygon if the Q determinant is less than or equal to zero; the code does exactly the opposite.  (See R 
3.4.14-1) 

4.4.8 GM_INSEC 
(1) The function determines if the line equations for two lines are equivalent and thus collinear when the 

sum of the x coordinates is equal to zero. 
 

xs = x1 + x2 + x3 + x4 = 0  
 
 For the x values to sum to zero, they either all must be zero or the variables must have both positive 

and negative values.  Unless there are other assumptions relating to the source of the x coordinates, the 
sum and the equivalent slopes do not ensure that the lines are collinear.  This check may only be an 
error trap for all zero values for the x coordinates and used for single precision arithmetic, but this 
assumes all the x coordinates are positive (in the first quadrant).  Therefore, there is no reason for 
keeping this portion of the source code at this time. 

 
 This is probably a minor impact in APD since the consequence may produce either a parallel or 

collinear line which results in the same outcome in only one APD function call, the CFP_FINE 
function.  However, the impact of GM_INSEC’s assumptions  on other module’s functions is yet to be 
determined.  (See R 3.4.15-1) 
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(2) In GM_PTLINE, another approach was used to calculate the intersection point to a line.  In summary, 
GM_PTLINE uses the point slope equation of the line to find the intersection point.  A ratio was not 
used in this algorithm to determine if the intersection took place inside the line segment, but a simple 
check in the x coordinates was utilized.  Since both approaches accomplish the same results, the 
simpler, more efficient approach should be the only method used (probably the GM_PTLINE 
approach). 

 
(3) The check for the intersection of the lines, the check for parallel/collinear line pairs, and the final 

determination of the intersection point all incorporate adjustments to minimize the effect of floating 
point arithmetic error in single precision.  The problem is that these adjustments are undocumented in 
the code.  This function needs more documentation or comments explaining these adjustments.  (See R 
3.4.15-2). 

4.4.9 GM_PTLNE 
The source code which accounts for the case when the line segment is determined to be neither vertical or 
horizontal, checks if the intersecting x value falls within 

  
( ) ( )

( ) ( )

x x x

x x x

1 2

2 1

1 1

1 1

− ≤ ≤ +

− ≤ ≤ +

int

int

or  

 
This assumes a larger line segment in the x dimension than what actually exists.    This was done to correct 
for the inaccuracy of the single precision assignments.  Future revisions of this module should use only 
double precision and eliminate the extensions the x dimensions.    (See R 3.4.16-1). 

4.4.10 ST_CHK_VP  
The small parameter value 1000 feet / 10 seconds should be defined by a global (or shared) variable to be 
consistent with other algorithms and improve the readability of the code.  (See R 3.4.22-3). 

4.4.11 ST_FIND_ARD 
An incorrect statement was found in the code.  For the second loop where the GM_PTLINE found the 
closest approach point not on the flight segment, the distance calculation for the first end point has an error.  
The second term for the y dimension of the first end point in the code is listed as y2 where it should be y1. 
The result of this error could return an incorrect ARD by as much as one segment length, since the 
minimum and maximum ARD values restricts the search.  This may not cause a current problem in APD 
and TJM since all calls are from ST_CHK_VP which never result in a calculation in the second loop.  (See 
R 3.4.27-1). 

4.4.12 ST_IASALT  
(1) This function assumes that true airspeed and acceleration exist completely in the horizontal plane and 

have no component in the vertical dimension.  This assumption is probably made because the 
descent/ascent angles are usually small resulting in very small vertical velocity and acceleration 
components.  However, there are cases when the angle of climb or descent is significant (i.e. as much 
as 25°).  By ignoring the vertical component of true airspeed and acceleration, these values could be in 
error by as much as 6%. 

  
The solution to this anomaly is to address the vertical and horizontal components of true airspeed 
separately.  The angle of descent or ascent is simply a trigonometric function of the gradient. 
 

