

DOT/FAA/CT-97/4

User Request Evaluation Tool
(URET)

Algorithm Assessment Report

February 1997

Federal Aviation Administration
William J. Hughes Technical Center

ATC Engineering and Test Division, ACT-200
Traffic Flow Management Branch, ACT-250

Atlantic City International Airport, NJ 08405

 ii

Executive Summary

This report presents the results of an independent assessment of the User Request Evaluation Tool (URET)
core algorithms conducted by the Traffic Flow Management Branch (ACT-250) at the FAA William J.
Hughes Technical Center. This document contains a description of major functions comprising each
algorithm set, including variable definitions and mathematical equations, and provides an assessment of the
assumptions/approximations and their impact on the accuracy of the algorithm. The cooperative support
provided by the URET developer, MITRE/CAASD, facilitated the accomplishment of this effort.

URET is an automated conflict detection (ACD) tool intended for use as a decision support aid for the en
route air traffic controller. URET detects aircraft-to-aircraft and aircraft-to-airspace conflicts for
Instrument Flight Rules (IFR) aircraft tracked by the Host Computer System (HCS), and provides alert
information to the controller when such conflicts are detected. The technical performance and accuracy of
the URET algorithms are critical issues to be assessed in preparation for a Joint Resources Council (JRC)
investment decision for an ACD tool.

The scope of ACT-250’s effort was limited to the core algorithms implemented in URET Delivery 1.1
(D1.1). This includes the Trajectory Modeler (TJM), Track Management (TKM), and Automated Problem
Detection (APD) algorithms. The ACT-250 independent assessment effort was based on determining the
validity of the URET algorithms and verifying the engineering principles upon which the algorithms were
established. ACT-250’s approach was to review MITRE/CAASD’s algorithmic documentation and the
applicable source code. By taking this approach, ACT-250 became very knowledgeable about the
algorithms’ details and the approximations and assumptions that were made during the URET
development.

A URET testbed was established in the Terminal Air Traffic Control Automation (TATCA)/Automated En
Route Air Traffic Control (AERA) laboratory at the Technical Center. Various simulated exercises were
designed to “push the envelope” on the constraints established by the identified assumptions and
approximations. The completion of the algorithm assessments and their validation via structured
simulations using this laboratory, as originally planned, was curtailed in late 1996 when ACT-250 was
redirected by the Air Traffic Management (ATM) Prototype Product Team (AUA-540) to focus on another
effort. Consequently, while the majority of the key functions have been assessed, this report does not
contain an assessment of every URET function.

The source code of the algorithms that were assessed was found to be based on sound engineering
principles. The assumptions and approximations made by MITRE/CAASD are reasonable for the current
prototype software requirements. Since the scope of this assessment was scaled back to an analytic
assessment of the algorithmic source code modules, there is no empirical data derived from simulations or
live data to validate the algorithms. Therefore, the assumptions and approximations should still be
independently validated with a stringent set of simulations and live data tests to ensure the robustness and
accuracy of the algorithms.

The information provided by this report is valuable to both the developer of the URET prototype and a
production contractor. It bridges the documentation gap between the source code and existing software
design and algorithmic definition documents, outlines URET D1.1 limitations and assumptions, and
identifies suggested improvements to specific source code modules.

This report should be used as a source for any future independent assessments of the URET algorithms;
particularly for sensitivity or algorithmic accuracy assessments. The assessment of the design and
implementation of the algorithms should be completed for the current version of the URET prototype and
this version of the software should be rigorously tested by an independent assessment group.

 iii

Acknowledgments

This report consolidates the assessment efforts of the ACT-250 AERA/URET prototype assessment team.
Each member of the team focused on one of the core URET algorithms, but the overall activity was a
combined team effort. Each member analyzed and assessed numerous functions within their assigned
algorithm area, assisted team members in other areas when necessary, and wrote the necessary material for
the corresponding sections of this document. The cooperative support provided by MITRE/CAASD
facilitated the accomplishment of this effort.

Steve Kazunas, CTA Incorporated, focused on the assessment of the Trajectory Modeler and the Track
Management, and associated utility functions. Mike Paglione, Signal Corporation, focused on the
Automated Problem Detection and associated utility functions. Dr. Hollis Ryan, Signal Corporation,
focused on the coordinate conversion functions and provided support in all three algorithm areas. Bernie
Day, Signal Corporation, provided invaluable support towards developing the simulations originally
planned as part of this assessment effort. Mary Lee Cale, FAA/ACT-250, led the task and coordinated
team activities and MITRE/CAASD support, and also focused on the Track Management algorithm.

 iv

Table of Contents

1. Introduction ...1
1.1 Purpose ..1
1.2 Background ...1
1.3 Scope ...1
1.4 Document Organization ..1

2. Assessment Overview ...2
2.1 Algorithm Analysis ...2
2.2 Simulation ...2

3. Algorithm Descriptions ...4
3.1 Automated Problem Detection ..5

3.1.1 Function: CFP_COARSE_HORIZ (C) ...5
3.1.2 Function: CFP_FINE (C) ..18
3.1.3 Function: CFP_INTERSECT_TIME (C) ...25
3.1.4 Function: CFP_MIDDLE_HORIZ (C)..27
3.1.5 Function: CFP_MIDDLE_VERT (C) ...33
3.1.6 Function: CFP_RELVEC (C)...40
3.1.7 Function: CFP_TRIM (C) ..43
3.1.8 Function: CFP_V_INT (C)..43
3.1.9 Function: CFP_POSIT (C) ..48
3.1.10 Function: ECP (PL/I)...52

3.2 Trajectory Modeler..52
3.2.1 Function: ARDXY (PL/I)..54
3.2.2 Function: EGRAD (PL/I) ..55
3.2.3 Function: INTMDL (PL/I) ..57
3.2.4 Function: HRB (PL/I) ...58

3.3 Track Management..60
3.3.1 Function: CNV_GRD_TO_TAS (PL/I) ..61
3.3.2 Function: GM_PTSEG (PL/I) ...62
3.3.3 Function: LEASTSQ (C)..62
3.3.4 Function: TKM_CATEGORY_CHANGE (C) ...63
3.3.5 Function: TKM_CHECK_AIRSPACE (C)...64
3.3.6 Function: TKM_COMPUTE_RECONFORMANCE (C) ...64
3.3.7 Function: TKM_CONFORMANCE_MONITOR (C) ..65
3.3.8 Function: TKM_CONTROL (PL/I) ..66
3.3.9 Function: TKM_CORE (C) ...67
3.3.10 Function: TKM_FOR_AERA (PL/I) ..68
3.3.11 Function: TKM_GET_RTE_ORS (PL/I) ..68
3.3.12 Function: TKM_GM_REGN (C) ..68
3.3.13 Function: TKM_GM_TSTPNT (C) ...72
3.3.14 Function: TKM_MATCH_ID (PL/I) ..76
3.3.15 Function: TKM_TK_HDG (C)..76
3.3.16 Function: TKM_VERIFY_DATA (C) ..78
3.3.17 Function: UTL_XY_ARD_BY_RTE (PL/I) ...78

3.4 General Purpose Utilities...78
3.4.1 Function: CNV_CNVSPD (PL/I)..79
3.4.2 Function: CNV_GNOMONIC_STEREO (PL/I)...79
3.4.3 Function: CNV_GRDSPD (PL/I)..83
3.4.4 Function: CNV_LLXY (PL/I)...85
3.4.5 Function: CNV_RADDMS (PL/I) ..92
3.4.6 Function: CNV_SPEED (C)..94
3.4.7 Function: CNV_STD_ATMOS (PL/I) ..100
3.4.8 Function: CNV_STEREO_GNOMONIC (PL/I)...104

 v

3.4.9 Function: CNV_XYLL (PL/I)...108
3.4.10 Function: DB_AIR_AT_POINT (PL/I) ..119
3.4.11 Function: DB_CDMERG (PL/I) ...119
3.4.12 Function: DB_FIND _AUD_PTR (PL/I) ..120
3.4.13 Function: GM_BRNG (PL/I) ..120
3.4.14 Function: GM_CONVEX (C) ...120
3.4.15 Function: GM_INSEC (C) ..125
3.4.16 Function: GM_PTLINE (PL/I)..131
3.4.17 Function: GM_REGN (PL/I)...133
3.4.18 Function: GM_TSTPNT (PL/I) ...137
3.4.19 Function: GM_TURN (PL/I)...140
3.4.20 Function: LO_FIND (PL/I) ...141
3.4.21 Function: ST_ARD_SSGDATA (PL/I) ..141
3.4.22 Function: ST_CHK_VP (PL/I)..144
3.4.23 Function: ST_CLIMB_DIST (PL/I)..148
3.4.24 Function: ST_CLIMB_GRADIENT (PL/I) ..150
3.4.25 Function: ST_DESCENT_DIST (PL/I) ..150
3.4.26 Function: ST_DESCENT_GRADIENT (PL/I) ...153
3.4.27 Function: ST_FINDARD (PL/I)..154
3.4.28 Function: ST_IASALT (PL/I) ...156
3.4.29 Function: ST_MACHALT (PL/I)..165
3.4.30 Function: ST_MAXTAS (PL/I) ..172
3.4.31 Function: ST_MINTAS (PL/1) ...172
3.4.32 Function: ST_TIME_SSGDATA (PL/I) ...173
3.4.33 Function: ST_TRANSLATE_ARD (PL/I)..176
3.4.34 Function: ST_XYTOTIME (PL/I) ..178

4. Assessment Findings and Observations ..181
4.1 URET D1.1 Limitations ..181
4.2 URET D1.1 Assumptions..181
4.3 Summary of Algorithmic Assessment Tables ...183
4.4 Suggested Improvements...188

4.4.1 CFP_COARSE_HORIZ...188
4.4.2 CFP_MIDDLE_HORIZ ...188
4.4.3 CFP_V_INT ...188
4.4.4 CNV_LLXY...189
4.4.5 CNV_SPEED ...189
4.4.6 CNV_XYLL...189
4.4.7 GM_CONVEX...189
4.4.8 GM_INSEC..189
4.4.9 GM_PTLNE ...190
4.4.10 ST_CHK_VP..190
4.4.11 ST_FIND_ARD..190
4.4.12 ST_IASALT ...190
4.4.13 ST_TIME_SSGDATA ...191
4.4.14 TKM_GM_REGN..192
4.4.15 TKM_GM_TSTPNT ..192
4.4.16 TKM_TK_HDG ...193
4.4.17 TKM_GET_RTE_ORS ..193
4.4.18 UTL_XY_ARD_BY_RTE...193

4.5 Conclusions ...193
Appendix A: Simulation Experimentation ...195
Appendix B: LIST OF ACRONYMS ..204
REFERENCES..205

 vi

Table of Figures

Figure 3.1.1-1: Example of Strips for Horizontal Coarse Filter ...6
Figure 3.1.1-2: Example of Case 1...8
Figure 3.1.1-3: Example of Case 2 (distance calculated for one aircraft holding)11
Figure 3.1.1-4: Coarse Horizontal Function Overall Logic..16
Figure 3.1.2-1: Diagram of examples of each case where relative velocity is non-zero20
Figure 3.1.2-2: Initial Steps in CFP_FINE...21
Figure 3.1.2-3: Flowchart where P is inside octagon only (continued from Figure 3.1.2-2)22
Figure 3.1.2-4: Flowchart where Q is inside octagon only (continued from Figure 3.1.2-2).......................23
Figure 3.1.2-5: Flowchart where both P and Q are outside octagon (continued from Figure 3.1.2-2)24
Figure 3.1.4-1: Relative Geometry with Circular Conformance Boundary ...27
Figure 3.1.4-2: Rotating P vector to axis frame of subject aircraft ..29
Figure 3.1.4-3: Relative velocity ..30
Figure 3.1.5-1: Cases of End Point Intersections ...35
Figure 3.1.5-2: Situations for calling CFP_V_INT..36
Figure 3.1.5-3: Equation 3.1.5-2 > 0 for both situations ..36
Figure 3.1.5-4: Crossing Trajectories for Case 6 ...37
Figure 3.1.5-5: Middle Vertical Filter Logic Flowchart...38
Figure 3.1.6-1: Rotating P vector to axis frame of subject aircraft ..41
Figure 3.1.6-2: Relative velocity ..42
Figure 3.1.8-1: Example of lower bound trajectory and tbend...45
Figure 3.1.8-2: Examples of mesh point combinations for each case ..46
Figure 3.1.8-3: Mesh point intersection (altitude vs. time) ..47
Figure 3.2.4-1: Example of an HRB Return-to-Route..60
Figure 3.3.12-1: Logic Flow of TKM_GM_REGN ...71
Figure 3.3.13-1: Diagram of test point to line distance ...73
Figure 3.4.2-1: Gnomonic to Stereographic Projection..82
Figure 3.4.4-1: Mapping Geometry - Geodetic to Conformal..90
Figure 3.4.4-2: Stereographic Projection ...91
Figure 3.4.7-1: Temperature Distribution in the Standard Atmosphere...100
Figure 3.4.8-1: Stereographic to Gnomonic Projection..107
Figure 3.4.9-1: Stereographic Projection Details ...116
Figure 3.4.9-2: Mapping Geometry - Conformal to Geodetic..117
Figure 3.4.9-3: Spherical Triangle on the Conformal Sphere ..118
Figure 3.4.14-1: Side of octagon and test point ...122
Figure 3.4.14-2: GM_CONVEX Main Function Loop ..124
Figure 3.4.15-1: Example of area diagram for δ’s ...126
Figure 3.4.15-2: Ratio of Distance B to A..129
Figure 3.4.17-1: Logic of GM_REGN ...136
Figure 3.4.18-1: Diagram of test point to line distance ..137
Figure 3.4.27-1: Diagram of closest approach point (xi,yi) which is on the flight segment155

 vii

Table of Tables

Table 3.1.1-1: Boolean Variable Table ..14
Table 3.1.5-1: Logical Vertical Intersection Cases ..34
Table 3.1.5-2: Beginning and End Conflict Variables ...35
Table 3.1.8-1: Mesh point combinations..46
Table 3.3.12-1: Iteration key TKM_GM_REGN ...70
Table 3.4.17-1: Iteration key GM_REGN..135

 1

1. Introduction

1.1 Purpose
This report presents the results of an independent assessment of the logic and mathematics within the User
Request Evaluation Tool (URET) core algorithms. This assessment was conducted by the Traffic Flow
Management Branch (ACT-250) at the Federal Aviation Administration (FAA) William J. Hughes
Technical Center.

1.2 Background
URET is an automated conflict detection (ACD) tool intended for use as a decision support aid for the en
route air traffic controller. URET detects aircraft-to-aircraft and aircraft-to-airspace conflicts for IFR
aircraft tracked by the Host Computer System (HCS), and provides alert information to the controller when
such conflicts are detected.

The technical performance and accuracy of the URET algorithms are critical issues to be assessed in
preparation for a Joint Resources Council (JRC) investment decision for an ACD tool. MITRE/CAASD
has been evaluating the accuracy and performance of the URET algorithms throughout the URET
development effort as well as during the field evaluations conducted at the Indianapolis Air Route Traffic
Control Center (ARTCC - ZID) in FY96/97. ACT-250 was tasked by the Air Traffic Management (ATM)
Prototype Product Team (AUA-540) to provide an independent assessment of the technical accuracy of the
core URET algorithms. A URET system was installed in the Terminal Air Traffic Control Automation
(TATCA)/Automated En Route Air Traffic Control (AERA) laboratory at the FAA William J. Hughes
Technical Center in early 1996. ACT-250 utilized this system and the capabilities of other Technical
Center laboratories in accomplishing this assessment. The cooperative support provided by
MITRE/CAASD facilitated the accomplishment of this effort.

1.3 Scope
The scope of the FY96/97 effort, as discussed in this report, was limited to the core algorithms
implemented in URET Delivery 1.1 (D1.1) (installed in ZID in May 1996). This includes the Trajectory
Modeler (TJM), Track Management (TKM), and Automated Problem Detection (APD) algorithms.

Although a testbed was established in the TATCA/AERA laboratory, the completion of the algorithm
assessments and their validation via structured simulations using this testbed, as originally planned, was
curtailed in late 1996 when ACT-250 efforts were redirected to focus on preparing for the comparison of
Conflict Probe prototypes (e.g., URET and NASA’s User Preferred Routing (UPR) system) currently
planned for mid-1997. Consequently, while the majority of the key functions have been assessed, this
report does not contain an assessment of every URET function. This report does provide a description of
major functions comprising each algorithm set, including variable definitions and mathematical equations,
along with an assessment of the assumptions/approximations and their impact on the accuracy of the
algorithm, and identifies URET D1.1 assumptions and limitations and suggested improvements.

1.4 Document Organization
This report is organized into four sections. Section 2 provides an overview of ACT-250’s independent
assessment approach. Section 3 presents detailed descriptions of software modules comprising each of the
core algorithm sets and associated utility functions. Section 4 presents the assessment findings and
observations, including algorithmic assumptions and limitations, and suggested improvements. An
example of a proposed simulation design and scenarios to further evaluate the algorithms is presented for
information in Appendix A, and a list of acronyms is provided in Appendix B. A list of references used
during this activity is provided at the end of the document.

 2

2. Assessment Overview
The ACT-250 independent assessment effort was based on determining the validity of the URET
algorithms and verifying the engineering principles upon which the algorithms were established. ACT-
250’s initial approach was to review MITRE/CAASD’s algorithmic documentation and the applicable
source code. By taking this approach, ACT-250 became very knowledgeable about the algorithms’ details,
and the approximations and assumptions that were made during the URET development. ACT-250 used
this acquired knowledge and the URET system in the TATCA/AERA laboratory at the Technical Center to
design various simulated exercises to “push the envelope” on the constraints established by the identified
assumptions, approximations and parameter constraints (however, the conduct of these simulations was not
completed as discussed in Section 1.3). A testbed has been established in the TATCA/AERA laboratory
where independent evaluations of future URET prototype enhancements can be conducted. In addition,
ACT-250 now has an in-depth understanding of many critical areas of the URET algorithms where future
analysis should be focused.

2.1 Algorithm Analysis
ACT-250 conducted a detailed analysis of the algorithms, constraints, and assumptions comprising the
URET Delivery 1.1 system. This analysis was based on:

1. a comprehensive study of the existing MITRE/CAASD algorithmic documentation, software
design data and the URET source code,

2. deriving many of the mathematical constructs represented in the URET source code,
3. technology transfer meetings with the MITRE/CAASD developers, and
4. unit testing of specific algorithmic functions1.

During this analysis period, ACT-250 documented both the algorithmic functions’ derivation in generic
mathematical terms, and the assumptions and approximations made by MITRE/CAASD during the
development of the URET algorithms (see Section 3). The assumptions and approximations are
summarized in matrix form in Section 4.3. These detailed algorithmic function descriptions should prove
extremely useful to a production contractor.

ACT-250 concentrated on the lowest level details of the algorithms, thus, many of the higher level
functions of the algorithmic subsets (which serve to control logic flow or manipulate data base elements)
are not included. Many of these high level functions are adequately described in the MITRE/CAASD
documentation. In addition, a majority of the algorithmic calculations are actually performed by a library
of utility functions; therefore, much of this report’s analysis for TJM and TKM is actually found in the
assessment of the appropriate utility functions (see Section 3.4).

As a side-product of this effort, the adequacy of the technical documentation available with the URET
prototype development was assessed. During the time period that the algorithm analysis was being
conducted, MITRE/CAASD delivered updated algorithmic documentation for review. ACT-250
thoroughly reviewed this documentation and provided detailed comments to MITRE/CAASD and to AUA-
540, including an assessment of the adequacy (i.e., accuracy, clarity, consistency and completeness) of the
documentation for use by a production contractor.

2.2 Simulation
The original plan for this independent assessment effort called for an evaluation of the accuracy of the
algorithms implemented in the URET D1.1 software to be conducted in the TATCA/AERA laboratory.

1 Limited Unit Testing was performed on the following functions: CNV_LLXY, CNV_XYLL,
ST_MACHALT, ST_IASALT, CFP_POSIT, CFP_V_INT, CNV_SPEED, GM_REGN, GM_TSTPNT,
ST_FINDARD, GM_CONVEX, GM_INSEC.