   ( )φ = arcsin g  
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The horizontal and vertical components of true airspeed are then expressed as 
 
 vertical:     ( )Vt sin φ  

 horizontal: ( )Vt cos φ  
 
 
 

 
 

 
 
 
 
 

This approach should also be used when the acceleration, a, is calculated. Acceleration could then be 
expressed in both horizontal and vertical components, ah and av, respectively.  Subsequently, the 
equation which determines the test altitude would be written as 

 

 ( )h h V t a t gt t h= + +





cos φ 1
2

2  

 
 (See R 3.4.28-1). 

 
(2) This function calls the GM_QUADRATIC function to determine quadratic coefficients.  

GM_QUADRATIC returns the number of real roots (either 1, 2 or 0) and the corresponding values.  
ST_IASALT will then use the smallest, non-negative root as the test time, t, however there is no error 
condition handler here if GM_QUADRATIC returns 0 real roots.  This error could cause an infinite 
loop since the variable TT would never change its value.   It may be feasible for this condition to exist 
for a slow, decelerating aircraft climbing several thousand feet (i.e. practicing stalls), where 

 
( )

V a
h h

gt
t2 2<

−
 

 
 (See R 3.4.28-2) 

 
(3) The function contains error trapping routines that check for impossible situations, such as a climbing 

aircraft exceeding its maximum allowable altitude or a descending aircraft going below an altitude of 
0.  If either of these conditions are true, it makes the determination that the target IAS is unattainable 
with the given constraints and terminates the function.  The last ht and t that were calculated are then 
returned from this function.  It should be noted  that this “unattainable condition” does not record an 
error code.  Therefore it is unknown how many times this situation takes place.  (See R 3.4.28-4) 

4.4.13 ST_TIME_SSGDATA 
(1) In the beginning comments of this module, under outputs, the description for FOUND states “Indicates 

whether the ARD exists on Route”.  This should say “Indicates whether the XTIME exists during the 
route”. 

  
(2) There are areas in this module which do not protect against dividing by zero.  This is a software 

(robustness) issue which could cause processing errors under the proper conditions.  (See R 3.4.32-2) 
  
(3) If the True Airspeed acceleration is equal to zero 
 

Vt 

φ

h 

x 

Vt cos(φ)

Vt sin(φ) 
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  If at = 0 ,  
 

Then assign the ground speed and true airspeed at the first cusp of the state segment equal to the 
ground speed and true airspeed at the given time. 

 
 Then 

 V Vg g= 1   

 V Vt t= 1   

This appears to be an incorrect assumption.  If the true airspeed acceleration is zero, the ground speed 
could still change over the segment because of changes in wind.  The ground speed should be 
calculated with the ground speed acceleration calculated earlier in the code (i.e. Equation  3.4.32-1).  
A more accurate, however more processing intensive, method would be to use the same true airspeed 
along with the DB_AIR_AT_POINT, GM_BRNG, and CNV_GRDSPD functions to calculate the 
exact ground speed at the given time with the known wind conditions. 

4.4.14 TKM_GM_REGN 
The function converted from the earlier PL/I version is less efficient than the earlier code and may need 
further investigation on how it was reprogrammed in C. The original PL/I version of this function was 
written to only generate additional random points if an intersection was found too close to the end point.  
This function always runs nrpt times n iterations, while the PL/I version runs a maximum of nrpt times n 
iterations. This delta between the two versions will not effect the accuracy of the code, since only one 
random point sufficiently outside the polygon can be utilized to determine if the test point is inside the 
polygon.  If all nrpt random points are generated, the result is the same, however, the code efficiency 
would be improved if only one were used.  (See R 3.3.12-1) 

4.4.15 TKM_GM_TSTPNT  
The following items highlight some of the deficiencies when the code was converted from PL/I to C.  
 
(1) If the test point is less than a distance  pntsep from the given line, the point is evaluated to be between 

the end  points of the given line segment.  However, the line is extended by ε   for the TKM version of 
GM_TSTPNT in C, but for the PL/I version the line segment is extended only by pntsep.  The pntsep 
value is 1 foot and the ε  value is 100 feet. The transfer from C to PL/I will provide different results 
not because of coding in a different language, but because different comparison values are used.  An 
investigation into the potential reasons for the change are necessary.  (See R 3.3.13-1). 