 3

The intent was to demonstrate URET parameter constraints, and validate assumptions, via structured
simulation scenarios designed to exercise URET algorithms under various conditions. While the testbed
was established in the laboratory, the conduct of the simulations was curtailed because of AUA-540
redirection of ACT-250 efforts to focus on the comparison of en route Conflict Probe prototypes (planned
for mid-1997). Current planning for this effort calls for the URET system in the TATCA/AERA
laboratory to be adapted to Cleveland ARTCC (ZOB) for use in conducting this comparison. The
proposed simulation design for the original activity is provided for information in Appendix A.

 4

3. Algorithm Descriptions
The following sections contain descriptions of many of the major functions comprising each of the core
algorithm sets and the general purpose utility functions. Where appropriate∗, each function is described in
terms of the variable definitions and mathematical equations, along with ACT-250’s assessment of the
assumptions/approximations, and the impact of these factors on the accuracy of the algorithm. Each
section’s organization reflects the general directory structure of the URET source code; within each
subsection, the individual functions are listed in alphabetical order. In addition, the programming language
in which the function was coded (either C or PL/I) is identified in parentheses in each subsection heading.

An Assessment Table is provided at the end of each section, where appropriate* (these tables are
summarized in Section 4.3). The table consists of the following elements:

Assessment Table

REF# Approximation/Assumption Assessment Impact on
(Algorithm)

R 3.1.1-1 Description of
Approximation/Assumption

Description of ACT-250’s
assessment of the
Approximation/Assumption

ACT-250’s determination of the
Impact (defined below) of this
Approximation/ Assumption on
the specified algorithm

IMPACT:
• Critical - if conditions existed which were determined to be unfavorable to the assumption or

approximation, there would be a significant impact on the accuracy or stability of the algorithm. Some
of the criteria the analyst considered in classifying an assumption/approximation as critical were:
− the module is called many times from many different areas of the code
− the module calculates a core value which is used as a basis for many subsequent calculations
− the assumption/approximation is over-simplified and would be inadequate during many normal

operating conditions
− there are no other identifiable corrective measures elsewhere in the source code which would

compensate for the inaccuracy of the assumption/approximation

• Important - if conditions existed which were determined to be unfavorable to the assumption or

approximation, there could be an impact on the accuracy or stability of the algorithm. Some of the
criteria the analyst considered in classifying an assumption/approximation as important were:
− the module calculates a value which is used as a basis for subsequent calculations
− the assumption/approximation is simplified and would be inadequate during some reasonable

operating conditions
− there may be corrective measures elsewhere in the source code which could compensate for some

of the inaccuracy of the assumption/approximation, but they may not be sufficient

∗ High level functions that control logic flow or manipulate the data base may not be described at this level
(many of these high level functions are adequately described in the MITRE/CAASD documentation which
ACT-250 thoroughly reviewed for completeness and accuracy as part of this task).

Unique number identifying specific
assessment item within section

Section number of
functional assessment

 5

• Minor - if conditions existed which were determined to be unfavorable to the assumption or
approximation, there would be little or no impact on the accuracy or stability of the algorithms. Some
of the criteria the analyst considered in classifying an assumption/approximation as minor were:
− the assumption/approximation is based on classic, proven methods necessary for real time

processing
− there are corrective measures elsewhere in the source code which could compensate for some of

the inaccuracy of the assumption/approximation

3.1 Automated Problem Detection
Automated Problem Detection (APD) detects aircraft-to-aircraft and aircraft-to-airspace conflicts within a
parameter look-ahead time. It is initiated for a given aircraft when: the aircraft enters the ARTCC, a
remodeling of the aircraft’s trajectory occurs, or a controller invokes the trial planning function.
To balance efficiency with accuracy, a series of filters are activated which serve to narrow the range of
aircraft undergoing each problem detection check. This range is narrowed further, since only three of the
six URET categories of aircraft are probed. For each pair of candidate aircraft trajectories, the separation
standards and regions of uncertainty built around the aircraft, called conformance bounds, are utilized to
predict each conflict situation.

Those functions which are associated with aircraft-to-aircraft conflict detection comprise the conflict probe
(CFP) directory. Those functions which are associated with aircraft-to-airspace conflict detection comprise
the environmental conflict probe (ECP) directory. Low level functions which perform some of the
algorithmic calculations are described in the library of utility functions in Section 3.4 (GM_INSEC,
GM_CONVEX, ST_CHK_VP, GM_REGN, GM_TSTPNT).

Conflict Probe (CFP)
The functions comprising CFP detect aircraft-to-aircraft conflicts and are applied from the current aircraft
position to a parameter lookahead time into the future (D1.1: 20 minutes).

Environmental Conflict Probe (ECP)
The Environmental Conflict Probe (ECP) is the function subset of APD that determines if an aircraft is in
conflict with Special Use Airspace (SUA). The function is applied from the current aircraft’s position to
the end of the trajectory calculated by TJM.

3.1.1 Function: CFP_COARSE_HORIZ (C)
This function eliminates from consideration those aircraft that have trajectory segments so far apart in the
(x, y) plane that a potential conflict can be ruled out.

3.1.1.1 Description:
With the two input line segments in the (x, y) plane, the function is a simple filter that determines if the
segments get within a fixed distance M of each other. The M value is equal to the sum of both
conformance bounds plus the separation standard. Referring to Figure 3.1.1-1, the approach is to create
infinite strips of width 2*M. The strips are centered around the line segments. The function checks for an
intersection of a segment’s strip with the opposite line segment. For a segment not to intersect the strip it is
necessary and sufficient that both endpoints of the segment lie on the same side of the centerline of the
strip and not be within distance M of that centerline.

 6

 Figure 3.1.1-1: Example of Strips for Horizontal Coarse Filter
 (here both segments are in conflict with the other’s strip)

The algorithm checks the four following potential cases:

1. Neither aircraft are in a hold pattern.
2. The subject aircraft (A) is in the holding pattern and the object aircraft (B) is not.
3. The object aircraft (B) is in the holding pattern and the subject aircraft (A) is not.
4. Both subject and object aircraft are in hold.

Each case is evaluated to determine the distance from the opposite line segment’s center line. If the
distance is greater than the separation standard plus both conformance bound distances, no conflict can
take place. If the distance is less, the aircraft pair may or may not be in conflict.

2 * M
A1

A2 Subject
Aircraft

B2

B1 Object
Aircraft

B1

B2
2 * M

Object
Aircraft

A2

A1
Subject
Aircraft

OR

 7

Table of Variable Definitions

Function
Variable

Description Math
Symbol

m critical distance including conformance radius of subject aircraft and
object aircraft plus separation2

M

m2 M2 or = M * M M2
g1 numerator of signed distance from beginning of subject segment to

line through object segment;
= xs1(yo2 - yo1) + xo2(yo1 - ys1) + xo1(ys1 - yo2)

G1

g2 numerator of signed distance from end of subject segment to line
through object segment;
= xs2(yo2 - yo1) + xo2(yo1 - ys2) + xo1(ys2 - yo2)

G2

h1 numerator of signed distance from beginning of object segment to line
through subject segment;
=xo1(ys2 - ys1) + xs2(ys1 - yo1) + xs1(yo1 - ys2)

H1

h2 numerator of signed distance from end of object segment to line
through subject segment;
=xo2(ys2 - ys1) + xs2 (ys1 - yo2) + xs1(yo2 - ys2)

H2

u1 signed perpendicular distance from A1 to the line through B1 and B2;
U1 = G1 / do

2
U1

u2 signed perpendicular distance from A2 to the line through B1 and B2;
U2 = G2 / do

2
U2

z1 signed perpendicular distance from B1 to the line through A1 and A2;
Z1 = H1 / ds

2
Z1

z2 signed perpendicular distance from B2 to the line through A1 and A2;
Z2 = H2 / ds

2
Z2

g3 alternate numerator for h1, used when subject is in hold;
= (yo1 - ys1)(yo1 - yo2) + (xo1 - xs1)(xo1 - xo2)

G3

g4 alternate numerator for h2, used when subject is in hold;
= (yo2 - ys1)(yo1 - yo2) + (xo2 - xs1)(xo1 - xo2)

G4

h3 alternate numerator for h1, used when subject is in hold;
= (ys1 - yo1)(ys1 - ys2) + (xs1 - xo1)(xs1 - xs2)

H3

h4 alternate numerator for h1, used when subject is in hold;
 = (ys2 - yo1)(ys1 - ys2) + (xs2 - xo1)(xs1 - xs2)

H4

denomo object segment distance2 =(xo2-xo1)2+(yo2-yo1)2; denominator do
2

denoms subject segment distance2=(xs2-xs1)2+(ys2-ys1)2; denominator ds
2

2 The conformance radius of an aircraft is the hypotenuse of the right triangle formed by half the

longitudinal and lateral conformance bounds (i.e. 2 92 15 2 52 2. . .nm nm nm= +).

 8

3.1.1.2 Mathematics
To compare the aircraft’s potential separation against the distance M, the function calculates the distance
formed by a perpendicular line drawn from the given aircraft’s endpoint to the line formed by the opposite
aircraft’s endpoints. The following discussion will provide derivations on each potential case of endpoint
to line perpendicular distances.

Case 1

For a Case 1 example, neither aircraft are in a holding pattern, so they both have defined line segments.
Figure 3.1.1-2 illustrates an example of a Case 1 scenario. For this scenario, the function determines the
distance of the perpendicular line drawn from the subject aircraft’s cusp A1 to the object aircraft’s line.

Figure 3.1.1-2: Example of Case 1

Derivation of the distance d in the Figure 3.1.1-2 above:

First it is necessary to the define the equations for the lines of both object and subject aircraft. The object
aircraft’s line equation can be expressed by the general line equation:

 L Ax By C: + + = 0 Equation 3.1.1-1

The slope of this line L is -A/B, which is the slope of the line through the point P in Figure 3.1.1-2. If the
line is neither vertical or horizontal, the perpendicular line through the object’s line equation, L, is +B/A.
The equation of the perpendicular line using the point slope formula is:

 () ()y ys B
A

x xs Bx Ay Ays Bxs− = 





− ⇔ − + − =1 1 1 1 0 Equation 3.1.1-2

A1

B1

B2

P (xi, yi)

(xo1,yo1)

(xo2,yo2)

(xs1,ys1)

d

 9

To find the intersection point of the line L and the perpendicular line through A1, we solve the following
equations simultaneously:

 Ax By C+ + = 0 and Bx Ay Ays Bxs− + − =1 1 0 Equation 3.1.1-3

In Equation 3.1.1-3 above by multiplying the first equation by A and the second by B, and then solving for
x by adding them together, yields:

 xi
B xs - ABys - AC

A + B
=

2
1 1

2 2
, Equation 3.1.1-4

By multiplying the first equation by B and the second by A and then subtracting, yields:

 yi
A ys - ABxs - BC

A + B
=

2
1 1

2 2 Equation 3.1.1-5

The distance, d, between the point at A1 and the point at (xi, yi) according to the distance formula.

 d xs xi ys yi= − + −() ()1 1
2 2 Equation 3.1.1-6

Substitution of Equation 3.1.1-4 and Equation 3.1.1-5, yields:

 d xs
B xs ABys AC

A B
ys

A ys ABxs BC

A B
2

1

2
1 1

2 2

2

1

2
1 1

2 2

2

= −
− −

+
+ −

− −

+



















 Equation 3.1.1-7

Now, combine the terms to yield:

 d
A Axs Bys C

A B

B Axs Bys C

A B
2

2
1 1

2

2 2 2

2
1 1

2

2 2 2=
+ +

+
+

+ +

+





















()

()

()

()
 Equation 3.1.1-8

Finally, by combining the terms further and taking the square root we get the distance formula:

 d
Axs Bys C

A B
=

+ +

+

1 1
2 2

()

d
Axs Bys C

A B
2 1 1

2

2 2=
+ +

+
 Equation 3.1.1-9

 10

Note: The function actually does not calculate the square root for efficiency purposes, but uses the square
of the distance (d2) in the actual algorithm, as in Equation 3.1.1-9.

As defined in the function, the square root of the numerator in Equation 3.1.1-9 can be expressed using a
3x3 matrix determinant and expanded as follows:

 G
xs xo xo
ys yo yo1

1 2 1

1 2 1

1 1 1
= det

 G xs
yo yo

xo
ys yo

xo
ys yo

1 1
2 1

2
1 1

1
1 2

1 1 1 1 1 1
= − +

 () () ()G xs yo yo xo yo ys xo ys yo1 1 2 1 2 1 1 1 1 2= − + − + − Equation 3.1.1-10

To express the numerator as G1 as in Equation 3.1.1-10, return to the point-slope equation of the line of
the object aircraft.

 () ()y m x m xo yo= − +1 1
*

 y
yo yo

xo xo
x

yo yo

xo xo
xo yo=

−

−
−

−

−
+















2 1

2 1

2 1

2 1
1 1 Equation 3.1.1-11

By rearranging the terms in Equation 3.1.1-11, the equation can provide the A, B, and C terms of the
general equation.

 y =
()

()
()

() ()

()

yo yo

xo xo
x

yo yo xo yo xo xo

xo xo
2 1

2 1

2 1 1 1 2 1

2 1

−

− −
− −

− − + −

− −

















The equation above can be expressed as:

 y
A

B
x

C

B
= − − , where A = (yo2 - yo1), B = - (xo2 - xo1), and

 C = -(yo2 - yo1)xo1 + yo1(xo2 - xo1)

Therefore, using the terms above, the square root of the numerator in Equation 3.1.1-9 can be shown to be
equivalent to Equation 3.1.1-10.

* The slope, m, for the object aircraft line is
yo yo
xo xo

2 1

2 1

−
−









 .

 11

 Axs Bys C1 1+ +

 (yo2 - yo1)xs1 + - (xo2 - xo1)ys1 + -(yo2 - yo1)xo1 + yo1(xo2 - xo1)

 (yo2 - yo1)xs1 + -ys1xo2 + ys1xo1 + -xo1yo2 +xo1yo1 + yo1xo2 + -yo1xo1

 xs1(yo2 - yo1) + xo2(yo1 - ys1) + xo1(ys1 - yo2)

For this case, Equation 3.1.1-12 expresses the denominator in Equation 3.1.1-9 from the formula (A2 +
B2). It represents the distance of the object aircraft’s segment from cusp A1 to A2.

 () ()d xo xo yo yoo
2

2 1
2

2 1
2= − + − Equation 3.1.1-12

The derivation is similar for the other endpoints and from the object aircraft to the subject aircraft.

Cases 2 and 3

For Cases 2 and 3, one of the two aircraft is in a holding pattern, making their line segment a point. Since
there are an infinite number of perpendicular lines from the given aircraft to the holding aircraft, the
function uses the perpendicular line drawn from the given point and the point forming the intersection.
This intersection point is the endpoint of the perpendicular line drawn from the holding point to the
opposite line.

For example, for Case 2 the subject aircraft is on hold, so the signed perpendicular distance from the object
aircraft’s first cusp to the subject aircraft is indeterminate. As illustrated in Figure 3.1.1-3 below, the
distance calculated by the function is the signed perpendicular distance from the object aircraft’s first
endpoint to the intersection point, P. The point, P, is formed by the intersection of the line from the subject
aircraft’s holding point to the object aircraft’s line.

Figure 3.1.1-3: Example of Case 2 (distance calculated for one aircraft holding)

Derivation of the distance, d, in Figure 3.1.1-3:

(xo1,yo1)

A1

B1

B2

P (xi, yi)

(xo2,yo2)

(xs1,ys1)

d

 12

The triangle formed by the points B1, A1, and P can be used to determine the distance, d, in Figure 3.1.1-3.
Using the Pythagorean Theorem and the formulas listed in the function, the relationship of the triangle’s
side distances can be expressed as:

 c2 = a2 + b2

 R2 = (G1
2 +G3

2)/do
2 Equation 3.1.1-13

 Where, R = distance of line from B1 to A1, diagonal of triangle,
 G1/do = distance from A1 to P as defined in previously,
 G3/do = distance from B1 to P as defined in the function code

G3 is the numerator in the distance equation above and is defined by the function as:

 ()() ()()G yo ys yo yo xo xs xo xo3 1 1 1 2 1 1 1 2= − − + − − Equation 3.1.1-14

The distance from B1 to P (or d), as defined in the function, is the numerator G3 divided by the squared
root of the denominator, do

2. Using Equation 3.1.1-13 we will derive Equation 3.1.1-14 or G3 and the
distance d, but first a few more terms must be defined.

R is the distance of the line segment from B1 to A1 and can be expressed by the general Euclidean distance
equation as:

 R = () ()xo xs yo ys1 1
2

1 1
2− + − Equation 3.1.1-15

The numerator and denominator of the distance from A1 to P, as derived previously, is restated here as:

 () () ()G xs yo yo xo yo ys xo ys yo1 1 2 1 2 1 1 1 1 2= − + − + − Equation 3.1.1-16

 () ()d xo xo yo yoo
2

2 1

2

2 1

2
= − + − Equation 3.1.1-17

By substitution, the Equation 3.1.1-13 can be expressed as:

 d R G Go

2 2
1

2
3

2
= +

 () ()[] () ()[]xo xs yo ys xo xo yo yo1 1

2

1 1

2

2 1

2

2 1

2
− + − − + − =

() () ()[]

()() ()()[]
xo ys yo yo xs xo xs yo xo ys

yo ys yo yo xo xs xo xo

1 1 2 1 1 2 1 2 2 2

2

1 1 1 2 1 1 1 2

2

− − − + −

− − + − −
 Equation 3.1.1-18

To simplify the algebraic manipulation of Equation 3.1.1-18, assign A, B, M, N to the following values:

 13

 A = (yo2 - yo1); B = - (xo2 - xo1); M = (xo1 - xs1); N = (yo1 - ys1)

Now, substitute these terms into Equation 3.1.1-18, to get:

 d R G Go
2 2

1
2

3
2

= +

 (A2 + B2)(N2+M2) = (NM-MA)2 + (-NA-MB)2 Equation 3.1.1-19

It can easily be shown that in Equation 3.1.1-19 G3 is represented as (-NA-MB), but it must be shown that
the terms in Equation 3.1.1-19 can be expanded to confirm G d R Go3

2 2 2
1

2
= − . In other words, we will

solve for G3 in Equation 3.1.1-13 represented in the terms of Equation 3.1.1-19 for simplification. If the
value of G3 can be expressed in terms of d R Go

2 2
1

2
− , then G3 has been effectively derived by Equation

3.1.1-13. Therefore, by moving G1 to the other side and squaring the terms, Equation 3.1.1-19 reduces to
the G3 equivalent to the function’s definition (Equation 3.1.1-14).

 (A2 + B2)(N2+M2)- (NM-MA)2 = (-NA-MB)2

 (N2A2+M2A2+N2B2+N2M2-N2B2+2MNAB-M2A2)=(-NA-MB)2

 (N2A2+2MNAB+M2A2) = (N2A2+2MNAB+M2A2)

Like Case 1, the same derivation can be applied to the other endpoints and from the object aircraft to the
subject aircraft.

Case 4:

For the case where both subject and object aircraft are in a holding pattern, the function calculates the
Euclidean plane distance between the two points. The general distance formula is used.

 () ()Ω = − + −xo xs yo ys1 1

2

1 1

2
 Equation 3.1.1-20

Note: Once again the square root is not calculated in the function due to efficiency, but the Ω2 is
compared against M2.

 14

3.1.1.3 Boolean Logic

The function uses five Boolean variables to decide whether the filter passes the aircraft pair
(conflict could exist) or rejects the aircraft pair (no conflict could exist). These Boolean variables
are defined as follows:

Variable Description Formula
L1 subject segment does not cross line

containing object segment
U1*U2>0

L2 object segment does not cross line
containing subject segment

Z1*Z2>0

L3 ends of subject segment close to line
containing object segment

U12<M2 OR U22<M2

L4 ends of object segment close to line
containing subject segment

Z12<M2 OR Z22<M2

L5 throw out the segment pair (L1 and not L3) OR
(L2 and not L4)

Table 3.1.1-1: Boolean Variable Table

The overall function’s logic and how the Boolean variables are used is illustrated in Figure 3.1.1-
4. First, the function determines if both of the aircraft are in hold. If both are in hold, the
calculation is relatively simple. Both aircraft are at points, so the squared distance between them
is calculated and compared against the strip width M2. This result is stored in Boolean variable
L5. If L5 is true, the holding aircraft are separated by a distance greater than M resulting in the
rejection of the aircraft as a viable conflict. If L5 is false, the aircraft are passed on to the next
filter as a potential conflict.