  
(2) For each check (includes three in this function), the “else return(false);” should be added to protect 

against an undetermined return from the function.  For example, the last case where the distance 
equation returned a value of zero because the test point is collinear with the line, the result will end the 
function without specifically assigning the value FALSE.  The specific compiler by default may or 
may not assign a zero value (which will return the correct value) or the return value may be 
reinitialized before the call to this function, but this is not sufficient for portable ANSI C code.  
(NOTE:  The original PL/I version was written differently to protect under this case.)  

 (See R 3.3.13-2) 
  
(3) As a result of the unprotected return in the function for the horizontal line case, a horizontal line 

checked against a point outside the endpoints of the line segment but on the line will return a division 
by zero (s1 = 0.0 while s2 will be in error…).  The corresponding problem is present for the vertical 
case as well. The original PL/I version had goto statements to protect under this case.  This is not 
necessary, but a simple “else statement” with a return of false would protect against the problem.  (See 
R 3.3.13-3). 
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(4) The check carried out to determine if a point is between the end points of the line segment when the 

line segment is either vertical or horizontal uses the pntsep value to extend the lines under the PL/I 
version but not for the C version here. It is actually more accurate not to use the pntsep value, but this 
may cause errors due to round off during floating point arithmetic.  Therefore, an investigation is 
required to determine why this was not used in this function.  (See R 3.3.13-4). 

4.4.16 TKM_TK_HDG 
The function does not protect against a β1 value equal to zero in the denominator of the inverse tangent 
function.  This code could cause a floating point error while processing.  (See R 3.3.15-1). 

4.4.17 TKM_GET_RTE_ORS 
The function never uses the ORS_OFFSET value which is supplied as an input. 
 

4.4.18 UTL_XY_ARD_BY_RTE 
The source code comments and name of this function are misleading.  The function does not calculate the 
ARD at the x, y position.  It only computes the minimum distance from the given point to any point along 
the original route (RTE_ORS). 
 

4.5 Conclusions 
This document reports the results of an assessment of the core algorithms found within the URET D1.1 
source code.  The source code of the algorithms that were assessed was found to be based on sound 
engineering principles.  The assumptions and approximations made by MITRE/CAASD are reasonable for 
the current prototype software requirements.    
 
Since the scope of this assessment was scaled back to an analytic assessment of the algorithmic source 
code modules, there is no empirical data derived from simulations or live data to validate the algorithms12.  
Therefore, the assumptions and approximations should still be independently validated with a stringent set 
of simulations and live data tests to ensure the robustness and accuracy of the algorithms (e.g., Many 
assumptions have been made in the design of the URET trajectory prediction algorithms.  These 
assumptions need to be validated by comparing the URET-predicted aircraft trajectories with the actual 
aircraft tracks reported by the HCS under a variety of scenarios). 
 
The information provided by this report is valuable information to both the developer of the URET 
prototype and a production contractor.   Section 3 bridges the documentation gap between the source code 
and existing  software design and algorithmic definition documents.  While the high level algorithmic 
functions were adequately documented by MITRE/CAASD, there are many algorithmic details not covered 
in the prototype documentation that cannot be easily derived by reading the source code.  ACT-250’s 
assessment approach of reviewing, analyzing, and often re-deriving the algorithm’s mathematics revealed 
many of these undocumented assumptions and approximations; these details are now documented in this 
report.   Sections 4.1 and 4.2 outline URET D1.1 limitations and assumptions, and Section 4.4 identifies 
suggested improvements to specific source code modules. 
 
This report should be used as a source for any future independent assessments of the URET algorithms; 
particularly for sensitivity or algorithmic accuracy assessments.   The assessment of the design and 

                                                           
12 However in some cases during the assessment, several algorithms were rewritten in the C language. 
Limited unit testing was performed to validate the following functions:  CNV_LLXY, CNV_XYLL, 
ST_MACHALT, ST_IASALT, CFP_POSIT, CFP_V_INT, CNV_SPEED, GM_REGN, GM_TSTPNT, 
ST_FINDARD, GM_CONVEX, GM_INSEC. 
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implementation of the algorithms should be completed for the current version of the URET prototype and 
this version of the software should be rigorously tested.  
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Appendix  A:  Simulation Experimentation 

 
A.1  Simulation Environment 
The URET system installed in the TATCA/AERA laboratory is depicted in Figure A.1-1.  This system is 
functionally equivalent to the URET system installed at ZID, except that the TATCA/AERA laboratory 
URET system is a “scaled down version” of the fielded URET system.  Specifically, the printer and  
interface to the National Weather Service depicted in Figure A.1-1 are not included, and only a subset of 
the full complement of workstations installed at ZID are contained in the laboratory  (a system control 
position, a system supervisor position, and two sector controller positions (there are up to eight of these 
positions at ZID)).  The URET system is interfaced to the Host Computer System (HCS) at the Technical 
Center via the same interface being used at ZID:  the General Purpose Output (GPO) Interface Unit 
(GPOIU) with the associated HCS software patch. 
 
A.2 Simulation Approach  
A rigorous and efficient method of examining the effect of certain independent variables on one or more 
dependent variables can be accomplished by a well designed experiment.  The designed experiment is 
achieved by manipulating the independent variables and studying the effect on the dependent variables.  In 
ACT-250’s planned simulation experiment, the independent variables were the major factors associated 
with the assumptions and approximations which were identified as Critical to the algorithms during the 
algorithmic analysis (summarized in Section 4.3).  The dependent variables are expressed by the 
performance measure under consideration.  A test matrix (see Table A.2-1) was developed based upon 
these independent variables and would be used to design simulation scenarios to either verify or contradict 
these assumptions and approximations (see Section A.2.1.2).  For example, to study the performance of the 
trajectory model algorithm (TJM) the difference between the trajectory predicted position of the aircraft 
and the actual track reporting point (defined as the track-to-trajectory deviation) is a measure of the 
performance.  The smaller the value of the track-to-trajectory deviation, the better the performance of 
URET TJM. 
 
Special types of designed experiments, called factorial experiments, are very useful in the analysis of a 
system’s performance.  One of these is the factorial design with two response levels for each factor, usually 
at the extreme high and low levels of the factor.  The factorial design would be used to determine the 
statistically significant factors on response variables and to estimate the average quantitative effects of 
these factors in terms of the performance variable.  To minimize the amount of simulation runs and 
maximize the information gained by these runs, various factorial designed experiments would be applied to 
examine identified factors relating to several performance variables (refer to Section A.2.1.2).  
 
Based on the test matrix (Table A.2-1), ACT-250 planned to design a set of test flight tracks to demonstrate 
the functions of the URET algorithms and to determine the robustness of the algorithms if the 
approximations and assumptions were tested using the extremes of the expected tolerances.    A simulation 
capability would create the simulated aircraft tracks which would then be provided from the Technical 
Center HCS to the URET system in the TATCA/AERA laboratory via the GPOIU.  The HCS would be run 
using the ZID system build in use with URET D1.1.  The simulation-generated tracks would be the 
baseline “truth” during the simulations.  All URET generated trajectories, reconformances, problem 
detections, etc. would be recorded and compared to the baseline simulation-generated tracks. 
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Figure A.1-1:  TATCA/AERA Laboratory URET Configuration 
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REF# Impact 

Category 
Affected 
Algorithm 

Relevant 
Factor: 

 Description of Misc. 