If one of the aircraft were not in hold, the function calculates the numerator formulas (i.e. g1, g2,
h1, etc.). It first checks for the object aircraft being in hold and if true uses the h3 and h4 as the
numerators in the U1 and U2. If the object is not in hold, it uses the g1 and g2 numerators. The
numerators are explained in detail in the case descriptions in Section 3.1.1.2, but the values being
calculated here are L1 and L3 which use both U1 and U2 distances (refer to the Table 3.1.1-1
above). Also if L1 is true (which means the subject segment does not cross the object line) and
L3 is false (which means the end cusps of the subject aircraft is beyond the M distance from the
object segment), there would be no potential for conflict and L5 would be true.

A similar check is evaluated for the subject aircraft where it is checked if in hold. If true, the g3
and g4 numerators are calculated and used for L2 and L4. If the subject aircraft is not in hold, the
numerators h1 and h2 are calculated. Just like the previous for the object in hold, the subject in
hold will determine if the object segment crosses the subject line. Also the object end cusp’s
distance from the subject segment is determined. Referring to the Table 3.1.1-1, if the L5 is true,
the L2 must be true meaning the object aircraft does not cross the subject line, and the L4 is false
meaning the object cusps are less than a distance M from the subject line.

For example, take a pair of aircraft that are both not in hold, so all the numerators are calculated.
First, L1 and L3 are calculated (using the g1 and g2 numerators) that check if the subject segment
does not cross the object line and the cusps of the subject aircraft are greater than the M distance
to the object segment. Therefore, if the lines do not cross and they are greater than M, the aircraft
are considered not potentially in conflict making the L5 variable true. Next, the similar variables
are calculated for the object aircraft against the subject using the L2 and L4 Boolean variables.
For this check (using the h1 and h2 numerators), the object aircraft checks for a non-crossing of
the subject line and if the object segment cusps are greater than M distance to the subject segment.

 15

If both conditions are true, a potential conflict cannot exist, so L5 variable is evaluated true. The
routine ends by checking the L5 variable; if true, the segments are rejected as a potential conflict.

Assessment Table

REF# Approximation/Assumption Assessment Impact on
APD

R 3.1.1-1 For holding pattern3, aircraft are
assumed to remain at a given point
(not a circular path, Equation 3.1.1-
20).

Currently, URET D1.1 does
not model aircraft holds.

Important

R 3.1.1-2 For the holding aircraft, the
perpendicular line drawn to holding
point from opposite line is
approximated by the perpendicular
line from the opposite point to the
intersection of the perpendicular
drawn from the holding point to the
opposite line (refer to Cases 2 & 3,
i.e. G3 and G4, Equation 3.1.1-14).

Reasonable, since two
checks are always
performed. In this case, the
other check from the
opposite line to holding
point will determine the
parallel distance to the strip
M and this distance will
determine the perpendicular
distance to strip M.

Minor

R 3.1.1-3 Minimum input length used to
determine if aircraft in holding
pattern (found in code, i.e.
cfp_inp.min_seg_length)

Reasonable, assuming the
value is relatively small.

Minor

R 3.1.1-4 Misleading comments and
documentation description of Case 2
and 3 perpendicular distance. The
numerators: Z3, Z4, H3, and H4 are
not equivalent to Case 1
perpendicular, but defined as the
adjacent side of the right triangle (i.e.
A1 to P to B1).

Need more descriptive
comments and
documentation for use of
the adjacent side distance.

Minor

3 Aircraft flying holding patterns are not currently modeled by URET D1.1. However, in APD the code
exists and is being assessed for sake of completeness.

 16

Is one of the
aircraft not in a

hold?

Yes

Calculate numerators:
g1, g2, h1, h2, g3, g4,

h3, and h4

Coarse Horiz Start:
Calculate M and

denominators

No

Calculate distance
between holding

aircraft and L5= throw
out seg. pair vs. M2

Is object a/c in a
hold?

Yes

No

Calculate:
L1=subject segment does
not cross line containing

object seg.
L3=end of subject seg. close
to line containing object seg.

{using g1 and g2}

Calculate:
L1=subject segment does
not cross line containing

object seg.
L3=end of subject seg. close
to line containing object seg.

{using h3 and h4}

Is subject a/c in a
hold?

Yes

No

Calculate:
L2=object segment does not
cross line containing subject

seg.
L4=end of object seg. close

to line containing subject
seg.

{using h1 and h2}

Calculate:
L2=object segment does not
cross line containing subject

seg.
L4=end of object seg. close

to line containing subject
seg.

{using g3 and g4}

Calculate: L5 =Throw
out segment pair*

Decide
Conflict?

Figure 3.1.1-4: Coarse Horizontal Function Overall Logic

 17

3.1.1.4 Additional Diagrams For Reference:

For Case1: Subject to Object Aircraft:

For Case1: Object to Subject Aircraft:

For Case 2: Subject to Object with Subject in hold:

A1

B1

B2

P1 (xi, yi)

(xo2,yo2)

(xs1,ys1)

Distance _|_
of subject to
object cusp 1:
G1/do

A2 (xs2,ys2) Distance _|_
of subject to
object cusp 2:
G2/do

P2 (xi, yi)

(xo1,yo1)

A1 = A2

B1

B2

P (xi, yi)

(xo2,yo2)

A1

(xs1,ys1)

B1

B2

Distance _|_
of subject to
object cusp 1
or cusp 2:
G1/do and
G2/do

(xi, yi) P1

(xo2,yo2)

(xs1,ys1)

Distance _|_
of object to
subject cusp 1:
H1/ds

A2 (xs2,ys2)

Distance _|_
of object to
subject cusp 2:
H2/ds

(xi, yi) P2

(xo1,yo1)

 18

For Case 2: Object to Subject with Subject in hold:

3.1.2 Function: CFP_FINE (C)
Using relative geometry, this function tests if a line segment and an octagon boundary intersect. If the
conflict is present, it also computes the start and end of the intersection.

3.1.2.1 Description:
The vertices of the octagon boundary are calculated in a subfunction called CFP_OCTAGON. The
octagon boundary is the finest relative boundary mesh and is formed by the two aircraft’s rectangular
conformance boundaries plus the separation distance. The Fine Filter calls GM_CONVEX to determine if
the object aircraft’s relative position is inside or outside the octagon. Depending on the specific case of
which relative position is inside or outside the octagon, the GM_INSEC function is called to determine if
and where the relative position vector intersects the octagon. The floating point computations relating the
intersection points and relative positions of the aircraft may cause inaccurate results, so these are
thoroughly checked for potential problems and corrected within the algorithm. Therefore, CFP_FINE filter
acts as a manager of the algorithm, while other lower level functions actually calculate the intersections
(i.e. GM_CONVEX, GM_INSEC, etc.).

A1 = A2

B1

B2

P (xi, yi)

(xo2,yo2)

(xs1,ys1)

Distance _|_ of
object to subject
cusp 1: G3/do

Distance _|_ of
object to subject
cusp 2: G4/do

(xo1,yo1)

 19

Table of Variable Definitions

Function Variable Description Math Symbol
in_p flag for p being inside (1) or outside (0) the

octagon
in_p

in_q flag for q being inside (1) or outside (0) the
octagon

in_q

num_insecs number of intersections num_insecs
xi[5], yi[5] x and y array coordinates for the intersection

points
xi, yi

ratio1[5], ratio2 ratios of distance location on the intersection
segment, returned by GM_INSEC function

ratio1, ratio2

max_ratio maximum ratio generated from GM_INSEC max_ratio
tp, tq start and end times of adjusted vectors tp, tq
ti[5] array of intersection times ti
poscd return code for calls to CFP_POSIT poscd
index index for largest ratio1 in the array list index
ver[1][8] input matrix which contains vertices of the

octagon boundary, where ver[0][1..8] = x
coordinates and the ver[1][1..8] = y
coordinates

ver[1][8]

cfpint input pointer to internal data structure of the
line segments of the object and subject aircraft

cfpint

3.1.2.2 Mathematics:
Since this function is essentially a low level manager of the calls to the subfunctions which
determine the actual conflict segment, a flowchart is presented under this section and the
mathematical descriptions are left to the subfunction assessments.

Figure 3.1.2-2 presents the initial part of the algorithm, including the steps taken if the relative
velocity vector is smaller than epsilon. The process continues to the next three figures. Figure
3.1.2-3 presents the steps and calls for the case where the relative velocity is non-zero and the p
position vector is inside the octagon while the q is not (refer to the following diagrams in Figure
3.1.2-1 for illustration of examples of the potential cases of the p and q). The Figure 3.1.2-4
presents the steps for a similar case as Figure 3.1.2-3, but for this case the q position vector is
inside the octagon while p is not. The Figure 3.1.2-5 presents the case where both p and q vectors
are on or outside the octagon. For both Figure 3.1.2-3 and Figure 3.1.2-4, there must be either 1
or 2 intersections found. There are four potential sub-cases to Figure 3.1.2-5: either 0, 2, 3, or 4
intersections were found.

 20

Figure 3.1.2-1: Diagram of examples of each case where relative velocity is non-zero

P and Q inside octagon

P

Just one position vector inside,
either P inside or Q inside
(example below with P inside)

P

or

P

One intersection Two intersections No intersections

Both P and Q outside
octagon boundary P

or
P

No intersections Two intersections

P

or

P

Three intersections

P

Four intersections

or

Q Q

Q

QQ

Q

Q
Q

or

 21

Call CFP_RELVEC to
determine relative

vectors (i.e. relative
positions p, q, and the

relative velocity, v)

Is the relative
velocity < ε ?

Yes

No

Is p OR q
inside the
octagon?

Yes

RETURN conflict

No
RETURN
no conflict

Relative Velocity in
non-zero:

call GM_CONVEX for
both p and q

Call GM_CONVEX
for both p and q

Is p AND q
inside the
octagon?

Yes

RETURN conflict

No

Is p inside the
octagon?

Yes

No Continue:

Continue:

Figure 3.1.2-2: Initial Steps in CFP_FINE

Figure 3.1.2-3

Figure 3.1.2-4

 22

Continue

Is
num_insecs=0?

Yes

No

RETURN conflict:
technically impossible but

assume Q is inside

Find index of for
intersection

coordinates with
maximum ratio1:
xi[index], yi[index]

Loop through each pair
of vertices by calling

GM_INSEC to
determine which have

intersection with
 p and q segment

Is maximum
 ratio1 <= 0?

Yes

RETURN conflict:
technically impossible but

assume Q is inside

No

Call
CFP_INTERSECT_TIME
to determine tq; then call
CFP_POSIT and trim end

points of segments up to tq

RETURN conflict: with
trimmed segments

Figure 3.1.2-3: Flowchart where P is inside octagon only (continued from Figure 3.1.2-2)

 23

Continue

Is
num_insecs=0?

Yes

No

RETURN conflict:
technically impossible but

assume P is inside

Find index of for
intersection

coordinates with
maximum ratio1:
xi[index], yi[index]

Loop through each pair
of vertices by calling

GM_INSEC to
determine which have

intersection with
 p and q segment

Is maximum
 ratio1 <= 0?

Yes

RETURN conflict:
technically impossible but

assume P is inside

No

Call
CFP_INTERSECT_TIME
to determine tq; then call
CFP_POSIT and trim end

points of segments up to tp

RETURN conflict: with
trimmed segments

Figure 3.1.2-4: Flowchart where Q is inside octagon only (continued from Figure 3.1.2-2)

Note: This is similar
to Figure 3.1.2-3.

 24

No

ELSE
For p and q outside the

octagon:

Loop through each pair
of vertices by calling

GM_INSEC to
determine which have

intersection with
 p and q segment

Is any check in
loop Co-linear?

Yes

RETURN no conflict:
p-q segment colinear with

an octagon side

Switch on
number of

intersections:
0,1,2,3,4

no.=0 or no.=1 no.=2 no.=3 or no.=4

RETURN no conflict:
protential roundoff error

Check for intersect
times equal?

Yes

RETURN no conflict:
special case where

conflict at vertex

No
Call

CFP_POSIT
to trim

accordingly

RETURN conflict: both
ends of segments

trimmed

Set times tp and tq
from proper

intersection times
ti[0..3]

Call CFP_POSIT
to trim accordingly

Short
interval?

RETURN conflict: both
ends of segments

trimmed

No

Yes

RETURN no conflict:
conflict very short

Figure 3.1.2-5: Flowchart where both P and Q are outside octagon (continued from Figure 3.1.2-2)

 25

Assessment Table

REF# Approximation/Assumption Assessment Impact on APD

R 3.1.2-1 The relative velocity vector is
determined by using the
magnitude from the average
ground speed over the interval
and the direction from the
bearing interval. This is
compared to a small epsilon
value to determine when to
assume a check of the relative
position alone is sufficient.

If the acceleration is constant over the
segments and the epsilon value is
small, the approximation is very
reasonable. This function determines
if either p or q vector are inside the
octagon, which helps reduce the
chance for a missed alert from round
off error.

Important

R 3.1.2-2 The case where the number of
intersections equals zero or the
maximum ratio is <=0 is
checked when one of the
position vectors is inside the
octagon. If they do occur, a
floating point error must have
caused this, since they are
technically impossible.

The checks are in place and the proper
flags are also present. Though how
often, if ever, does this occur?

Minor

R 3.1.2-3 The case where the P and Q
vectors are outside the octagon
and the GM_INSEC finds one
intersection is an error which is
protected against by an error
trap. The assumption is it is
caused by a round off error and
no conflict result is returned.

On the surface the error seems
impossible, but due to floating point
round off error this may happen. The
assumption is reasonable since both
position vectors were already
determined to not be collinear and
outside the octagon. One intersection
could only mean the position vector
skims the surface of the octagon, but
not at a vertex or it would have been
two intersections. To touch the
surface somewhere else, could only
mean a floating point error and this is
what the function checks for.

Minor

3.1.3 Function: CFP_INTERSECT_TIME (C)
This function calculates the time, given the coordinates (x and y) of a specific point, by linear interpolation
between the end points of a segment.

3.1.3.1 Description:
Given the x, y, and t of the end points of a trajectory segment, the function will linear interpolate to find the
time for a given x and y location along the trajectory segment. The function has simple checks to ensure
the point is within the segment. If it is not within the segment, the function will use the corresponding end
point time.

 26

Table of Variable Definitions

Function Variable Description Math Symbol
x1, y1 x, y coordinates of first end point x1, y1
t1 time of first end point t1
x2, y2 x, y coordinates of second end point x2, y2
t2 time of second end point t2
xi, yi x, y coordinates of intersection point xi, yi
i if segment is a point, which time should

be used: i=1 so use first point’s time;
t=2 so use second end point’s time

I

temp1 absolute value change in the x
dimension for the segment

temp1

temp2 absolute value change in the y
dimension for the segment

temp2

ratio ratio of the difference between end
point dimension and the intersection
dimension by the corresponding
temp1or temp2

ratio

3.1.3.2 Mathematics:
The function interpolates to find a specific intersection time for a given point on a segment. The
function starts by calculating the two segment difference variables.

 temp x x1 1 2= − Equation 3.1.3-1

 temp y y2 1 2= − Equation 3.1.3-2

The next statement checks for both these differences being effectively zero (as small as an epsilon
value). If they are, a time is returned for one of the end points (the choice for this end point is
provided as an input). However, if the both the difference equations are not effectively zero, the
dimension used for the interpolation has the larger difference. Therefore, the next formula
calculated is for the ratio:

()
()

xi x

x x

−

−

1

2 1

 or
()
()

yi y

y y

−

−

1

2 1

 Equation 3.1.3-3

A final check is made to ensure that the ratio is within the interval (0, 1). Finally, the calculation
for the time is based on the chosen ratio.

 ()t t ratio t t= + −1 2 1* Equation 3.1.3-4

The equation above is simply the linear interpolation for the time at the given xi, yi coordinates.

 27

Assessment Table

REF# Approximation/Assumption Assessment Impact on
APD

R 3.1.3-1 Equation 3.1.3-4 is a linear
approximation which
assumes no acceleration is
present, although the real
kinematics of an aircraft may
have acceleration.

For the input to this function, the
assumption for the relative velocity of the
aircraft is that the aircraft do not have
acceleration during the segment, since the
relative velocity uses the average ground
speed for the entire segment. A more
accurate approach is to use a similar
function as CFP_POSIT which uses a
quadratic function to calculate the time.

Minor

3.1.4 Function: CFP_MIDDLE_HORIZ (C)
This function performs the horizontal middle filter, which uses circular conformance bounds.

3.1.4.1 Description:
The algorithm assumes circular conformance bounds around the subject and object aircraft with the radii
specified from the standard horizontal conformance by taking the larger of longitudinal or lateral
conformance distance. Using relative vectors, the algorithm subtracts the subject aircraft’s position and
velocity vectors from the object’s position and velocity vectors. The circular boundary is drawn around the
subject aircraft, consisting of both aircraft’s conformance radii and the separation distance. The aircraft
are considered not to be in a conflict if the relative position vector falls outside the subject centered circular
conformance region. If it does fall inside the region, the aircraft pair flight segments are trimmed only to
the inside of the circular boundary and passed to the next middle filter.

Figure 3.1.4-1: Relative Geometry with Circular Conformance Boundary

Radius of the
conformance
boundary

Subject
aircraft

Object
aircraft

 28

Table of Variable Definitions

Function
Variable

Description Math Symbol

xd, yd x, y coordinates of object minus subject aircraft xd, yd
tempc, temps cosine and sine temporary variables tc, ts
vdotv, vdotp,
pdotp

vector dot products (), (),
()
V V V P
P P

• •
•

m square of separation radius = (object’s conformance radius +

subject’s conformance radius + separation distance)2
m

qdiscr one quarter of the discriminant det 1/4
beta angle used to compute relative velocity; β = θo − θs = object heading

angle - subject heading angle
β

t1, t2, t3, t4 time interval endpoints t1, t2, t3, t4
dum dummy variable used in max3 and min3 dum
ths, tho heading angle for subject aircraft and object aircraft, respectively θs, θo
p[0] , p[1] relative position vector P for x-axis [0] and y-axis [1] P0, P1
q[0] , q[1] relative position vector Q for x-axis [0] and y-axis [1] Q0, Q1
vel[0], vel[1] relative velocity vector for x-axis and y-axis V0, V1

3.1.4.2 Mathematics:

Relative geometry calculation:
The first step is to trim the endpoints in the x and y coordinates, so the time intervals are
equivalent.

Position Vectors:
The next step is to calculate the relative geometry vectors. The relative vector is calculated for the
start and end of the line segments, respectively the P and Q vectors. The P and Q vectors are
rotated to align the x-axis in the subject aircraft direction of travel. Therefore, the geometry
vectors are calculated as follows:

 tc = cos (θs) Equation 3.1.4-1

 ts = sin (θs) Equation 3.1.4-2

 xd = (x coordinate of aircraft b) - (x coordinate of aircraft a) Equation 3.1.4-3

 yd = (y coordinate of aircraft b) - (y coordinate of aircraft a) Equation 3.1.4-4

 29

Figure 3.1.4-2: Rotating P vector to axis frame of subject aircraft

Now, rotate position vector P to define the x-axis by the subject aircraft’s direction of travel (refer
to Figure 3.1.4-2). Project the x and y differences on to the x and y prime axis as illustrated in the
Figure 3.1.4-2 above, such that:

 P0 = xd ts + yd tc Equation 3.1.4-5

 P1 = yd ts - xd tc Equation 3.1.4-6

The same steps are performed for the Q vector for the point 2 coordinates, resulting with:

 Q0 = xd ts + yd tc Equation 3.1.4-7

 Q1 = yd ts - xd tc Equation 3.1.4-8

where xd and yd are again calculated using the second point on each of the position vectors

Velocity Vector:
The relative velocity vector is determined by projecting the average ground speed on to the
relative position vector of the subject by the following formulas (refer to Figure 3.1.4-3):

V0 = [-(ground speed of aircraft a at (point 1 + point 2)) + (ground speed of aircraft b at (point 1
+ point 2)) * cos(b)]/2
 V1= [-(ground speed of aircraft b at (point 1 + point 2)) * sin(b)]/2

where Va = (ground speed of aircraft a at (point 1 + point 2))/2;
 Vb = (ground speed of aircraft b at (point 1 + point 2))/2;
 with a aircraft as subject aircraft and b as object aircraft

y-axis

x-axis

y’-axis
x’-axis

θs

θs θs

θs

 30

Figure 3.1.4-3: Relative velocity

Therefore, the relative velocity vector is :

 V0 = Vbcos(β) - Va Equation 3.1.4-9

 V1 = -Vbsin(β) Equation 3.1.4-10

where the V0 refers to x’-axis and V1 refers to y’-axis

Dot products and separation calculated:

The dot product is calculated for the velocity and position vectors. The next check determines if
the relative velocity is close to zero. The dot product of V on V is the magnitude of the relative
velocity squared. This check squares the speed epsilon value (ε) and compares it to the dot
product of V on V.