   Gradient Inertial 
Path 
Angle 

Accel Speed 
 

Altitude 
Range 

Flight 
State 

Misc  

R 3.1.4-1 Critical APD   x      

R 3.3.1-1 Critical TJM x x       

R 3.4.3-1 Critical TJM x x       

R 3.4.9-3 Critical TJM       x approximation of angles 

R 3.2.2-1 Critical TJM x x       

R 3.2.2-3 Critical TJM x x       

R 3.4.17-3 Critical APD       x approximations associated to lower 
level algorithms (i.e. whether point 
is on a line) 

R 3.4.23-1 Critical TJM x        

R 3.4.23-2 Critical TJM x        

R 3.4.24-1 Critical TJM x        

R 3.4.25-1 Critical TJM x        

R 3.4.25-2 Critical TJM x        

R 3.4.26-1 Critical TJM x        

R 3.4.27-1 Critical APD, 
TJM 

      x along route distance calculation  

R 3.4.28-1 Critical TJM   x x     

R 3.4.28-2 Critical TJM       x zero routes in quadratic equation 

R 3.4.29-1 Critical TJM   x x     

R 3.4.29-2 Critical TJM       x zero routes in quadratic equation 

R 3.3.12-4 Critical TKM       x approximations associated to lower 
level algorithms (i.e. whether point 
is on a line) 

R 3.3.13-2 Critical TKM       x unprotected return case 

R 3.3.13-3 Critical TKM       x potential division by zero 

NOTE:  This matrix contains only the assessment items considered as critical under their impact category.  This is presented as an 
example only.  If both the important and minor items were presented, they would have provided additional relevant factors (e.g. flight 
state, altitude range, etc.). 
 

Table A.2-1   Assessment Matrix
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A.2.1 Simulation Design and Scenarios Development Example 
The following provides an example of the structured simulation scenarios which could be designed to 
exercise various aspects of the URET algorithms.  There were two approaches planned for this assessment:  
Section A.2.1.1 presents an example of specific scenarios planned to validate and/or contradict referenced 
assessments considered to be Critical and the method by which the algorithms’ performance was to be 
measured.  Section A.2.1.2 describes a classical 2 level factorial experiment that could be conducted to 
measure the system responses to variations in global independent variables.   
 
The basis for modeling these simulations is depicted in Table A.2-1, which is a collection of all of the 
critical items from the assessment tables defined in Section 3 and lists the important factors associated with 
the system. 
 
 
A.2.1.1  Test Design Example for the HRB Function*  
 
A.2.1.1.1  Definition  
The Trajectory Modeler (TJM) routine Horizontal Route Analysis Step B (HRB) builds the remaining 
horizontal route segments from the current position of the aircraft.  This routine is called when an aircraft 
is laterally reconformed and a new trajectory must be calculated or a request for direct routing is submitted 
in the form of a trial plan. 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
In the case of a lateral reconformance, HRB will create a horizontal trajectory from the current position of 
the aircraft to the next horizontal route segment which is at least a minimum “join” distance (50 nmi) from 
the current position and a “rejoin” angle less than a maximum “join” angle (15 degrees).  However, HRB 
will not bypass a fix with a delay. 
 

                                                           
* Note:  The following test design was based on URET Version D1.A of the HRB function.  There are 
significant changes to this function in D1.1, and the associated revisions are still being developed. 

30 nmi 

50 nmi 

Track Report, out of 
conformance 

Trajectory 

Conformance 
Bounds 

TKM finds the current track position “out-of-
conformance” along the associated horizontal 
trajectory segment. 

30 nmi 

50 nmi 

Track Report 

Previous 
Trajectory 

New 
Trajectory 

HRB rebuilds a new trajectory originating 
from the current position and joins with the 
previous trajectory at least 50 nmi away and 
an angle less than 15 degrees. 

Join angle less 
than 15° 

Cusp 
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A.2.1.1.2  Example Development of Flight Track Scenarios 
 
A.2.1.1.2.1  Validate the algorithm 
A test flight track would be designed to validate that the algorithm functions as specified. A test would be 
designed to demonstrate the lateral reconformance utility of the HRB function.  A simulated flight route 
would purposely deviate from its filed route and would head directly to the next down-route fix.  (1)  
 
A.2.1.1.2.2  Assumptions 
 1) The out-of-conformance aircraft would head to the next down-route fix   
 that is greater than 50 nmi from the current position and a join angle less   
 than 15 degrees. 
   
            Implications:  a) The aircraft would not head directly to a fix less than  
 50 nmi from the current position 50 nmi from the  
 current position. (1a)  
 b) The aircraft would not head directly to a down-   
 route fix which is farther than the next down-route    
 fix that is more than 50 nmi from the current    
 position and a join angle less than 15 degrees.     (1b) 
    c) The aircraft would not join a route at a down-route   
    fix if the join angle is greater than or equal to 15    
    degrees.          (1c) 
    d) There is a down-route fix greater than 50 nmi    
    from the current position        (1d) 
    e) There is a down-route fix with a join angle less    
    than 15 degrees.         (1e) 
    f) There is a down-route fix greater than 50 nmi    
    from the current position and a join angle less    
    than 15 degrees.         (1f)  
 
A.2.1.1.2.2.1  Simulate Contradictions to the Assumptions 
A separate simulated flight path would be created to contradict each of the implications derived from the 
assumptions.  These tests would determine if the algorithms were robust enough to recover if an 
assumption is untrue.  
 
 
A.2.1.1.3  Simulated Flight Tracks 

 
Sim # Description Involves Alg. 

Set 
Tests 

Assumption 
Verifies or 
Contradicts 

Assumptions 
S1 Sim. To verify the algorithm, 

assumption 1 
TJM, TKM 1 Verify 

S1a Sim. To contradict assumption 1a TJM [HRB] 1a Contradict 
S1b Sim. To contradict assumption 1b TJM [HRB] 1b Contradict 
S1c Sim. To contradict assumption 1c TJM [HRB] 1c Contradict 
S1d Sim. To contradict assumption 1d TJM [HRB] 1d Contradict 
S1e Sim. To contradict assumption 1e TJM [HRB] 1e Contradict 
S1f Sim. To contradict assumption 1f TJM [HRB] 1f Contradict 

Table A.2-2:  Simulation Tests for the Trajectory Modeler (TJM) Horizontal Route Analysis 
Step B (HRB) function when it is invoked because of a Reconformance 

 
S1. Simulation to validate the algorithm.  
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Input to the HOST a flight plan with a filed route which traverses a known set of fixes (i.e. 
..Fix1.Fix2.Fix3.Fix4..).  Supply HCS simulation capability with the same flight plan but with an altered 
route string (i.e. ..Fix1.Fix3.Fix4..).  The filed flight plan in the HCS would be delivered to URET, and 
TJM would create a trajectory using the flight plan information.  However, the simulation capability would 
supply the HCS with aircraft positions which correspond to the altered route string.  Record when and 
where URET determines the aircraft is out-of-conformance.  Determine if URET creates a new trajectory 
to the proper down-route fix .  Figures AA.1-4 demonstrate this simulation. 
 
S1 Route String 
 ..Fix1.Fix3.Fix4.. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
S1a.  Simulation to contradict assumption 1a. This would simulate an aircraft heading directly to a fix 
(Fixa) which is less than 50 nmi from the current position. Fixa would be a fix only known to the 
simulation capability. 
 
S1a Route String 
 ..Fix1.Fixa.Fix3.Fix4.. 
 
 
A.2.1.1.4  Measurements 
Trajectory-to-track deviations would be calculated during every simulation as a performance measurement 
of the Trajectory Modeler.  Reconformances would also be recorded as a performance measurement of the 
TKM. 