Relative Velocity close to zero:
If the dot product is smaller than the ε2, the relative velocity is essentially zero, meaning the
aircraft are not moving relative to each other. Therefore, it is sufficient to test if the relative
position vector is inside the circular conformance bound. The radius of the circular boundary is
as follows:

m = (radius of conformance of subject aircraft a + radius of conformance of object aircraft b +
separation standard)2

The m is compared against the dot product of the relative position vector of P on P. If the dot
product is less than m, then the aircraft pair may be in conflict so are passed on to the next filter.
With relative velocity at zero, the P and Q vectors should be equivalent, so only one check is

a The radius of conformance of the subject aircraft is the hypotenuse of the right triangle formed by half the
longitudinal and lateral conformance distances for the segment, = () ()longitude lateral2 2+ . For example,

the radius with longitudinal and lateral conformance bounds of 3 and 5 miles would be equivalent to 2.52
nautical miles from (.) (.)15 2 52 2nm nm+ .
b The radius of conformance of the object aircraft is calculated in the same manner as the subject aircraft,
using the longitudinal and lateral conformance distances of the object aircraft segment.

Va Vb
Vr

β

x-axis

y-axis x’-axisy’-axis

 31

necessary if the rounding errors are minimal. As suggested in the code’s comments, the Q dot Q
should also be checked and if either are less than m, the function should result in a detected
conflict. The comments suggest that only one vector check is sufficient, however if round off
problems are present both vectors should be checked against m. The comments also state that
the check is for the “norm” equal to zero, however the vdotv is equivalent to the magnitude of the
relative velocity squared not the normal vector. If this magnitude is equal to zero, the position
vectors P and Q should be equivalent, since there is no relative movement for the time interval of
the flight segment.

Relative velocity greater than zero:
With the relative velocity greater than zero, the aircraft are moving relative to each other. The
function needs to determine if the object aircraft is within the m distance from the subject
aircraft within the time interval of the segment. The vector equation for the relative distance is :

 R(t) = P + tV Equation 3.1.4-11

 where t = time variable - time at point 1

The function must solve for the time, t, that the relative distance traveled is equal to the radius

m . Thus by squaring both sides, the function solves :

 R(t)2 = m Equation 3.1.4-12

 (P + tV)2 = m
 (tV)2 + 2tPV + P2 = m
 (V2)t2 + (2PV)t + (P2-m) = 0

 at2 + bt + c = 0 Equation 3.1.4-13

 where a = V2, b = 2PV, c = P2-m

Therefore, the function must solve the quadratic Equation 3.1.4-13 for the roots (times) where the
object aircraft enters the circular boundary. Using the quadratic formula, the quarter discriminant
is calculated. If the quarter discriminant is negative, there are no real roots, which means no time,
t, that equates the relative distance on the boundary. In other words, there would be no conflict
for this case. From the quadratic equation, the expression for the quarter discriminant is derived
as follows:

 Quadratic Equation:
− ± −b b ac

a

2 4

2

 where discriminant = b2 - 4ac,

 so quarter discriminant = b2/4 - ac Equation 3.1.4-14

If the quarter discriminant equals zero, then there are equal rootsc to the quadratic equation and
the conflict just touches the circular bound once. Since the aircraft are separated by the
conformance boundary, assume no conflict. From Equation 3.1.4-13 and Equation 3.1.4-14, the
quarter discriminant is equivalent to:

c For a circular boundary with equal roots, the relative position vector touches the boundary at only one
point.

 32

 det1/4 = (PV)2 - V2(P2-m) Equation 3.1.4-15

or by using dot products:

 det1/4 = ()() ()[()]P V P V V V P P m• • − • • −

If Equation 3.1.4-15 is greater than zero, roots do exist and are determined by the following two
equations:

Time 1 = t1 = t1a +
− − −











b b ac

a

2 4

2
= t1a +

− − −











b b ac

a

/ /2 42

Time 2 = t2 = t2a +
− + −











b b ac

a

2 4

2
= t2a +

− + −











b b ac

a

/ /2 42

Times 1 and 2 defined in terms from the function:

 t1 = t1a +
− • −

•











()

()

P V

V V

det 1/4 Equation 3.1.4-16

 t2 = t2a +
− • +

•











()

()

P V

V V

det 1/4 Equation 3.1.4-17

If the times, t1 and t2, fall between the (t1a, t2a) and (t1b, t2b) time intervals, there exists a time
interval where the object aircraft is inside the circular boundary and thus a conflict exists. The
function trims the start and end points of the data set based on the intersection of the times.

 33

Assessment Table

REF# Approximation/Assumption Assessment Impact on
APD

R 3.1.4-1 If the relative velocity
magnitude squared (V2) is
less than or equal to the
speed epsilon squared, it
sufficient to check the
distance P from the subject
aircraft.

If the acceleration is minor over
the segment since the relative
velocity is averaged over the
segment, it seems reasonable.
The P position vector will be
sufficient to check against the
circular bound radius, however
a more conservative approach is
to check both Q and P,
returning a conflict if either is
less than conformance radius.

Critical

R 3.1.4-2 Assumption is made in using
the average ground speed
over the length of the
segment in Equation 3.1.4-9
and Equation 3.1.4-10.

Assumes linear acceleration of
aircraft during the segment
length. This could cause
inaccuracy of the position/time
estimates.

Important

R 3.1.4-3 For the trimming of the time
intervals (at the end of the
routine) if a conflict is found,
error coded may be returned
by CFP_POSIT, as stated in
the comments.

Potentially rare, but rounding
error due to single precision
calculations may cause these
error code returns.

Important

R 3.1.4-4 When the function checks for
the relative velocity less than
epsilon, the function
calculates the dot product of
V. This is referred to as the
“norm” of the velocity in the
comments and
documentation.

The dot product of V (relative
velocity) is not the normal
(“norm”) of the velocity vector.
It is the squared magnitude of
the relative velocity vector. It is
true the aircraft would be
trailing or parallel with the dot
product zero. However, the
normal could be zero and the
dot product may not be.

Minor
(comment)

3.1.5 Function: CFP_MIDDLE_VERT (C)
This function performs the vertical middle filter, which trims the conflict region passed by the horizontal
middle filter. The conflict region is trimmed in the vertical versus time plane. If no vertical conflict region
is present, the aircraft are not in conflict and finish the detection process.

3.1.5.1 Description:
The algorithm determines the vertical region of overlap for the previously trimmed flight segments from
the middle horizontal filter. The algorithm constructs an altitude (z dimension) versus time plot,
determining the intersection region if present. In the z-t plane, there exist altitude conformance regions
where both subject and object are present during the segment. These regions are bounded on all sides by
either straight lines or continuous curves. The conflict time interval passed from the middle horizontal
filter may or may not overlap in the z dimension for the entire interval. The function determines the
bounds of the z dimension overlap (if at all) and trims the time interval accordingly. If there is not an
overlapping region, the function returns a no conflict result. If a conflict is detected, the function trims the
conflict for the z-t overlap region and passes this to the next filter.

 34

Table of Variable Definitions

Function Variable Description Math Symbol
kappa lower bound of subject aircraft interval κ
lambda upper bound of subject aircraft interval λ
mu lower bound of object aircraft interval µ
nu upper bound of object aircraft interval ν
k number of intersections found k
troots[2] a vector of the times of the intersections found roots1
roots[2] a vector of the times of the intersections found roots2
cfpint->a1.z and a2.z subject aircraft cusp 1 and 2 altitudes (z dimension, feet) a1z, a2z
cfpint->b1.z and b2.z object aircraft cusp 1 and 2 altitudes (z dimension, in feet) b1z, b2z
cfpint->a1.t and a2.t subject aircraft cusp 1 and 2 times (t dimension, in seconds) a1t, a2t
cfpint->b1.t and b2.t object aircraft cusp 1 and 2 times (t dimension, in seconds) b1t, b2t
cfpint->zps subject aircraft vertical conformance distance above

trajectory altitude (in feet from trajectory altitude)
zps

cfpint->zms subject aircraft vertical conformance distance below
trajectory altitude (in feet from trajectory altitude)

zms

cfpint->zpls subject aircraft vertical conformance bound limit above
trajectory altitude (in feet from sea level)

zpls

cfpint->zmls subject aircraft vertical conformance bound limit below
trajectory altitude (in feet from sea level)

zmls

cfpint->zpo object aircraft vertical conformance distance above trajectory
altitude (in feet from trajectory altitude)

zpo

cfpint->zmo object aircraft vertical conformance distance below trajectory
altitude (in feet from trajectory altitude)

zmo

cfpint->zplo object aircraft vertical conformance bound limit above
trajectory altitude (in feet from sea level)

zplo

cfpint->zmlo object aircraft vertical conformance bound limit below
trajectory altitude (in feet from sea level)

zmlo

cfpint->zsep aircraft vertical half separation distance (in feet) zsep

3.1.5.2 Mathematics:
The code begins with error checks for synchronized segment endpoint times and positive ground
speeds, which should have been completed in the Horizontal Middle Filter. Next, the code
determines where in the intervals is the vertical conflict taking place, providing the following
cases:

1. Intersection for the entire interval
2. Intersection takes place at the beginning of the interval
3. Intersection takes place at the end of the interval
4. No intersection takes place
5. Intersection of conformance bounds without crossing of the trajectories
6. Intersection inside the intervals with crossing of the trajectories

 Table 3.1.5-1: Logical Vertical Intersection Cases

To determine each the case above, four variables are defined first for the beginning points and
then for the end points.

 35

κ lower bound of subject aircraft interval
λ upper bound of subject aircraft interval
µ lower bound of object aircraft interval
ν upper bound of object aircraft interval

 Table 3.1.5-2: Beginning and End Conflict Variables

If the upper bound of the subject aircraft, λ, is above the lower bound of the object aircraft, µ, and
the same for ν and κ, the location of the conflict is determined. Specifically, if the following
Equation 3.1.5-1 for the given end point is true, an intersection of both aircraft’s altitudes will
take place at that endpoint.

 () ()λ µ ν κ. .> >and Equation 3.1.5-1

This condition statement evaluates between the following seven cases:

Figure 3.1.5-1: Cases of End Point Intersections

 where the dark line = subject altitude
 and the light line = object altitude
 (note: *overlapping altitudes)

Only for cases C and D is an intersection not evaluated at the particular endpoint (i.e. cusp 1 or 2).
For the remaining cases (A,B,E,F,G), the Equation 3.1.5-1 is evaluated true and does intersect in
the vertical dimension.

Once the test for the beginning and ending conflicts is complete, the intersections are evaluated.
As listed in Table 3.1.5-1 for Case 1, if the begin and end conflicts are both evaluated true, the
Middle Vertical Filter ends with no trimming to the conflicts, since the trajectory segments are in
vertical intersection for the entire time interval.

For Case 2, the beginning endpoints are in an intersection but not at the end of the intervals.
There are two possible situations under this case: either the lower bound of the subject intersects
the upper bound of the object, or the upper bound of the subject intersects the lower bound of the
object.

The function uses the fact that the subject’s lower bound intersects the object’s upper bound only
if the subject’s cusp 2 altitude is greater than object’s cusp 2. This is illustrated in Figure 3.1.5-2.

 A B C D E F G*

 36

 Figure 3.1.5-2: Situations for calling CFP_V_INT

Now, the actual calculation of the vertical intersection point is determined by the function
CFP_V_INT. The function returns the intersection root times and the number determined
between a pair of segments upper and lower bounds. There could possibly be 0, 1, or 2
intersection times for all the cases, however for Case 2 only 1 root can be returned by
CFP_V_INT. For this case, a zero root is determined only if the difference between the beginning
time and the root time is less than an epsilon value. This is an approximation for a vertical
conflict of a very small duration. Otherwise, the intervals are truncated from the beginning time
to the new end time (i.e. root time) determined by CFP_V_INT.

For Case 3, the end points are where the intersection takes place and the beginning points are not.
This is symmetrical to the Case 2 comparisons. Now with the end point as the intersection side,
the cusp 1 altitudes are used to determine the situation for the call to CFP_V_INT in the same
manner as the cusp 2 altitudes were used for Case 2.

For Cases 4 and 5, the beginning and end altitude bounds are not intersecting, but a vertical
conflict may or may not exist. These cases are evaluated by an expression that determines
whether the trajectory segments cross in the vertical dimension. The expression is as follows:

 ()()[]alz b z a z b z− − >1 2 2 0 Equation 3.1.5-2

For the Equation 3.1.5-2 to be positive, the segments will not be crossing in the vertical
dimension.

Figure 3.1.5-3: Equation 3.1.5-2 > 0 for both situations

Similar to Cases 2 and 3, the order of intersection (i.e. lower intersects upper bound) is determined
by using the cusp 1. For Case 4, CFP_V_INT found zero roots, so no intersection is determined.
For Case 5, two intersection points are found. These intersection points are within the

a1z a2z

b1z b2z

b1z b2z

a1z a2z

Beginning of
intervals in
intersection

Situation A: Subject’s
cusp 2 altitude is greater
than object’s cusp 2

Situation B: Subject’s
cusp 2 altitude is less
than or equal to object’s
cusp 2

Subject’s lower
bound intersects
object’s upper bound

 37

conformance bounds without the crossing of the trajectories, and of course without being in
conflict at the segment endpoints.

For Case 6, the Equation 3.1.5-2 must be less than zero, which represents a pair of crossing
trajectory segments. Both cases of intersecting bounds take place simultaneously. The lower
bound of the subject aircraft intersects the upper bound of the object aircraft and the upper bound
of the subject aircraft intersects the lower bound of the object aircraft, so two calls to the function
CFP_V_INT are made. The first call is with the intersecting lower bound as the subject aircraft.
The second call is with the intersecting lower bound as the object aircraft. Each call must return
one root and both roots are used to trim the segments.

 Figure 3.1.5-4: Crossing Trajectories for Case 6

A final check is made to determine if the trimmed interval is less than an epsilon value (currently
1 second). If the interval is less than or equal to the epsilon time, no conflict is returned. If the
time is greater than the epsilon time, the conflict does exist and the intervals have been trimmed
accordingly.

b2z

b1z

a1z

a2z b2z

b1z

a1z

a2z

 38

Function Logic Review:

The following flowchart summarizes the logic of the Middle Vertical Filter. The checks for the
small epsilon time are not represented for each case, but assumed present for each call to
CFP_V_INT.

Middle Vertical Filter

Compute vertical
intersection

check at cusp 1:
 beginning in conflict

Compute vertical
intersection

check at cusp 2:
end in conflict

If begin &
end in conflict Yes

Conflict but no
adjustment

No

If begin
 in conflict Yes

No

If a2z > b2z Yes

No

Call CFP_V_INT with
lower bound of subject

intersecting upper
 bound of object

Call CFP_V_INT
with upper bound

of subject
 intersects lower
 bound of object

If root
 no. = 1 Yes

Correct no.
 of roots,

trim to
 root found

No

Error returned,
incorrect
 no. roots

B

Case 1

Case 2

Figure 3.1.5-5: Middle Vertical Filter Logic Flowchart

 39

If end in conflict Yes

No

If a1z > b1z Yes

No

Call CFP_V_INT with
lower bound of subject

intersecting upper
 bound of object

Call CFP_V_INT with
upper bound of subject

intersects lower
 bound of object If root

 no. = 1 Yes

Correct no.
of roots,
trim to

 root found

No

Error returned,
incorrect no.

roots

B

If [(a1z-b1z)(a2z-
b2z)]>0

Yes If a1z>b1z

NoNo

Yes

Call CFP_V_INT with
lower bound of subject

intersecting upper
 bound of object

Call CFP_V_INT
 with upper bound of

subject intersects
 lower bound

of object

If root
 no. = 0

Yes
No conflict,
rejected by
middle filter

No

Error returned,
incorrect no.

roots

If root
 no. = 2

No

Yes
Correct no. of
roots, trim to
root found

Call CFP_V_INT for
each:
 1. lower bound of
subject intersecting
upper bound of object
2. upper bound of
subject intersects
 lower bound of object

Check for one
 root for each case

above

No

Error returned,
incorrect no.

roots

Yes
Correct no. of roots,
trim to roots found

from each side

Case 3

Case 4

Case 5Case 6

 40

Assessment Table

REF# Approximation/Assumption Assessment Impact on

APD

R 3.1.5-1 Round off problems have
caused errors due to single
precision accuracy as
expressed in the comments. In
all calls to CFP_V_INT, the
middle filter checks for small
interval times less than epsilon
value.

The occurrence of very small conflicts
cause the error checks to assume no
conflict (less than acp.time_epsilon).
This is a reasonable approximation if
the epsilon time is relatively small
(currently 1 second).

Important

R 3.1.5-2 Incorrect number of roots for
particular geometric situation
returned by CFP_V_INT (a
sub-function call by the middle
filter).

Current method is to check for the
appropriate number of roots for each
case. If the wrong number is returned,
the middle filter will return an error
code. More investigation is required to
examine when and if this can occur.

Important

R 3.1.5-3 Prior filter check for equal
adjusted interval cusp times.

This is checked for equal interval cusp
times that must have been completed in
a prior filter (middle horiz.).

Important

3.1.6 Function: CFP_RELVEC (C)
This function recalculates the relative geometry vectors, specifically the relative velocity vector and the
relative position vectors.

3.1.6.1 Description:
Due to the trimming in the Middle filters the relative geometry should be recalculated before entering the
Horizontal Fine Filter. Also, if acceleration is present the recalculation of the relative vectors will reduce
round off in the Fine Filter. The function applies the same technique used in the Middle Horizontal filter to
generate the relative vectors.

Table of Variable Definitions

Function Variable Description Math Symbol
xd, yd x, y coordinates of object minus subject aircraft xd, yd
tempc, temps cosine and sine temporary variables tc, ts
beta angle used to compute relative velocity; b = qo - qs =

object heading angle - subject heading angle
β

ths, tho heading angle for subject aircraft and object aircraft,
respectively

qs, qo

p[0] , p[1] relative position vector P for x-axis [0] and y-axis [1] P0, P1
q[0] , q[1] relative position vector Q for x-axis [0] and y-axis [1] Q0, Q1
vel[0], vel[1] relative velocity vector for x-axis and y-axis V0, V1

 41

3.1.6.2 Mathematics:
The function starts by calculating the relative geometry vectors. The relative vector is calculated
for the start and end of the line segments, respectively the P and Q vectors. The P and Q vectors
are rotated to align the x-axis in the subject aircraft direction of travel. Therefore, the geometry
vectors are calculated as follows:

 ()tc s= cos θ Equation 3.1.6-1

 ()t s s= sin θ Equation 3.1.6-2

 x x xd aircraft b aircraft a= −_ _ Equation 3.1.6-3

 y y yd aircraft b aircraft a= −_ _ Equation 3.1.6-4

Figure 3.1.6-1: Rotating P vector to axis frame of subject aircraft

Now, rotate position vector P to define the x-axis by the subject aircraft’s direction of travel (refer
to Figure 3.1.6-1). Project the x and y differences on to the x and y prime axis as illustrated in the
Figure 3.1.6-1 above, such that:

 P x t y td s d c0 = + Equation 3.1.6-5

 P y t x td s d c1 = − Equation 3.1.6-6

The same steps are performed for the Q vector for the point 2 coordinates, resulting with:

 Q x t y td s d c0 = + Equation 3.1.6-7

 Q y t x td s d c1 = − Equation 3.1.6-8

where xd and yd are again calculated using the second point on each of the position vectors

y-axis

x-axis

y’-axis
x’-axis

θs

θs θs

θs

 42

Velocity Vector:
The relative velocity vector is determined by projecting the average ground speed on to the
relative position vector of the subject by the following formulas (refer to Figure 3.1.6-2):

V0 = [-(ground speed of aircraft a at (point 1 + point 2)) + (ground speed of aircraft b at (point 1
+ point 2)) * cos(b)]/2
 V1= [-(ground speed of aircraft b at (point 1 + point 2)) * sin(b)]/2

where Va = (ground speed of aircraft a at (point 1 + point 2))/2;
 Vb = (ground speed of aircraft b at (point 1 + point 2))/2;
 with a aircraft as subject aircraft and b as object aircraft

Figure 3.1.6-2: Relative velocity

Therefore, the relative velocity vector is :

 ()V V Vb a0 = −cos .β Equation 3.1.6-9

 ()V Vb1 = − sin .β Equation 3.1.6-10

where the V0 refers to x’-axis and V1 refers to y’-axis.