Fix1 Fix2 

Fix3 

Fix4 

Fig. AA.1. Filed Route and Trajectory 

Fix1 Fix2 

Fix3 

Fix4 

Fig. AA.2. Simulation Route 

Fig.AA.3. Report is Out-of-Conformance 

Fix1 
Fix2 

Fix3 

Fix4 

 

Conformance 
Bounds 

Simulation 
Report 

Fix1 Fix2 

Fix3 

Fix4 
Simulation 
Report 

Fig. AA.4. New Trajectory 

Figure AA.1 represents the filed route of the aircraft and the horizontal trajectory generated by URET 
(the Baseline Flight Plan Route String).  Figure AA.2 represents the simulated route which the 
simulation capability will supply for the aircraft.  Figure AA.3 shows an example of when the 
simulation capability  report will fall out-of-conformance.  It is here that TKM should recognize the 
deviation from the trajectory and ask HRB to regenerate a new trajectory.  Figure AA.4 represents the 
new trajectory HRB should generate for the aircraft.   
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A.2.1.2  The Designed Experiment Approach 
From the algorithm analysis described in Section 3, several factors were determined that may effect the 
performance of the trajectory.  For the initial simulation experiment, these factors would include the 
acceleration of the aircraft, the gradient of the aircraft, the state of flight of the aircraft (i.e., turn in 
horizontal, climb in vertical), and the altitude range of the trajectory.   The factorial experimental design 
described in Section A.2 should be applied (see Table A.2-3).  
 
 

Factor Description Assessment References 
(examples) 

High Level Low Level 

aircraft acceleration R 3.1.4-1, R 3.4.28-1,  
R 34.29-1 

maximum 
acceleration for a/c  

nominal acceleration 
for a/c 

aircraft gradient R 3.3.1-1, R 3.4.3-1, 
R 3.2.2-1, R 3.2.2-3 

maximum gradient  nominal gradient 

altitude range R 3.4.7-2, R 3.4.28-3,  
R 3.4.29-3, R 3.4.29-4 

> 50 FL < 50 FL 

aircraft flight state general maneuver (i.e. turn, 
climb, etc.)  

level cruise 

Table A.2-3:  Definition of Factors and Levels 

 
The experimental unit defines the measurement of the performance variable.   The smallest experimental 
unit is the measure of  track-to-trajectory deviation during the transition state of the aircraft (i.e., turn, 
climb, etc.).  Since there may be multiple changes from one transition state to another during the flight, 
several measures could be made on one aircraft trajectory.  For the initial TJM experiment, replications of 
each treatment combination could be achieved by utilizing information from several specific aircraft 
trajectories. 
 
The factorial design can be used to determine  the statistically significant factors on the response variable 
and to estimate the average quantitative effects of these factors in terms of the performance variable.  This 
experiment intended to use track-to-trajectory deviation for the primary response variable, but other 
response variables were to be collected simultaneously, including:  
 
• the number of false alerts and missed alerts for the APD algorithm 
• the difference in absolute track data separation distances to the minimum trajectory-based aircraft 

separation distance reported by APD 
• the number of reconformances per dimension   
  
The  APD statistics could provide additional information without running more treatments (or flights in 
URET).  The actual experimental unit could be changed to include the entire trajectory, which would 
change the number of degrees of freedom of the experiment, but this would not require additional 
simulation runs.   
 
The factors evaluated to be statistically significant could also be examined by estimating the average effect 
on the response variable.  The average effect by the acceleration factor could be estimated by using a 
maximum acceleration rate compared to the nominal acceleration rate in all the treatment combinations.  
The cause for these effects are related to the assumption and approximation associated to the particular 
factor as determined in the algorithm analysis listed in Table A.2-1. 
 
The specific mathematics involved with this factorial designed experiment are based on the model of the 
randomized block design at two levels.  Table A.2-4 defines the specific variables.   The formula that 
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follows is the mathematical model for a factorial experiment.  This formula expresses the effects of the four 
factors and interactions as 16 treatment combinations (24).  
 