Assessment Table

REF# Approximation/Assumption Assessment Impact
on APD

R 3.1.6-1 There is an inherent assumption of
constant acceleration if acceleration is
present.

The assumption is reasonable if the
segments are relatively small.

Important

R 3.1.6-2 There is a check for acceleration prior to
calculating the new relative velocity
vector. If either aircraft has acceleration,
the relative velocity is recalculated.
However, if neither do, the calculation is
bypassed.

The reason is sound, if no
acceleration is present the calculation
of relative velocity will not have
changed at all.

Minor

Va Vb
Vr

β

x-axis

y-axis x’-axisy’-axis

 43

3.1.7 Function: CFP_TRIM (C)
This routine trims two segments so they have the same start and end times, making them overlap within the
same time interval.

3.1.7.1 Description:
The function is composed of two main conditional loops:

1. The first loop trims the starting points based on which segment’s starting time is greater.
2. The second loop trims the ending points based on which segment’s ending time is earlier.

The program returns the new set of trimmed flight segments by calling CFP_POSIT, which interpolates to
find the x and y coordinates of the each trimmed endpoint.

Assessment Table

REF# Approximation/Assumption Assessment Impact on
APD

R 3.1.7-1 All aircraft segments that
enter CFP_TRIM have
overlapping time intervals.

Requirement satisfied since CFP uses
coarse filter to ensure segments overlap in
time.

Minor

R 3.1.7-2 All accuracy and calculation
specifically carried in
CFP_POSIT algorithm.

Approximation of x and y coordinates of
trimmed endpoint calculated in
CFP_POSIT algorithm.

Minor

3.1.8 Function: CFP_V_INT (C)
This function computes the intersections of two linear segmented curves (referred to as splines). For this
application, these splines refer to the boundary lines of aircraft in the vertical dimension. Only the
intersections within the interior of the interval are desired and any splines that touch but do not cross are
not of interest.

3.1.8.1 Description:
The algorithm intersects the lower bound function (za(t)) with the upper bound function (zb(t)) and
calculates where these functions intersect. To determine these intersections, the function first computes the
points of inflection, specified as the spline mesh points, in the altitude versus time dimensions. The mesh
points are defined for the lower level spline and denoted a[i] where i= 1, 2, 3. For the upper bound the
spline mesh points are denoted as b[i] where i= 1, 2, 3. The algorithm interpolates to find the same time
mesh for each spline. In a sense, the spline mesh points define intervals where the algorithm checks for
intersections. The times at the endpoints of the region, (where za(t) is below zb(t) and forms the
intersection), are reported back to the vertical middle filter. The algorithm may find 0, 1, or 2 intersections
of the two splines.

 44

Table of Variable Definitions

Function
Variable

Description Math Symbol

zl1 z of lower bound trajectory at t1 zl1
zl2 z of lower bound trajectory at t2 zl2
zl lower conformance for lower bound zl
zll lower conformance limit for lower bound zll
zu1 z of upper bound trajectory at t1 zu1
zu2 z of upper bound trajectory at t2 zu2
zu upper conformance for lower bound zu
zuu upper conformance limit for lower bound zuu
zsep vertical half separation zsep
tbegin common start time of truncated segments t1
tend common end time of truncated segments t2
k number of intersections found k
roots[2] a vector of the times of the intersections found roots
am count of slots used in A vector am
bm count of slots used in B vector bm
mesh_len number of points in spline mesh mlength
tbend time for middle spline mesh point tbend
eps epsilon value used for machine roundoff for this routine only ε

3.1.8.2 Mathematics:
This function starts by checking the times and trajectory, and performs simple error traps to
ensure the segment inputs are reasonable, i.e. beginning time is before ending time. The next step
is to define the ε value for round off checks in the calculations to follow. The ε value used for this
function is the minimum of the following:

 (0.000001)t2 and (0.1)(t1-t2)

Since the time variables are defined by seconds (starting at zero seconds to 86400 seconds at time
2400 hours), the maximum value used for ε will be approximately 0.1 seconds.

Calculation of the spline mesh points for the lower bound spline starts by setting the first point to
the beginning time and lower bound altitude. The function’s next step is a check for level flight.
For the lower bound trajectory with level flight, only two mesh points will be evaluated and am is
set to 2.

 45

Figure 3.1.8-1: Example of lower bound trajectory and tbend

For the case where the lower bound trajectory is climbing or descending in the interval, the middle
spline mesh point is calculated. The point where the trajectory line intersects the lower boundary
limit is the middle spline mesh point, refer to Figure 3.1.8-1 above. There may not be a middle
spline mesh point if the lower bound trajectory line intersects the lower boundary limit outside the
time interval (for this case, the spline has only two mesh points). Solving for this middle spline
mesh point’s time, the following equation is solved:

 lower boundary limit = lower boundary line

 zll zf t zl= −() Equation 3.1.8-1

 where zf t zl t t zl t t t t() [() ()] / ()= − + − −1 2 2 1 2 1 Equation 3.1.8-2

So,

 zll zl t t zl t t zl t t t t= − + − − − −[() () ()] / ()1 2 2 1 2 1 2 1

 zll t zll t zl t t zl zl zl t zl t zl t() () [() () () () ()]2 1 1 2 2 1 2 1 2 1− = + − − − +

 ()() ()zll zl t t zl t zl t t zl zl+ − − + = −2 1 1 2 2 1 2 1

 t= [()()] / ()zll zl t t zl t zl t zl zl+ − − + −2 1 1 2 2 1 2 1 Equation 3.1.8-3

In the algorithm code, Equation 3.1.8-3’s time t is stated as tbend and examined to ensure that
tbend is inside the segments time interval. In other words, if tbend is outside the time interval
[(t1+ ε) to (t2- ε)], then the lower boundary conformance line has only two spline mesh points at
the ends of the interval. The same procedure is carried out for the upper bound trajectory and
conformance line, where the tbend is evaluated for this potential middle spline mesh point.

Point 1 of
lower bound
trajectory

Point 2 of
lower bound
trajectory

tbend

zll

zl

lower bound
trajectory line

lower bound
conformance

Altitude (z)
dimension

Time
dimension

t1 t2

zsep
lower boundary
line

 46

Once both sets of spline mesh points are defined, the points are combined at the same times and
linearly interpolated so each uses the same mesh. Five cases of the mesh point combinations are
considered by the algorithm (refer to Table 3.1.8-1). Example diagrams are illustrated in Figure
3.1.8-2. The first case is the combination of both boundary functions having 2 mesh points. For
this case, there is no need for interpolation, since the points are all at the ends of the interval at
equivalent times. The second and third cases have 2 mesh points for the one boundary and 3 for
the other. The boundary function with the 2 mesh points is interpolated with the same middle
time mesh point and stretched to have 3 mesh points. In the fourth case, both boundary functions
have 3 mesh points and an equivalent middle time mesh, so no interpolation is required. In the
fifth case, both boundary functions have 3 mesh points but the middle mesh point times are not
equivalent. For this case, both boundary functions are interpolated and stretched to have 4 mesh
points at equivalent times.

 Figure 3.1.8-2: Examples of mesh point combinations for each case

No. Variables Mesh
Length

Description

1 am=2 and bm=2 2 2 mesh points for both lines, both defined
within ε time of the end points of the interval

2 am=2 only 3 2 mesh points for the lower bound (at the end
points) while the upper bound has 3 mesh
points (at ends and middle)

3 bm=2 only 3 2 mesh points for the upper bound
(symmetric to above but in reverse)

4 am=3 and bm=3 3 3 mesh points for both lines and middle time
mesh equivalent

5 am=3 and bm=3 4 3 mesh points for both lines and middle time
mesh not equal

Table 3.1.8-1: Mesh point combinations

The mesh points are stored in two arrays of length 4 (i.e. a(0), a(1), a(2), and a(3)). The a array
stores the altitudes and times for the lower bound aircraft, while the b array stores the values for

t1 t2

am=2

bm=2

Case 1 t1 t3

am=3

bm=2

Case 2 t1 t3

bm=3

am=2

Case 3 t2 t2

t1 t3

am=3

bm=3

Case 4
t1 t4

bm=3

am=3

Case 5t2 t2 t3

 47

the upper bound aircraft. Now, the mesh points are used to interpolate and define the intersections
of the two boundary lines, za(t) and zb(t), over the interval. Two main loops are used for either
intersections at the end points of the intervals and the internal portion of the intervals.

The first loop performs two sequential checks to determine the first root times. If the mesh points
meet the following conditions, the first root times are assigned:

1. The altitudes are equal at the adjacent mesh points (a = b), and
2. Either the next or prior mesh point altitude meets a < b (excluding the beginning

and end points of the interval)

These root times are assigned, when the root altitudes are equivalent and the next or prior points
are not. The loop handles the cases where the splines are touching exactly (in the vertical
dimension), but are not identical throughout the segment interval. If the splines are identical, they
do not require this function since they are in intersection throughout the interval. If the splines are
only equivalent for part of the interval, the root times are required to trim the interval and as
starting and ending points for the interior mesh points.

The next loop checks for intersections in the interior portion of the segments by interpolating for
the intersection point. In this loop, starting with the second mesh point (i.e. i=1, not 0), the b
array altitudes are subtracted from the a array altitudes. For clarity in the derivation, assign the
altitudes and times of the mesh points to the following variables:

a[i][1] = a2
a[i-1][1] = a1
b[i][1] = b2
b[i-1][1] = b1
a[i][0] = t2
a[i-1][0] = t1

In the code, the difference between the altitudes are calculated first and compared. Specifically,
the difference between a1-b2 and a2-b2 are compared to determine if the mesh points cross.
Referring to Figure 3.1.8-3, these two differences, defined in the code as temp1 = a2-b2 and
temp2 = a1-b2, are multiplied and compared ([temp1*temp2]<0) for a negative value, which
means the lines are intersecting and the interpolation computation is applicable.

Figure 3.1.8-3: Mesh point intersection (altitude vs. time)

Again by referring to the four sides in Figure 3.1.8-3, the Equation 3.1.8-4 is defined as:

t1 t2 t

a1

b1 a2

b2

 48

 () ()[] () ()[]b a t t a b t t1 1 1 2 2 2− − = − −/ / Equation 3.1.8-4

Solve for t using Equation 3.1.8-4 and temp1 and temp2 definitions:

 ()[] ()[]− − = −temp t t temp t t2 1 1 2/ /
 () () () ()− + = −t temp temp t temp t temp t2 2 2 1 1 1
 () () ()temp temp t t temp t temp2 1 2 2 1 1− = −

 () ()[] []t t temp temp t temp temp= − −2 2 1 1 2 1/ Equation 3.1.8-5

Now, using Equation 3.1.8-5 the root time t is rearranged into the same terms expressed in the
code.

 ()[] [] ()[] []t t temp temp temp temp t temp temp= − − −2 2 2 1 1 1 2 1/ /
 ()[] [] ()[] []t t temp temp temp temp t temp temp t= − − − +2 2 2 1 2 1 2 1 1/ /

 ()[] []t t t t temp temp temp= + − −1 2 1 2 2 1/ Equation 3.1.8-6

In review, Equation 3.1.8-6 is expressed in the code and is an interpolation of the internal
intersection point of the lower bound versus upper bound function as defined by the mesh points.
Finally, the last loop just sorts the root times if required into the roots array. The final result is a
sorted array of the intersection times in the root array.

Assessment Table

REF# Approximation/Assumption Assessment Impact on
APD

R 3.1.8-1 The ε value is used to define a
cutoff value of a conflict in the
time dimension. It is also used
to provide robustness of the
algorithm against roundoff
error.

Reasonable approximation if time values
are in seconds, ε for this algorithm is
minimum of either:

maximum of [(0.000001)t2] ≈ 0.086400
maximum of [(0.1)(t1-t2)] ≈ -0.1

Important

R 3.1.8-2 The climb or descent profile
for the interval is assumed
linear and the boundaries are
assumed linear.

Reasonable approximation since the
duration of the intervals are relatively small
(<5000 feet in altitude change) and have
approximately a constant climb rate

Important

R 3.1.8-3 For the definition of zll, zl1,
zul, and zu1, the variable
names chosen are very
difficult to distinguish
between.

Relatively minor point, but for traceability
and clarity changing the names or using
capitol letters would be much more
appropriate.

Minor

3.1.9 Function: CFP_POSIT (C)
Interpolates between two state vectors (consisting of x, y, z, t, and ground speed) to an intermediate time.

 49

3.1.9.1 Description:
The state vector is given at both ends of a straight line segment. The function interpolates between the two
state vectors to an intermediate time. The function considers both the case with no acceleration and with
linear acceleration. For the case with no acceleration, the approach is a straight forward linear
interpolation between the two segment end points. For the case with acceleration, the approach is based on
the mapping of the along route distance formula to the x, y, and z being linear.

Table of Variable Definitions

Function Variable Description Math Symbol

P1 Initial node position or state vector of aircraft, contains
five fields: x, y, z, t, and ground speed

x1, y1, z1, t1, g1

P2 Final node position or state vector of aircraft, contains five
fields: x, y, z, t, and ground speed

x2, y2, z2, t2, g2

K Index indicating which P vector is to be over written with
the interpolated vector (= 1 for P1 and 2 for P2)

k

Ti Interpolation time, which is between P1.time and P2.time ti
cfp_inp.apd_spd_epsilon Ground speed difference or tolerance required to consider

acceleration present
speed_epsilon

ALPHA Weight for position 1 for linear interpolation;
alpha + beta = 1

α.

BETA Weight for position 2 for linear interpolation β.
GAMMA Denominator for the quadratic interpolation, used in the

acceleration present case
γ .

CUSP Q Interpolated position vector qx, qy, qz, qt
RETURN VALUE 0 = no error

-1 = error in times of cusps
-2 = k is 1, input time is after end cusp time
-3 = k is 2, input time is prior to first cusp time

3.1.9.2 Mathematics:
The function begins by checking for trivial or wrong input data.

The interpolation starts by defining the α and β values. For the case without acceleration, the
interpolation vector is based on the following formula:

 () () ()[] ()s t t t s t t s t t= − + − −2 1 1 2 2 1 Equation 3.1.9-1

 () () ()s t s s= +α β. .1 2 Equation 3.1.9-2

 where () ()α .= − −t t t t2 2 1 and () ()β.= − −t t t t1 2 1

With:
Variable Description
s(t) Represents the x, y, or z in respect to time
t1 or t2 The time the aircraft crosses the segment end points 1 or 2

 50

s1 or s2 The dimension parameter value (x, y, or z) at the end points 1 or 2
t Interpolation time

The Equation 3.1.9-1 is derived from calculating the linear interpolation between the two segment
endpoints, based on the formula :

 () ()[] ()() ()[]s s t t s t s t t2 1 2 1 1 1− − − − Equation 3.1.9-3

Solving for s(t) with t1 < t < t2 :

 ()[] ()[] ()[] ()()[]s t t s t t s t t s t t t2 1 1 1 1 2 1 2 1− − − + − = −

 ()[] ()[] ()()[]s t t s t t s t t t2 1 1 2 2 1− + − = −

 () () ()[] ()s t s t t s t t t t= − + − −1 2 2 1 2 1

For the case where acceleration must be considered, the following equation models the position
for x, y, and z:

 () () ()
s t

A t s B t s
C

=
+* *1 2 Equation 3.1.9-4

 where
 () ()() ()()A t g g t t g t t t t= − − + − −1 2 2

2

2 2 1 22

 () ()() ()()B t g g t t g t t t t= − − + − −2 1 1

2

1 2 1 12

 ()()C g g t t= + −1 2 2 1

2

Therefore, Equation 3.1.9-4 is illustrated similar to Equation 3.1.9-2 with an α and β terms. The
key result is the sum of both of these terms is equivalent to one.

 α β+ = 1 Equation 3.1.9-5

 where α =
A t
C
() and β =

B t
C
() from Equation 3.1.9-4.

From this equation and as stated in the code’s comments, A and B terms sum to C

() ()()A t B t C+ = , so the airspace segment is partitioned into two weighted parts. The

denominator term, C, is a quadratic equation proportional to the average velocity times the time

 51

interval squared. The quadratic equation (or the C term above) can be expressed as:

()() ()() ()()() ()()C g g t t g g t t g g t t t t g g t t= + − = + − + + − − + + −1 2 2 1

2

1 2 2

2

1 2 2 1 1 2 1

22

where () ()() ()()A t g g t t g t t t t= + − + − −1 2 2

2

2 1 22 and

() ()() ()()B t g g t t g t t t t= + − + − −1 2 1

2

1 1 22 . Therefore, the intermediate location along all
dimensions x, y, and z are all continuous for the same relationship between time and ground
speed. The result is a location along the flight segment at time t which is quadratically weighted
by both sides of the interval.

For further verification, the Equation 3.1.9-4 is compared to generally derived equations of
motion. The quadratic equation above interpolates between the two endpoints of the segment,
giving equal weight to both sides of the time interval (or segment). If the acceleration is truly
constant for the duration of the segment, the Equation 3.1.9-4 will produce the exact same result
as the following equation from Calculus:

Constant acceleration is equivalent to a dv
dt

= , and solving for velocity by integrating:

 dv a dt at v v
t

v

v

= = = −∫∫ 0
00

, the velocity becomes:

 v v at= +0 Equation 3.1.9-6

Now, the relation for velocity is v ds

dt
= , and by integrating again, the distance, s, traveled

becomes:

 ds v dt= . , so ds v dt s s v t t
a

t t
s

s

t

t

0 1

2

0 0 2 1 2 1
2

2∫ ∫= ⇒ − = − + −. () () Equation 3.1.9-7

From numerical comparison between the distance traveled in Equation 3.1.9-4 and Equation
3.1.9-7 under various constant acceleration quantities, there was no significant difference between
the distance calculated by both equations. However, if the acceleration does not exactly remain
constant over the interval, the results of the two equations do diverge. In other words, Equation
3.1.9-4 is a quadratic function based on both sides of the equation, while Equation 3.1.9-7 uses the
∆

∆
.

.
velocity

time
 of the segment for the acceleration and starts from one side of the interval. Equation

3.1.9-4 uses a quadratic interpolation function that weights both sides of the interval based on the
difference in the particular end point times and ground speed.

 52

Assessment Table

REF# Approximation/Assumption Assessment Impact on

APD

R 3.1.9-1 For aircraft with acceleration
during the interval, the
function applies a quadratic
interpolation. It assumes
constant acceleration over the
interval.

The interpolation technique does seem
reasonable when acceleration is not
constant over the interval, since it will still
weight by ground speed and end point
times. For most cases, the segment’s
acceleration is approximately constant
anyway which is how TJM defines the
state segments. For this case with constant
acceleration, the function produces the
same result as the general equations of
motion.

Important

3.1.10 Function: ECP (PL/I)
This function checks an aircraft’s trajectory for penetration of a blocked airspace. The results of the probe
are returned to the external data structure ECP_OUT.

3.1.10.1 Description:
The function iterates through all the blocked airspaces inside the data base table BAS. For each BAS entry
(i.e. blocked airspace), the aircraft trajectory state segments and the blocked airspace vertices are sent to
ST_CHK_VP, which actually determines if the aircraft does enter the particular airspace region and what
the entry and exit points are. This information is then placed into the ECP_OUT structure.

Function calls include:

• ST_CHK_VP: This is the main function for ECP which in turn calls GM_REGN,
GM_TSTPNT and GM_INSEC which carry out the actual airspace violation calculations.

• DB_FIND_AUD_PTR: The function returns the AUD pointer and size for the specified
AUD index.

• DB_LOC_FIRST: The function locates the first entry to the specified system table.
• DELTECB: The function deletes a specified ECB from the ECB list. The ECB is the

environmental conflict box or data structure which contains all the aircraft-to-airspace
conflict information.

• MAKE_ECB: The function loads ECB structure in the aircraft’s AUD. Based on the volume
(i.e. BAS) penetration data defined in the VP_OUT structure, the function creates a linked list
of ECB’s in the AUD. Also it builds the ECP_OUT table containing the conflicts in order of
occurrence up to the table maximum.

3.2 Trajectory Modeler
The Trajectory Modeler (TJM) produces a detailed four-dimensional aircraft trajectory for use by the other
URET functions. It describes the aircraft’s route of flight in both horizontal and vertical dimensions. Each
point (x, y ,z ,t) along the trajectory is referred to as a cusp and the straight line between cusps is referred to
as a segment.

The trajectory modeling routine includes five basic software functions -- Horizontal Route Analysis,
Horizontal Route Analysis Step B, Nominal Profile Builder, Modeler, and Hand-off. The majority of the
lower level algorithmic calculations are actually performed in the library of utility functions (see Section
3.4); the higher level algorithms are omitted or only briefly described in this section.

 53

Modeler (MDL)
The modeler produces a list of state segments (SSGs) which comprise the trajectory. It is here where
aircraft positions and time are calculated in the vertical dimension.

The Modeler process will modify the start point of a gradient (or slope) to satisfy a restriction. The
Modeler also determines conformance bounds for each aircraft; this includes adjusting the bounds for
altitude transitions, turns, or when entering special airspaces. The Modeler also determines the required
separation distances. The separation distances are based on FAA Order 7110.65.

Low level functions which actually perform the algorithmic calculations are described in the library of
utility functions in Section 3.4 (DB_AIR_AT_POINT, DB_FIND_AUD_PTR, ST_MAXTAS,
ST_MINTAS, GM_BRNG, CNV_GRDSPD, CNV_CNVSPD, CNV_STD_ATMOS,
ST_CLIMB_GRADIENT, ST_IASALT, ST_MACHALT, ST_DESCENT_DIST,
ST_DESCENT_GRADIENT, CNV_SPEED, ST_CHK_VP, ST_TIME_SSGDATA, GM_TURN,
ST_ARD_SSGDATA).

Horizontal Route Analysis (HRA)
The Horizontal Route Analysis routine creates the horizontal trajectory dimension. It performs route
interpretation as specified in NAS-MD-312. Fixes and route information are loaded from the Adaptation
Controlled Environment System (ACES) adaptation files. It ensures that appropriate controller/facility
preferred routing is assigned (i.e. Preferred Arrival Route (PAR), Preferred Departure Route (PDR),
preferred Departure and Arrival Route (PDAR), etc.) as well as applicable altitude and speed restrictions.
This routine breaks the flight plan route string into a descriptive list of fixes and builds a data structure
(know as on-board route segments (ORSs)) which describes each segment defined between two successive
fixes.

Low level functions which actually perform the algorithmic calculations are described in the library of
utility functions in Section 3.4 (LO_FIND, CNV_XYLL, GM_INSEC, GM_PTLINE, CNV_RADDMS,
CNV_GNOMONIC_STEREO, CNV_STEREO_GNOMONIC, GM_BRNG, DB_FIND_AUD_PTR).

Horizontal Route Analysis Step B (HRB)
Defines an ORS which joins the current position of the aircraft to the filed route. The routine is called
during a route reconformance or when a trial plan is created.

Low level functions which actually perform the algorithmic calculations are described in the library of
utility functions in Section 3.4 (DB_FIND_AUD_PTR, CNV_XYLL, GM_PTLINE).

Nominal Profile Builder (NPB)
The Nominal Profile Builder creates the vertical and speed dimension of the trajectory. It builds planned
actions for future changes in an aircraft’s speed and altitude. The process is decomposed into three
subsections - altitude processing, speed processing, and delay processing. The altitude processing
organizes all altitude restrictions associated with the aircraft route and builds planned actions (PAs) to
transition the aircraft to the target altitudes or altitude restrictions. The speed processing does a similar
process for speed restrictions.

Low level functions which actually perform the algorithmic calculations are described in the library of
utility functions in Section 3.4 (DB_FIND_AUD_PTR, LO_FIND, GM_INSEC, ST_TRANSLATE_ARD,
ST_DESCENT_DIST, ST_CLIMB_DIST, DB_CDMERG).

Handoff (HDO)
The Hand-Off routine computes the time and position of entry and exit from each sector, or from the
AERA boundary.

Low level functions which actually perform the algorithmic calculations are described in the library of
utility functions in Section 3.4 (DB_FIND_AUD_PTR, ST_CHK_VP).

 54

3.2.1 Function: ARDXY (PL/I)
Finds x, y for a given ARD.

3.2.1.1 Description:
Given an Along Route Distance (ARD), this function will return the position data (x, y) within a given On-
Board Route Segment (ORS). This function is used to support the FTME and TPRIME functions with
missing x, y information. These higher level functions are used to supply the modeler with the necessary
SSG end-point data.

Table of Variable Definitions

Function Variable Description Math Symbol
X, Y Coordinates of the aircraft at the given ARD (ft) x, y
ORS.XSN, ORS.YSN,
ORS.XEN, ORS.YEN

Coordinates of the start and end points of the On-
Board Route Segment (ft)

x1, y1
x2, y2

ORS.LNGTH The length of the On-Board Route Segment (ft) l
ARD_IN Along Route Distance (ft) ard
ORD.ACCUM_DIST ARD at the beginning of the On-Board Route

Segment (ft)
ard1

3.2.1.2 Mathematics:
The function performs the following simple calculations and logic.

First it checks if the given ARD is less than the accumulated distance up to the start of the given
ORS. If it is, it simply assigns the coordinates of the starting point of the ORS to the output x, y.

 x x= 1 Equation 3.2.1-1

 y y= 1

Otherwise the function finds the ratio of the length the aircraft traveled from the start of the ORS
to the ARD over the total length of the ORS

 r
ard ard

=
− 1

l
 Equation 3.2.1-2

The function uses this ratio to interpolate the x and y coordinates at the ARD position from the
ORS endpoints.

 ()x x r x x= + −1 2 1 Equation 3.2.1-3

 ()y y r y y= + −1 2 1 Equation 3.2.1-4

The values for x, y are returned from this function.

There are no assumptions or approximations made in this module which would have significant impact on
the algorithms.

 55

3.2.2 Function: EGRAD (PL/I)
Computes the adjustment to the altitude gradient angle from the effects of wind.

3.2.2.1 Description:
A typical vertical trajectory is first associated with a predetermined nominal trajectory estimated with no
wind. The nominal trajectory is stored in a table and associates altitude gradients, estimated from “normal
aircraft flight characteristics”, to changes in flight levels (during ascents and descents). Since this altitude
gradient is estimated for no wind, an adjustment to the gradient must be made when a known value for
wind speed and direction is defined along the predicted trajectory.

Table of Variable Definitions

Function Variable Description Math Symbol

WIND_SPEED Scalar value for wind speed Vw
CROSS_WIND Wind speed along the transverse axis of the

trajectory
Vwt

WIND_BEARING Direction of wind with respect to true North θw
ALONG_TRACK_WIND Wind speed along the longitudinal axis of the

trajectory
Vwl

CURRENT.SPEED.TAS Current true airspeed Vt
GSPD Ground speed Vg
CHANGES.EGRD The wind corrected effective gradient; the

ratio of the altitude change over horizontal
distance traveled (ft/ft). Note that the math
symbol actually represents the angle made by
the gradient

γ i

CHANGES.GRD Air mass gradient; the ratio of the altitude
change over horizontal distance traveled (ft/ft).
Note that the math symbol actually represents
the angle made by the gradient

γ a

CHANGES.BRG Aircraft bearing with respect to true North. ψ

3.2.2.2 Mathematics:

3.2.2.2.1 Ground Speed

The EGRAD function first defines the ground speed as:

 ()[] ()V V V Vg t w w w w= − − + −2 2
sin cosΨ Ψθ θ Equation 3.2.2-1

If we make the following assignment

 θ ψ θrw w= − Equation 3.2.2-2

 56

where θrw is the relative angle between the course heading of the aircraft and the wind direction,
Equation 3.2.2-1 can be reoriented as

 V V
V
V

Vg t
w

t
rw w rw= −









 +1

2

sin cosθ θ Equation 3.2.2-3

 Equation 3.2.2-3 is based on the vector representation of ground speed

Vt

Vw
Vg

θrw
θc

 and

 V V Vg t c w rw≈ +cos cosθ θ Equation 3.2.2-4

where θc is the “crab” angle between the Vt -leg and Vg -leg. Equation 3.2.2-3 and Equation
3.2.2-4 are approximations because they assume a small flight path angle (i.e. negligible effect
from motion in the vertical plane).

Therefore Equation 3.2.2-1 appears to be reasonable and coincides with most trajectory
estimation practices that assume a small flight path angle and a horizontal wind direction.

3.2.2.2.2 Effective Gradient Angle

The effective gradient angle is then calculated as:

 EGRD = =γ γi a
t

g

V
V

 Equation 3.2.2-5

where γ a is the gradient angle in the aerodynamic reference frame, which is equivalent to the
nominal gradient angle assignment when no wind exists. The ratio of true airspeed to ground
speed multiplied by the nominal gradient angle will adjust the gradient angle for the wind effect.

This relationship also appears reasonable and coincides with other trajectory assumptions.
However this relationship is based on other approximations, namely:

• The flight path angle during ascent or descent is small so that

sin
cos

, ,

,

γ γ
γ

a i a i

a i

≈

≈ 1
 Equation 3.2.2-6

 57

• The altitude rate is described as

dh
dt

Vt a= sinγ

 ≈ Vt aγ Equation 3.2.2-7

 and
 ≈ Vg iγ

• Therefore arriving at the relationship

 γ
γ

a

i

g

t

V
V

≈ Equation 3.2.2-8

All of these approximations are reasonable for most commercial aircraft flight paths. For very steep
ascents or descents (for example, greater than 45°) these approximations may be less accurate. Also
see the analysis for the CNV_GRDSPD function, Section 3.4.2.

Assessment Table

REF# Approximation/Assumption Assessment Impact
on TJM

R 3.2.2-1 Small inertial path angle
Equation 3.2.2-6

Reasonable, for Commercial Aircraft, and a
small inertial flight path angle (i.e. <= 45
degrees)

Critical

R 3.2.2-2 Derivation of ground speed,
Equation 3.2.2-3

Reasonable for the given vector
representation and relative wind and crab
angle definitions. Assumes a small flight
path angle, as in Equation 3.2.2-6, and a
horizontal wind.

Important

R 3.2.2-3 Derivation of effective
gradient, Equation 3.2.2-5

Reasonable, for small path angle approx. Critical

3.2.3 Function: INTMDL (PL/I)
Function which initializes the MDL.

3.2.3.1 Description:
Function which initializes the MDL_INFO and several trajectory model (MDL) fields, deletes all state
segments (SSG), sets the status of all Planned Actions (PA) to 0, checks for bad data in flight plans, and
sets the modeling to begin with the Along Route Distance (ARD) set to zero. Here the CURRENT data
structure is established, which describes the initial x, y, and z position, time, ground speed and air speed.
The time is calculated by converting the flight plan’s initial time to the time, in seconds, since the cold start
(using the CNV_TIN function).

 58

3.2.4 Function: HRB (PL/I)*
The Horizontal Route Analysis Step B (HRB) function defines an ORS which joins the current position of
the aircraft to the filed route. The routine is called during a route reconformance or when a trial plan is
created.

3.2.4.1 Description:
The HRB function is called when: the TKM determines that the track data is out-of-conformance with
respect to the trajectory, or a trial plan requests a new route which eventually merges back with the filed
route. HRB will build an ORS from the current position to the end of the next ORS which satisfies a
parameter constraint. All of the remaining ORSs which were previously built for the aircraft’s current
trajectory will then be appended to the newly created HRB ORS.

Table of Variable Definitions

Function Variable Description Math Symbol
OFF_DIST The smallest distance from the current position

to the associated ORS
doff

STD_LAT_CONFORMANCE The standard lateral conformance bounds. In
D1.A, this parameter is assigned a value of 2.5
nmi.

CL

MIN_DIST The minimum of the joining distance
permitted in the code.

dmin

X_PROJECTION,
Y_PROJECTION

The coordinates of the point which is
projected on the current associated ORS line
segment from the current position

xp , yp

MAX_JOIN_ANGLE The maximum join angle. The D1.A database
assigns this parameter equal to 15 degrees

α min

MIN_JOIN_DIST The minimum joining distance. The D1.A
database assigns this parameter equal to 50
nmi.

Djmin

PROJECTION_TO_FIX Distance from the projected point on the
associated ORS to the endpoint of a
downroute ORS

dproj

XX, YY The coordinates of the current position of the
aircraft

x , y

RTE_ORS.XEN,
RTE_ORS.YEN

The coordinates of the endpoint of the ORS xors ,yors

ORS.LNGTH The length of the ORS lors

3.2.4.2 Mathematics:
HRB first determines which ORS is associated with the current position of the aircraft using the Along
Route Distance (ARD) and the approximate distance (doff) between the ORS and the current position
(determined by using the function GM_PTLINE (Section 3.4.16)).

* Note: The following analysis was based on URET Version D1.A. Revisions which will describe this
function as it appears in URET Version D1.1 are still being developed.

 59

3.2.4.2.1 HRB for a Reconformance

 If the considered route is a current plan, the HRB function assumes that the current position of the

aircraft is out of lateral conformance:

 d Coff Lat> Equation 3.2.4-1

 Next, the minimum allowable distance4 from the current position to the next ORS is determined

by:

 ()d D
d

j
off

min min
max

max ,
tan

=










α

 Equation 3.2.4-2

 Loop through every subsequent ORS, checking to see if any satisfy the criteria

 Equation 3.2.4-3

 1) d dproj > min

 2) The ORS does not have a delay
 3) d proj + ≠ε 0

Where ε is a very small parameter value.

 The projection to the fix, dproj, is calculated as the distance from the projected point on the current

associated ORS5, (xp, yp), to the end point of the ORS being considered.

 () ()d x x y yproj ors p ors p= − + −
2 2

 Equation 3.2.4-4

Note: It is questionable why dproj is calculated using (xp ,yp) instead of using the current position
(x , y), since the new ORS is built from the current position. See Figure 3.2.4-1.

The first ORS which satisfies the criteria in Equation 3.2.4-3 will contain the endpoint to which
the new ORS will be built (see Section 3.2.4.2.2).

4 In D1.A, Djmin = 50 nmi and doff > CL (= 2.5 nmi). Therefore ()doff tan .maxα ≥ 9 33 nmi . In order for

()doff tan maxα ≥ D
jmin

, doff must be greater than 13.4 nmi.
5 (xp, yp) is calculated from the function GM_PTLINE

 60

Figure 3.2.4-1: Example of an HRB Return-to-Route

3.2.4.2.2 Create New ORS

 From the current position to the end point of the ORS which satisfied the criteria in Equation

3.2.4-3, make a new ORS with length

 () ()l x x y yors ors ors= − + −2 2 Equation 3.2.4-5

 Making sure that (lors + ε) > 0.

 Append the remaining ORSs to the route string and recalculate the accumulated distance.

Note: The steps described above which involve returning the aircraft to its route are now performed in the
TKM_RTR function in URET D1.1. There is additional logic in TKM_DETERMINE_CASE which
considers several different flight history characteristics before deciding on a method to return the aircraft to
its horizontal route. The description and analysis of this process is not included in this report.

3.3 Track Management
Track Management (TKM) monitors track reports received from the HCS against each aircraft’s trajectory
to determine whether an aircraft is “out-of-conformance” in a particular dimension (lateral, longitudinal,
vertical), and determines the necessary maneuvers to remodel the trajectory. TKM also makes an
assessment about the track categories of the flight, depending on the quality of the track data and the state
of the aircraft. These categories are used as a basis for determining whether a “reconformance” should be
performed and whether an aircraft is eligible for conflict probing by Automated Problem Detection.

TKM includes six major software functions: Match ID, Verify Data, Change Category, Check Airspace,
Monitor Conformance, and Compute Reconformance. Because the Track Management subsystem was
under continuous development throughout the course of this assessment (especially the
TKM_COMPUTE_RECONFORMANCE module and its underlying functions), it was not possible to
assess these functions at the same level of detail as the other algorithmic subsystems. Low level functions
which actually perform the algorithmic calculations are described in the library of utility functions (see
Section 3.4 - DB_AIR_AT_POINT, GM_BRNG, DB_FIND_AUD_PTR, LO_FIND,
ST_TIME_SSGDATA, GM_REGN); the higher level algorithms are omitted or only briefly described in
this section.

doff
(x , y)

(xp , yp)
(xors , yors)

dproj
New ORS

 61

3.3.1 Function: CNV_GRD_TO_TAS (PL/I)
This function calculates True Airspeed from a given ground speed, position/altitude information and track
bearing.

3.3.1.1 Description:
This function computes the aircraft’s true airspeed based on the ground speed , the x, y, and z position
coordinates, and the track bearing .

Table of Variable Definitions

Function Variable Description Math Symbol
WIND_SPEED Scalar value for wind speed Vw
WIND_BEARING Direction of wind with respect to North θw
TAS True airspeed Vt
GROUND_SPEED Ground speed Vg

TRACK_BEARING The flight path bearing. ψ

3.3.1.2 Mathematics:

 The function uses the x, y, and z position data in the DB_AIR_AT_POINT function (Section
3.4.10) to calculate the wind data (the x and y wind components, wind temperature and pressure).
It then calculates the wind bearing using the GM_BRNG function (Section 3.4.13). It takes the
difference between the wind bearing and the track bearing and assigns this value as the relative
wind angle, θrw

 θ θrw w= −Ψ Equation 3.3.1-1

The function uses all of these values to solve for true airspeed with the following equation

 () ()V V V Vt g w rw w rw= − +cos sinθ θ
2 2

 Equation 3.3.1-2

Equation 3.3.1-2 is simply (Equation 3.4.3-1 from Section 3.4.3) reordered to solve for true
airspeed, Vt. For the derivation, refer to Section 3.4.3.

Assessment Table

REF# Approximation/Assumption Assessment Impact on
TKM

R 3.3.1-1 Small inertial path angle During steep climbs or descents, the true
airspeed will be calculated with error

Critical

 62

3.3.2 Function: GM_PTSEG (PL/I)
Finds the relationship between a point and a line.

3.3.2.1 Description:
Refer to Section 3.4.16 which describes the GM_PTLINE function. The GM_PTSEG function is very
similar to the GM_PTLINE function except that it also calculates the distance between (x1, y1) and (xI, yI).

3.3.3 Function: LEASTSQ (C)
Finds the least square parameters for a linear first order (and second order optional) regression model.

3.3.3.1 Description:
This function performs the least squares fit of dependent data vector to independent data vector. The
function can find the least square parameters for both a first order or second order regression model,
however only the first order model is being used in D1.1.

This function uses the classic linear regression model solving for the parameters α0 and α1.

 $Y X= +α α0 1

Where X are the independent data and $Y is the predicted value of the dependent Y data. The values for
α0 and α1 are determined as follows:

 ()() ()()
()

α0

2

2 2=
−

−

∑ ∑ ∑ ∑
∑∑

X Y XY X

n X X

 ()()
()

α1 2 2=
−

−

∑ ∑∑
∑∑

n XY X Y

n X X

The function also checks to ensure there are no divisions by zero. This function is based on classic
principles6 and is reasonable.

6 See Draper, N., and Smith, H., Applied Regression Analysis, Second Edition, New York, NY.: John
Wiley and Sons, 1988, Chapter 1.

 63

3.3.4 Function: TKM_CATEGORY_CHANGE (C)
Determines the category that best describes the current state of the aircraft’s track and flight plan data.