 
No. Factor Description Factor Variable Run Variable (at 

high level) 
1 aircraft acceleration A a 
2 aircraft gradient B b 
3 altitude range C c 
4 state of flight  D d 

Table A.2-4:   Factor/Level Key 

 
Y A B C D AB AC AD BC BD CD ABC
ABD ACD BCD ABCD

ijkl j k l ij ik il jk jl kl ijk

ijl ikl jkl ijkl ijkl

i= + + + + + + + + + + + +

+ + + +

µ
ε  

 
The 16 treatment combinations represent the specific combination of factors and levels that should be  
performed in running the complete designed experiment.   The treatment combinations, as well as the 
coefficients for the effects, are listed in Table A.2-5.   The coefficients are used to calculate the sum of the 
squares for each contrast of the experiment13  (the contrast is a measure of the difference of a factor or 
combination of factors from the high and low levels).  The effect of a factor or interaction of several factors 
is directly proportional to the contrast statistic.   To calculate the contrast for the factor A, the results of the 
16 treatment combinations were summed using the coefficients in the A column from Table A.2-5.  The 
sum of the squares are calculated by squaring the contrast and dividing it by the product of the number of 
replications of each treatment by the number of treatments (2f, where f is the number of factors).  As 
illustrated in the ANOVA table (refer to Table A.2-6), the F statistic is calculated and compared to the 
Cumulative F Distribution. 

                                                           
13 Using Yates Method, the computation for the contrast and effects is described in detail in  Hicks, 
Fundamental Concepts in the Design of Experiments, 1993.  
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 Effect      

Treatment 
Combination 

A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD

(1) -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1
a 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1
b -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1
ab 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
c -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1
ac 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1
bc -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1
abc 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
d -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1
ad 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1
bd -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1
abd 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
cd -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1
acd 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
bcd -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
abcd 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table A.2-5:  Treatment Combinations Versus Effects 

 
 
Source Degrees of 

Freedom (dof) 
Sum of 
Squares 

MS F 

A 1 (contrast)2/2n4 SS/(dof) MS/error 
B 1    
AB 1    
C 1    
AC 1    
BC 1    
ABC 1    
D 1    
AD 1    
BD 1    
ABD 1    
CD 1    
ACD 1    
BCD 1    
ABCD 1    
Error (n-1)(24)    

Table A.2-6:  ANOVA Table for a 4 Factor Factorial Designed Experiment 

 
The simulation would provide the data for each treatment combination (Table A.2-6).  The designed 
experiment would provide the analysis tool to determine which factors and interactions significantly effect 
the response variable.  The example presented illustrates the application of a factorial designed experiment 
to the assessment of the URET algorithms.  
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Appendix  B:  LIST OF ACRONYMS 
 
ACC Aircraft Control Characteristics  
ACD Automated Conflict Detection/Aircraft Characteristics Directory 
ACES Adaptation Controlled Environment System 
ACT Active List 
AERA Automated En Route Air Traffic Control 
AMC Aircraft Modeling Characteristics 
APD Automated Problem Detection 
APDIA APD Inhibited Area 
ARD Along Route Distance 
ARTCC Air Route Traffic Control Center 
ATC Air Traffic Control 
ATM Air Traffic Management 
AUD Aircraft Unique Data 
BAS Blocked Airspace 
CAASD Center for Advanced Aviation System Development 
CD Clearance Directive 
CFP Conflict Probe 
CTS Central Track Store 
ECB Environmental Conflict Box 
ECP Environmental Conflict Probe 
GPO General Purpose Output 
GPOIU General Purpose Output Interface Unit 
HCS Host Computer System 
HDO Handoff 
HRA Horizontal Route Analysis 
HRB Horizontal Route Analysis Step B 
IAS Indicated Airspeed 
IFR Instrument Flight Rules 
IPT Integrated Product Team 
JRC Joint Resources Council 
kts Nautical miles/hour 
MDL Modeler 
nm Nautical Miles 
NPB Nominal Profile Builder 
ORS Onboard Route Segment 
PA Planned Action 
PAR Preferred Arrival Route 
PDAR Preferred Departure Arrival Route 
PDR Preferred Departure Route 
RPM Replan Manager 
SSG State Segment 
SUA Special Use Airspace 
TAS True Airspeed 
TATCA Terminal Air Traffic Control Automation 
TJM Trajectory Modeler 
TK Track 
TKM Track Management 
UPR User Preferred Routing 
URET User Request Evaluation Tool 
ZID Indianapolis ARTCC 
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