3.3.4.1 Description:
This function maintains a category for each aircraft for use by TKM_Conformance_Monitor and
Automated Problem Detection in determining which aircraft should be subject to those functions. The
categories are defined below:
Category A: Have flight plan data and reasonable, continuous track data
Category B: Have flight plan data and intermittent track data or short track history
Category C: Have flight plan data but no track data (aircraft is proposed departure)
Category D: Have flight plan data and track data but aircraft is in a hold
Category E: Have: 1) flight plan data and track data, but unable to model trajectory from flight plan

2) track data but no flight plan data
Category F: Have flight plan data but no track data (aircraft is inbound from another facility or

outbound from this facility)

An aircraft’s category is initialized to category C, E or F outside of this function (i.e., Replan Manager
(RPM)) for first flight plans. TKM_CATEGORY_CHANGE (called by TKM_CORE AND
TKM_CONTROL) then determines if the category should remain the same, or be changed, via the
following logic flow:

 If there is no track history for the aircraft, then the current category will remain unchanged
 else
 If there is track history, but the amount is less than or equal to a parameter representing “reasonable

history” (TKM_REASONABLE_HISTORY) or has more than a parameter number of “holes”
(HOLES_IN_TRACK_HISTORY), then the current category will be set to “B”

 else
 If the input category is “D” and the aircraft is determined to still be in a hold, then the category will

remain unchanged (i.e., CURRENT_CATEGORY=IN_CATEGORY)
 else
 If the input category is “F” and the aircraft is determined to be: in tactical airspace, leaving the

ARTCC airspace, or leaving the APD inhibited area (APDIA), then the category will remain
unchanged

 else
 Set the current category for this aircraft to “A”

Table of Variable Definitions

Function Variable Description
AC_INDEX Index to aircraft history in TKM_HISTORY
TKM_REASONABLE_HISTORY Minimum amount of track history that aircraft must

have to be considered “reasonable” (parameter: 2)
CURRENT_TIME Current global time
RADAR_UPDATE Time interval between two consecutive radar

updates (currently 12 seconds)
HOLES_IN_TRACK_HISTORY Number of holes required before aircraft can be

downgraded to B category (parameter: 3)
IN_CATEGORY Input aircraft track category
CURRENT_CATEGORY Current category indicator

 64

3.3.5 Function: TKM_CHECK_AIRSPACE (C)
Determines whether aircraft is in special airspaces.

3.3.5.1 Description
This function checks the aircraft’s current track position against several special airspaces: leaving the
tactical airspace around the departure airport, entering tactical airspace around the arrival airport, and
leaving the ARTCC facility boundary. If the aircraft is currently within any of these airspaces (determined
by TKM_GM_REGN; returns “1” if inside tactical airspace, “0” if outside), a flag will be set to cause
conformance monitoring to be discontinued for this aircraft.

Table of Variable Definitions

Function Variable Description
AC_IX Index to aircraft’s track history
TRACK_X, TRACK_Y X, Y coordinates of TRACK_DATA
TRACK_T Time of TRACK_DATA
TRACK_Z Altitude of TRACK_DATA
IN_TACTICAL_AIRSPACE Flag indicating whether aircraft is in

tactical airspace or not
VERTICAL_MONITOR Flag indicating whether vertical

conformance monitoring should be
performed or not.

CATEGORY Aircraft category

3.3.6 Function: TKM_COMPUTE_RECONFORMANCE (C)
Determines if an aircraft’s trajectory should be reconformed in accordance with its reported track position
and the proper actions to bring the aircraft back into conformance.

3.3.6.1 Description:
This function, initiated when an aircraft’s conformance bounds are exceeded a consecutive number of
times (parameters: lateral=2, longitudinal=2, vertical=1), determines the specific actions required to
remodel the trajectory to bring the aircraft’s predicted position into conformance with its reported track
position. If the aircraft is out of conformance in the lateral and/or longitudinal dimension(s), the aircraft
will be reconformed in that dimension as well as in the vertical dimension. If the aircraft is out of
conformance in the vertical dimension, it will be reconformed only in the vertical dimension.

The function first makes a general check to ensure that the aircraft is not in “vertical drift” or “far away”
from its route. Vertical drift exists when the aircraft is out of vertical conformance and is beyond the
minimum and maximum vertical bounds associated with the current flight characteristic. For example, an
aircraft that is in the middle of an altitude transition which is either greater than the ssg_max_conform_z
parameter or less than the ssg_min_conform_z parameter is considered in a vertical drift. An aircraft is
considered far away from its route if its current position is greater than a parameter horizontal distance (in
D1.1, the value is far_away_distance = 30 nmi) from its associated trajectory segment. If it has been
determined that the aircraft is in either vertical drift or far away from its route, the function will not attempt
to reconform the trajectory. Consequently the aircraft will no longer be probed by the conflict detection
logic.

TKM reconforms the aircraft trajectory that is out of conformance in the longitudinal dimension by calling
the TKM_DETERMINE_SPEED function to compute the track speed of the aircraft. It then calculates a
multiplying factor to weigh both the track speed and the trajectory speed to determine a new
“reconformed” speed for the trajectory. Similarly, for the reconformance in the vertical dimension, the

 65

TKM_DETERMINE_GRADIENT function is called to compute the actual track gradient the aircraft is
flying. It then calculates a multiplying factor to weigh both the track gradient and the trajectory gradient to
determine a new “reconformed” gradient for the trajectory.

Finally, if the aircraft is out of lateral conformance, the function calls the TKM_DETERMINE_CASE
function. TKM_DETERMINE_CASE determines, from a history of the track report, the characteristic of
the flight path with respect to the original filed horizontal route. TKM_DETERMINE_CASE uses a
heuristic method based on the observed flight characteristic to determine a position along the original filed
route, downstream from the current aircraft position, to reconform the aircraft’s trajectory (and in one case
it determines an intermediate point before it returns the aircraft to its route).

TKM will then supply the reconformance information (i.e. new gradient, new speed, or return to route
position) to the Replan Manager (RPM) and Trajectory Modeler (TJM) where a new reconformed
trajectory structure can be built.

3.3.7 Function: TKM_CONFORMANCE_MONITOR (C)
Determines if an aircraft is out of conformance in longitudinal, lateral, and/or vertical dimension.

3.3.7.1 Description:
This function checks to see if the aircraft’s track position is within the defined conformance bounds (i.e.,
the conformance region) around its’ predicted trajectory position (for category A and B aircraft only), and
maintains the out of conformance count and reason for each dimension. Following is a description of the
basic logic flow of the function:

If the HORIZONTAL_MONITOR flag is TRUE, then the extrapolated position of the aircraft (difference
between ARD_BY_TIME and TRAJ_ARD) is compared with the longitudinal conformance bound
(SSG_LONG_CONFORM), and the appropriate direction is set in LONG_IND (blank if within
conformance). Next, the DISTANCE_TO_SSG is compared with the lateral conformance bound
(SSG_LAT_CONFORM), and the appropriate direction is set in LAT_IND. Likewise, if the
VERTICAL_MONITOR flag is set, vertical conformance is checked by determining whether TRACK_Z is
within the vertical conformance bounds, and the appropriate direction is set in VERT_IND. This is done
by comparing TRACK_Z with the minimum and maximum allowable altitudes for the segment
(SSG_MIN_CONFORM_Z and SSG_MAX_CONFORM_Z,) and with the trajectory altitude (TRAJ_Z)
plus/minus vertical conformance bounds (SSG_BOT_CONFORM and SSG_TOP_CONFORM).

 66

Table of Variable Definitions

Function Variable Description

AC_INDEX Index to TKM_HISTORY
TRACK_Z Reported track altitude for this aircraft
TRAJ_Z Predicted (trajectory)altitude for this aircraft
ARD_BY_TIME Projected along route distance by track
TRAJ_ARD Estimated along route distance from trajectory
DISTANCE_TO_SSG Shortest distance from track to trajectory
SSG_LONG_CONFORM Longitudinal conformance bound
SSG_LAT_CONFORM Lateral conformance bound
SSG_TOP_CONFORM Vertical conformance bound (above)
SSG_MAX_CONFORM_Z Maximum allowable altitude for this segment
SSG_BOT_CONFORM Vertical conformance bound (below)
SSG_MIN_CONFORM_Z Minimum allowable altitude for this segment
HORIZONTAL_MONITOR Flag indicating whether horizontal conformance

should be monitored (i.e., if X, Y data “good
enough”)

VERTICAL_MONITOR Flag indicating whether vertical conformance should
be monitored (i.e., if altitude data “good enough”)

LONG_IND (Output) Indicates out of conformance direction for dimension
(blank, A (ahead), or B (behind))

LAT_IND (Output) Indicates out of conformance direction for dimension
(blank, L (left), or R (right))

VERT_IND (Output) Indicates out of conformance direction for dimension
(blank, A (above), or B (below))

3.3.8 Function: TKM_CONTROL (PL/I)
This is the PL/I control function for URET. It sets up the database and TKM data structures, and then
waits to receive one of the following messages from the mailbox:

1. Track Update or Progress Report message from the HCS
2. Drop Track message from the HCS
3. 12 second update message from the Clock subsystem (CLK)
4. Check category message from RPM
5. Data collection message from CLK
6. Terminate message

TKM_CONTROL also sends messages to other URET subsystems (e.g., RPM and Plan Display Manager
(PDM)) as a result of processing these messages.

 67

TKM_CONTROL invokes the following TKM modules and utility functions upon receiving the
appropriate message:

Message TKM Modules
1. Track Update/Progress Report TKM_FOR_AERA

TKM_UPDATE_CURRENT_POSITION
DB_FIND_AUD_PTR

2. Drop Track TKM_MATCH_ID
TKM_FREE_HISTORY
DB_FIND_AUD_PTR
TKM_TRAJECTORY_EXIST
TKM_GET_HOLD

3. 12 second update TKM_FREE_HISTORY
DB_FIND_AUD_PTR
ST_TIME_SSGDATA
TKM_UPDATE_CURRENT_POSITION
TKM_TRAJECTORY_EXIST
TKM_GET_HOLD
TKM_CATEGORY_CHANGE

4. Check Category TKM_MATCH_ID
TKM_TRAJECTORY_EXIST
TKM_GET_HOLD
TKM_CATEGORY_CHANGE

3.3.9 Function: TKM_CORE (C)
This function is the top-level C control routine for all “major” TKM algorithmic functions. All data is
passed to and from TKM_CORE via the TKM_RESULTS data structure. TKM_CORE calls the
following TKM functions:

 TKM_VERIFY_DATA
 TKM_ADD_TRACK_HISTORY
 TKM_FIND_ARD_BY_TIME
 TKM_POINT_ON_TRAJ
 TKM_CHECK_AIRSPACE
 TKM_CATEGORY_CHANGE
 TKM_CONFORMANCE_MONITOR
 TKM_COMPUTE_RECONFORMANCE
 TKM_ADD_OOC

 68

3.3.10 Function: TKM_FOR_AERA (PL/I)
This function is called by TKM_CONTROL to process Track Update and Progress Report messages
received from the HCS. This is accomplished via calls to the following TKM modules and utility
functions:

 DB_GET_CMT_INDEX
 TKM_MATCH_ID
 TKM_FREE_HISTORY
 TKM_INIT_HISTORY
 TKM_GET_TACTICAL_AS
 TKM_GET_HOLD
 TKM_TRAJECTORY_EXIST
 TKM_CORE
 CNV_GRND_TO_TAS
 GM_REGN
 DB_FIND_AUD_PTR
 ST_TIME_SSGDATA
 ST_NEAREST_FL

3.3.11 Function: TKM_GET_RTE_ORS (PL/I)
This function returns the number of segments in the RTE_ORS of an aircraft starting with the current
offset.

3.3.11.1 Description:
Given the index for the central track store (CTS) data structure, this function finds the corresponding
aircraft unique data table (AUD) pointer and the pointer to the RTE_ORS (route of the aircraft based on
the initial filed route string) data structure. Here the function will loop through all of the route segments,
keeping a counter, while recording to a global variable array the values for the starting x, y coordinates, the
segment course heading, the accumulated distance to the start of the segment, and the type of fix (i.e. 3
character, 5 character, turn fix, lat/long, or not a fix) for every segment of the aircraft’s route. The call to
this function will actually return the number of segments in the RTE_ORS for the aircraft. This value can
then be used later to loop through the variable array containing all of the above, detailed RTE_ORS
information.

The function never uses the ORS_OFFSET value which is supplied as an input.

3.3.12 Function: TKM_GM_REGN (C)
In the x-y plane, this function determines if a test point (xt, yt) lies within a polygon region defined by the
a set of boundary points (x[n], y[n]).

3.3.12.1 Description:
The function uses the stdlib.h random number generator to create random numbers, and by using the
maximum and minimum x and y coordinates of the region, the function creates points outside the polygon
region. These outside points are joined with the test point to form a line segment. These test lines are
checked for intersections against the segments defining the circumference of the polygon region. The end
results is a number of intersections. The function makes n number of random number calls (currently 8).
The number of intersection checks is therefore n times the number of polygon vertices. If the number of
intersections is even, the test point is outside the region. If the number of intersections is odd, the test point
is inside the region.

 69

Table of Variable Definitions

Function Variable Description Math Symbol

xmin, xmax minimum and maximum x coordinates of the
polygon region in feet

xmin, xmax

ymin, ymax minimum and maximum y coordinates of the
polygon region in feet

ymin, ymax

rv random number value rv
xr, yr x and y coordinates of random generated point in

feet
xr, yr

*x1 x coordinate of the start point of the line (ft) x1
y1 y coordinate of the start point of the line (ft) y1
x2 x coordinate of the end point of the line (ft) x2
y2 y coordinate of the end point of the line (ft) y2
xt x coordinate of the test point (ft) xt
yt y coordinate of the test point (ft) yt
xi x coordinate of the intersection point (ft) xi
yi y coordinate of the intersection point (ft) yi
p, t ratio’s returned by gm_insec p, t
pton point on line status; pton=1 point is on a line

segment of the boundary region’s polygon, pton=0
point is not on a line of this boundary

pton

istat intersection status; istat=0 line segments intersect
between endpoints

istat

i, k loop counters i, k
pntsep constant used as delta separation allowed to

consider a point on a line; currently set at 1 ft.;
used for the TKM_GM_TSTPNT

pntsep

eps epsilon value used as effective difference of zero;
currently = 0.001

ε

nrpt number of random point tries that function iterates nrpt
n number of polygon end points n

3.3.12.2 Mathematics:
The function determines if a test point lies within a polygon region in the x-y plane defined by the
array of boundary points (x[n], y[n]).

The first step in the function is to determine the minimum and maximum boundary distances.
These extreme points are used to perform a gross check for the test point. If the test point lies
outside the extreme points of the polygon, the function returns an outside the region result for the
test point. However, if the test point is equal to or inside the extreme points, 8 random numbers
are generated. These numbers are used to define random points outside the polygon region by
using the extreme points defined earlier.

The function generates the random number by the “rand()” function in an overall loop structure i
from 0 to 7. The value of i is MOD by 4. Therefore, the result is expressed in Table 3.3.12-1,
where each MOD value is carried out twice.

Iteration MOD value Resulting random point is

 70

number generated
0 0 point to the left of the region
1 1 point above the region
2 2 point to the right of the region
3 3 point below the region
4 0 point to the left of the region
5 1 point above the region
6 2 point to the right of the region
7 3 point below the region

Table 3.3.12-1: Iteration key TKM_GM_REGN

For i = equals 0 or 4, the random point is generated to the left of the polygon region. The
expression to determine this point is :

 ()xr x x x= − −min . max min1005 Equation 3.3.12-1

 ()yr y rv y y= + −min max min Equation 3.3.12-2

For the x dimension, the point is placed 0.5% to the left of the length of the polygon. For the y
dimension, the point is placed a uniform random variable distance within the width of the
polygon.

For the other directions (i.e. to the right, below, and above), the calculation is performed
analogously to Equation 3.3.12-1 and Equation 3.3.12-2.

After each random point is generated, the function runs a second loop for each segment of the
polygon. For each segment, the TKM_GM_TSTPNT is called to determine if the test point is on
the segment. If it is, the test point is considered inside the region and the function ends with an
inside result. However, if the TKM_GM_TSTPNT determines the point is not on the line the test
point is combined with the current random point to form a segment.

Now, GM_INSEC is called to determine if an intersection takes place between the test point to
random point segment versus the polygon segment. A counter is incremented (icnt) for each
intersection found. If an intersection is found, but the ratio of the distance to the end point of the
polygon segment is less than ε or greater than 1 − ε , then the loop ends without finishing the
rest of the polygon segments and the next random point is generated. The i loop ends after nrpt
random points are generated.

The function ends by returning the MOD value of icnt by 2. This value will return a 0 or 1 for the number
of intersections determined to be even or odd, respectively. If an odd number of intersections are found,
the test point does lie inside the region. If the number of intersections is an even number, the test point lies
outside the region. Figure 3.3.12-1 illustrates the logic for this function.

 71

Find the max and min
values for the polygon

shape.

Is the test point
within the max and

min values?

Yes

No
Return(outside the

polygon)

Main loop begins: i=0
from i to (nrpt-1)

Random point outside
polygon generated

Main loop begins:
k=0 from k to (n-1)

Call
TKM_GM_TSTPNT for
test point on polygon

segment

Is test point outside
polygon segment?

Yes

No
Return(inside the
polygon segment)

Call GM_INSEC and Is
intersection found?

Is intersection
found too close to

end point?

Yes

No

Break out of
k loop

k loop ends

i loop ends

Yes

Return (MOD icnt by 2)

No

Figure 3.3.12-1: Logic Flow of TKM_GM_REGN

 72

Assessment Table

REF# Approximation/Assumption Assessment Impact
on TKM

R 3.3.12-1 The original PL/I version of this
function was written to only
generate additional random points
if an intersection was found too
close to the end point. This
function always runs nrpt times n
iterations, while the PL/I version
runs a maximum of nrpt times n
iterations.

This delta between the two versions will not
effect the accuracy of the code, since only
one random point sufficiently outside the
polygon can be utilized to determine if the
test point is inside the polygon. If all nrpt
random points are generated, the result is the
same, however, the code efficiency would be
improved if only one were used.

Important

R 3.3.12-2 The ε value assumes the value
for the ratio returned by
GM_INSEC is approximately 1
or 0. The value currently chosen
is 0.001 which is very reasonable.

A reasonable choice for the parameter has
been chosen and if the intersection point is
effectively on the end point of the polygon
line segment, another random point is chosen
(total of nrpt of them)

Minor

R 3.3.12-3 The choice of nrpt random point
iterations seems reasonable,
though if more are required the
result will be to falsely determine
the point is outside the region
(return 0).

The number nrpt=8 chosen seems reasonable
and can only be verified by unit testing.

Important

R 3.3.12-4 This function is subject to the
critical and important
approximations of
TKM_GM_TSTPNT, since it
uses this function to check if the
test point lies on each polygon
line segment.

Refer to the TKM_GM_TSTPNT function’s
Assessment Table. They will directly effect
this function TKM_GM_REGN.

Critical

3.3.13 Function: TKM_GM_TSTPNT (C)
This function determines if a point lies on a line. To lie on this line, the point may be a small epsilon
distance from the line and still be considered on the line.

3.3.13.1 Description:
Given the x and y coordinates (in feet) of the end points of the line and the x and y coordinates of a point
(in feet), the function first determines the location of an intersection point which forms a perpendicular line
from the given point to the given line (refer to Figure 3.3.13-1). Next, the function determines the distance
of this perpendicular line and compares it to the minimum epsilon distance. If the distance of the normal
line is less than the minimum distance, the point is considered on the line.

 73

Figure 3.3.13-1: Diagram of test point to line distance

Table of Variable Definitions

Function
Variable

Description Math Symbol

x1, y1 x, y coordinates of the start point of the line (ft) x1, y1
x2, y2 x, y coordinates of the end point of the line (ft) x2, y2
xt, yt x, y coordinates of the test point (ft) xt, yt
pntsep separation allowed between 2 points pntsep
delx delta difference of the line in x dimension (ft) δ . x
dely delta difference of the line in y dimension (ft) δ . y
s1 slope of the line from x1,y1 to x2,y2 m
s2 slope of the normal line from xt, yt to xi, yi -1/m
xi, yi x, y coordinates (ft) of intersection point of test

point to line
xi, yi

eps epsilon value for considering the line to vertical or
horizontal (currently set at 100 feet)

ε

d perpendicular distance (ft) from the test point to
the line

d

3.3.13.2 Mathematics:
The function starts by calculating the delta differences of each dimension of the line. These
variables include the following:

 δ . x x x= −2 1 Equation 3.3.13-1

 δ . y y y= −2 1 Equation 3.3.13-2

These deltas are used to determine if the line is a vertical line or horizontal line. For the x
dimension, if the line’s δ . x is less an ε value, consider the line to be a vertical line. The
function checks if the test point is greater than the distance pntsep in the x dimension and if so
considers it not on the line. If the test point is less than the distance pntsep in the x dimension and
is within the y dimensions of the line, it is considered on the line. An analogous check is made for
the y dimension.

x1, y1

x2, y2

xt, yt

xi, yi

distance from
point to line

 74

Now, the line is not a vertical or horizontal line and the perpendicular distance will need to be
calculated between the test point and the line. The first step is to determine the following slope
equations:

 s m
y
x

1 = =
δ
δ

.

.
 Equation 3.3.13-3

 s
m

x
y

2 1
= − = −

δ
δ

.

.
 Equation 3.3.13-4

The equation of the line is expressed for the given line and the line formed by drawing a
perpendicular line from the test point to the line. By solving these two equations simultaneously
for x and y, the resulting formulas give the x and y coordinates of the intersection point used in
the function to solve for the distance d.

 The given line:

 ()y y m x x− = −1 1 Equation 3.3.13-5

The normal line from the test point to the line:

 ()y yt
m

x xt− = − −
1

 Equation 3.3.13-6

Solving them simultaneously for x (note the x below is equivalent to xi in the code):

 () ()m x x y yt
m

x xt− + − = − −




1 1

1

 mx mx
x

m

xt

m
yt y− + − = −1 1

 x m
m

yt y
xt

m
x m+ = − + +







1
1 1

 x
yt y

xt

m
x m

m
m

=
− + +

+






1 1

1
 Equation 3.3.13-7

Now, solve for y (or yi in the code) for the intersection point using the x value in Equation 3.3.13-
7 and use Equation 3.3.13-5 to solve for y.

 75

The last check determines the distance of the intersection point using the general distance formula:

 () ()d xt x yt y2 2 2
= − + − Equation 3.3.13-8

The function proceeds by checking this distance d against the pntsep distance, and if this distance
is greater than the pntsep distance the test point is evaluated as not on the given line. However, if
the distance is less than pntsep, the test point is checked to determine if it is between the end
points of the line. For example, this checks for cases when the distance in Equation 3.3.13-8 is
zero because the test point is collinear with the given line, but not within the line segment. It
could actually be a large distance from the endpoints of the line. (NOTE: To determine if the test
point is within the line segment, the function extends the line by theε value, currently 100 feet.)

Assessment Table

REF# Approximation/Assumption Assessment Impact

on TKM

R 3.3.13-1 If the test point is less than a distance
pntsep from the given line, the point is
evaluated to be between the end points of
the given line segment. However, the line
is extended by ε for the TKM version of
GM_TSTPNT in C, but for the PL/I
version the line segment is extended only
by pntsep. The pntsep value is 1 foot and
the ε value is 100 feet.

The transfer from C to PL/I will
provide different results not because
of coding in a different language,
but because different comparison
values are used. An investigation in
the potential reasons for the change
are necessary.

Important

R 3.3.13-2 For each check (includes three in this
function), the “else return(false);” should
be added to protect against an
undetermined return from the function.
For example, the last case where the
distance equation returned a value of zero
because the test point is collinear with the
line, but not within the endpoints of the
segment. The result will end the function
without specifically assigning the value
FALSE.

The specific compiler by default
may or may not assign a zero value
(which will return the correct value)
or the return value may be
reinitialized before the call to this
function, but this is not sufficient for
portable ANSI C code. (NOTE:
The original PL/I version was
written differently to protect under
this case.)

Critical

R 3.3.13-3 As a result of the unprotected return in the
function for the horizontal line case, a
horizontal line checked against a point
outside the endpoints of the line segment
but on the line will return a division by
zero (s1 = 0.0 while s2 will be in error…).
The corresponding problem is present for
the vertical case as well.

The original PL/I version had goto
statements to protect under this case.
This is not necessary, but a simple
“else statement” with a return of
false would protect against the
problem.

Critical

R 3.3.13-4 The check carried out to determine if a
point is between the end points of the line
segment when the line segment is either
vertical or horizontal uses the pntsep value
to extend the lines under the PL/I version
and not for the C version here.

It is actually more accurate not to
use the pntsep value, but this may
cause errors due to round off during
floating point arithmetic. Therefore,
an investigation is required to
determine why this was not used in
this function.

Important

 76

3.3.14 Function: TKM_MATCH_ID (PL/I)
Attempts to associate track data with flight plan data in the URET database.

3.3.14.1 Description:
Upon receipt of a track update message or progress report message from the HCS, this function attempts to
associate the track data with flight plan data in the URET database. This is accomplished by calls to utility
functions LO_FINDAC and DB_FIND_AUD_PTR. If a match is found, the output variables identified
will be returned and further TKM processing can continue.

Table of Variable Definitions

Function Variable Description
ACID (Input) Aircraft identification
CID (Input) Computer identification
ORIGIN (Input) Origin airport of this flight
CTS_IX (Output) CTS index
AUD_IX (Output) AUD index
AMC_PTR (Output) Pointer to AMC structure
FLP_PTR (Output) Pointer to flight plan structure
THE_FIRST_FLP_PTR (Output) Pointer to the first flight plan

3.3.15 Function: TKM_TK_HDG (C)
This function determines the course heading of a set of track position reports.

3.3.15.1 Description:
Given the number of needed track position reports (or all of the points from the newest given index to the
oldest given index, whichever is less), this function will determine the heading of this series of points. If
there is only one point, the function determines the heading by taking the tan-1 of the ratio of the given
track velocities at this newest point. If there is more than one track report available, the function
determines the least square parameters for the linear first order regression model. The line defined by these
parameters is the linear relationship of the dependent variable (the x or y coordinate) to the independent
variable (time). The slope (the second parameter) is actually the velocity component of the x and y, and is
later used to determine the heading using the tan-1 function as above. Since the track reports are extracted
in reverse order, π is added to the final heading result (only if multiple track reports are available) to
reverse the direction of the heading vector to correspond to the aircraft movement.

Table of Variable Definitions

Function Variable Description Math Symbol
tkm_track[i].x,
tkm_track[i].y

Coordinates of the aircraft at the given track
index i (ft)

xi, yi

number_reports_to_use The parameter number of TK reports to use to
determine the track heading

m

index_newest_tk,
index_oldest_tk

Indices of the newest (most current) and oldest
(first) report of the aircraft’s track data

0, k

temp The course heading of the aircraft with respect
to true North (radians)

Ψ

3.3.15.2 Mathematics:
The function performs the following simple calculations and logic:

 77

First the function extracts the track data (x, y, and t) in reverse order starting with the newest, most
recent, report and ending with oldest report or until the given parameter number of reports (m) has
been found. These values are stored in an array for each variable (xi, yi, and ti); however ti is
converted from a clock value to the time increment starting from newest point. The increment is
calculated by (t0-ti) to reflect the reverse order sequence.

Next the function supplies the LEASTSQ function with the number of track reports to use (m) the
independent variable array (t) and either dependent variable array (x or y). The function returns
the least square parameters for a linear first order regression model, in terms of arrays, α0 and
α1 or β0 and β1, where α1 and β1 actually represent the slopes of the regression lines.

 α1 =
∆
∆

x
t

 Equation 3.3.15-1

 β1 =
∆
∆

y
t

 Equation 3.3.15-2

The function uses these slopes, which are the x, y component velocities, to calculate the heading
angle using the following equation.

 Ψ = +








−π

α
β

tan 1 1

1
 Equation 3.3.15-3

Where Ψ is the course heading of the aircraft with respect to true north. π is added to the resultant
angle to correct for the reverse order of the time increment (i.e. to reverse the vector heading).

The function also checks:

If k=0 (newest index = oldest index) then there is only one available track point. The function
will then use the corresponding x and y velocity components (as long as they are not zero) given
with the track report to calculate the heading.

 tkm_track[0].x_velocity = Vx
 tkm_track[0].y_velocity = Vy

True North
y

x

∆x

∆y Ψ

 78

 Ψ =








−tan 1 V

V
y

x
 Equation 3.3.15-4

The above method (i.e. Equation 3.3.15-4) is also used if α1 = β1 = 0 and there is more than one
track report and the least square function has been called.

Assessment Table

REF# Approximation/Assumption Assessment Impact
on TKM

R 3.3.15-1 The function does not protect against a β1
value equal to zero in the denominator of
the inverse tangent function, Equation
3.3.15-3.

This coding error could cause a
floating point error while processing

Important

R 3.3.15-2 All headings are with respect to true North. Any advisories or future resolutions to
the aircraft would need to be
converted back to magnetic North

Minor

3.3.16 Function: TKM_VERIFY_DATA (C)
This function verifies the quality and reasonableness of track data received from the HCS, based on track
history. The validity of the data determines the degree it can be used for further processing by TKM. The
horizontal distance, and the vertical gradient, between the current and previous track positions are
computed. The horizontal distance is calculated using the standard distance formula, and is compared with
a parameter representing the distance that this aircraft could reasonably travel in one radar scan (currently
set to 100 nm). If the distance is within this parameter, a flag is set to indicate that horizontal conformance
should be monitored by TKM_CONFORMANCE_MONITOR. The vertical gradient is calculated in
TKM_CHECK_POSITIVE_Z, and is compared with a parameter representing the change in altitude this
aircraft could achieve in one radar scan (currently set to 1 ft/ft). If the gradient is within this parameter,
another flag is set to indicate that vertical conformance should be monitored by
TKM_CONFORMANCE_MONITOR.

3.3.17 Function: UTL_XY_ARD_BY_RTE (PL/I)
This function determines the closest distance from a given point to the original route in the horizontal
plane.

3.3.17.1 Description:
This function determines the closest original route segment (RTE_ORS) to the given track (x, y) point.
The closest distance calculation is determined by calling the GM_PTSEG for every segment in the
RTE_ORS data structure. The minimum distance is returned from the function in the variable MIN_D.

NOTE: The comments and name of this function are misleading. The function does not calculate the ARD
at the x, y position. It only computes the minimum distance from the given point to any point along the
original route (RTE_ORS).

3.4 General Purpose Utilities
The developer’s library of functions are contained in two general purpose utility directories. The
assessment tables at the end of the following sections address the impact of the identified

 79

assumptions/approximations on the indicated algorithm set (i.e., TJM, TKM or APD) although the utility
function itself may be called by more than the specified function.

3.4.1 Function: CNV_CNVSPD (PL/I)
Converts airspeed from one form to another.

3.4.1.1 Description:
This function converts a given airspeed to either true airspeed, indicated airspeed, or Mach. The necessary
inputs supplied to this function are:

Input Speed ISPD

 Conversion Code CODE
 Coordinates at Conversion XX, YY, ZZ

If there is atmospheric data available, the function retrieves the temperature and pressure from the
DB_AIR_AT_POINT function (See Section 3.4.10).

If there is no atmospheric data available, the function uses the CNV_STD_ATMOS function (See Section
3.4.7) to calculate the standard temperature and pressure at that altitude.

The function then converts the CODE number to correspond to an input airspeed type (i.e. TAS, IAS or
Mach) and supplies this to the CNV_SPEED function (See Section 3.4.6) along with the input speed,
altitude, temperature and pressure. CNV_SPEED then returns the desired output speed (TAS, IAS or
Mach).

3.4.2 Function: CNV_GNOMONIC_STEREO (PL/I)
Converts gnomonic X,Y coordinates to stereographic X,Y coordinates. X and Y are in nautical miles.

3.4.2.1 Description:
The descriptive information contained here has been obtained from the computer code for this PL/I
procedure, from the URET Trajectory Modeling Algorithmic Definition document (MTR 96W0000072)
and from the reference stated in the text.

3.4.2.1.1 Stereographic Coordinates
The HCS uses the stereographic coordinate system to locate the aircraft. It is a Cartesian, planar coordinate
system. The points on the surface of the earth are projected onto a plane which is tangent to the earth at a
point within the ARTCC airspace. This representation of points on a plane when they are really on an
ellipsoid introduces distortion or errors in position. However, for points close to the point of tangency, the
distortion is small and can be ignored.

The latitude and longitude of a point on the earth’s surface are based on a model of the earth as an ellipsoid
of revolution. Points on the surface of the ellipsoid are projected onto the surface of a sphere (the
conformal sphere) having the same center as the ellipsoid. Then the points on the sphere are projected onto
the tangent plane using as a focal point the point on the sphere which is directly opposite the point of
tangency (the antipode). This projection is illustrated in Figure 3.4.2-1. The projection is also described
and illustrated in the description of the function CNV_LLXY. The location of a point thus placed on the
tangent plane is specified by its stereographic coordinates.

3.4.2.1.2 Gnomonic Coordinates
The gnomonic projection is similar to the stereographic projection. Points on the sphere are projected onto
the same tangent plane. For a gnomonic projection, the focal point is the center of the sphere. The

 80

location of a point projected onto the sphere in this way is specified by its gnomonic coordinates. The
gnomonic projection is also illustrated in Figure 3.4.2-1.

3.4.2.1.3 Coordinate Conversion
Conceptually, this function, referring to Figure 3.4.2-1, takes a gnomonic point C on the tangent plane,
reverse projects it to the point B on the conformal sphere, and then projects it (the point B) back onto the
tangent plane as a stereographic point A. Given the gnomonic coordinates of the point C, the function
calculates the stereographic coordinates of the point A.

3.4.2.1.4 Use of the Gnomonic Projection
A gnomonic projection of the surface of a sphere onto a plane introduces more distortion that a
stereographic projection. However, great circle routes on the sphere are projected as straight lines on the
tangent plane. This characteristic is used in the following way.

Let VS and ZS be the starting and ending points of a route. When an aircraft flies from VS to ZS, it flies the
shortest distance from VS to ZS which is the great circle route. VS and ZS are defined by their stereographic
coordinates. Great circle routes are approximated on the stereographic plane by a series of straight line
segments. The stereographic coordinates of the ends of these line segments are found by first converting
the stereographic coordinates of VS and ZS to gnomonic coordinates VG and ZG. The great circle route
from VS to ZS in gnomonic coordinates is the straight line VGZG. This straight line from VG to ZG is easily
divided into a series of shorter line segments - VGWG, WGXG, XGYG, and YGZG. The gnomonic
coordinates for WG, XG, YG, and ZG are then converted to their corresponding stereographic coordinates.
In this way the great circle route from VS to ZS is approximated in the stereographic plane by the straight
line segments VSWS, WSXS, XSYS, and YSZS.

3.4.2.1.5 Note
The function being described in this section, CNV_GNOMONIC_STEREO, converts gnomonic
coordinates to stereographic coordinates. A companion function, CNV_STEREO_GNOMONIC, converts
stereographic coordinates to gnomonic coordinates.

3.4.2.1.6 Conversion Equations
The equations, listed later on in the section, are given in NAS-MD-312, Appendix C, page C-2.

The conversion functions in Equation 3.4.2-1 and Equation 3.4.2-2 convert the gnomonic X and Y
coordinates to stereographic X and Y coordinates relative to the point of tangency. It is necessary to add
the values of the stereographic coordinates of the point of tangency to these values to get the values of X
and Y relative to the origin of the stereographic coordinate system.

3.4.2.1.7 Constants
One constant is necessary for the computation. It is the conformal radius of the earth.

3.4.2.1.8 Units
The gnomonic coordinates, the stereographic coordinates, and the radius of the earth are all in nautical
miles.

 81

Table of Variable Definitions

Function Variable Description Math Symbol

GX, GY Input variables - Gnomonic X, Y coordinates
of the point being converted

X G , YG

ACP.XTANG, ACP.YTANG Input parameter - Stereographic X, Y
coordinates of the point of tangency

X t , Yt

ACP.RAD_EARTH Input parameter - Conformal radius of the
earth

R

SX, SY Output variable - Stereographic X, Y
coordinates of the point being converted

X S , YS

3.4.2.2 Mathematics:
The following equations are used in the function CNV_GNOMONIC_STEREO to calculate the
stereographic coordinates of a point, given its gnomonic X and Y coordinates.

 X
X

X Y
R

XS
G

G G
t=

+ +
+

+
2

1 1
2 2

2

 Equation 3.4.2-1

 Y
Y

X Y
R

YS
G

G G
t=

+ +
+

+
2

1 1
2 2

2

 Equation 3.4.2-2

The function correctly calculates the stereographic coordinate values given the gnomonic coordinate
values.

 82

Figure 3.4.2-1: Gnomonic to Stereographic Projection

C

B

A

 POINT OF
TANGENCY

GNOMONIC
FOCUS -
CENTER OF
CONFORMAL
SPHERE

 DIAMETER

STEREOGRAPHICALL
Y
 PROJECTED POINT

POINT ON
CONFORMAL
SPHERE
BEING
PROJECTED

STEREOGRAPHIC
 LINE OF
PROJECTION

STEREOGRAPHIC
 FOCUS
(ANTIPODE)

GNOMONIC
LINE OF
PROJECTION

 GNOMONICALLY
PROJECTED
POINT

 83

3.4.3 Function: CNV_GRDSPD (PL/I)
Computes the aircraft’s ground speed based on the true airspeed and the wind speed.

3.4.3.1 Description:
This function computes the aircraft’s ground speed based on the true airspeed and the wind speed using the
vector representation. The two vectors, true airspeed and wind speed, determine the resultant ground speed
vector. The effects of wind in both the cross-track and along-track dimensions (cross winds and head/tail
winds) are considered and a special allowance is made when the cross-track component of wind is greater
than true airspeed.

Table of Variable Definitions

Function Variable Description Math Symbol
WIND_SPEED Scalar value for wind speed Vw
WIND_BEARING Direction of wind with respect to North θw
TAS True airspeed Vt
GROUND_SPEED Ground speed Vg

TRACK_BEARING The flight path bearing. ψ

3.4.3.2 Mathematics:
This function defines the ground speed as:

 ()[] ()V V V Vg t w w w w= − − + −2 2
sin cosΨ Ψθ θ Equation 3.4.3-1

 with the exception when

 ()[]V Vt w w
2 2

0− − <sin Ψ θ

which indicates that the cross wind speed component is greater than the true airspeed. In this
case, ground speed is approximated with the contribution of the along track wind component only

 ()V Vg w w= −cos Ψ θ Equation 3.4.3-2

If we make the following assignment

 θ ψ θrw w= − Equation 3.4.3-3

where θrw is the relative angle between the course heading of the aircraft and the wind direction,
Equation 3.4.3-1 can be reoriented as

 V V
V
V

Vg t
w

t
rw w rw= −









 +1

2

sin cosθ θ Equation 3.4.3-4

 84

 Equation 3.4.3-4 is based on the vector representation of ground speed

Vt

Vw
Vg

θrw
θc

 and

 V V Vg t c w rw≈ +cos cosθ θ Equation 3.4.3-5

 where θc is the “crab” angle between the Vt -leg and Vg -leg.

 The relationship

 cos sin sinθ θ θc c
w

t
rw

V
V

= − = −








1 12

2

 holds true because of the law of sines
sin sinθ θrw

t

c

wV V
=









 and the basic trigonometric identity.

Equation 3.4.3-4 and Equation 3.4.3-5 are approximations because they assume a small flight path
angle (i.e. negligible effect from motion in the vertical plane).

Therefore Equation 3.4.3-1 and Equation 3.4.3-2 appear to be reasonable and coincides with most
trajectory estimation practices that assume a small flight path angle (rate of descent) and a
horizontal wind direction.

Assessment Table

REF# Approximation/Assumption Assessment Impact on TJM

R 3.4.3-1 Small path angle Reasonable, for Commercial
Aircraft, and a small flight
path angle
(i.e. small rate of descent)

Critical

R 3.4.3-2 Large cross wind
approximation
Equation 3.4.3-2

Wind speeds that large are
unlikely and make standard
calculations very difficult.
Some tests on this effect could
be made.

Important

R 3.4.3-3 Derived ground speed

Reasonable for the given
vector representation and
relative wind and crab angle
definitions. Assumes a small
flight path angle and a
horizontal wind.

Minor

 85

3.4.4 Function: CNV_LLXY (PL/I)
Converts horizontal position coordinates given as a geodetic latitude and a geodetic longitude to
stereographic X and Y coordinates. Latitude and longitude are radians. X and Y are in nautical miles.

3.4.4.1 Description:
The descriptive information contained here has been obtained from the computer code for this PL/I
procedure, from the URET Trajectory Modeling Algorithmic Definition document (MTR 96W0000072),
and from the references stated in the text.

3.4.4.1.1 Geodetic Coordinates
Aircraft are located on the surface of the earth by a latitude and a longitude. The earth is almost a sphere,
but not quite. It is modeled by an ellipsoid of revolution. This ellipsoid is created by rotating an ellipse
about its minor axis. The axis becomes the earth’s polar axis - the line connecting the north pole to the
south pole. The International Ellipsoid of Reference is used. The distance in this model from the center of
the earth to the north (or to the south) pole is 3432.4579 nautical miles. The distance from the center to
the equator is 3444.0540 nautical miles. Latitudes and longitudes referred to this ellipsoid model are called
the geodetic latitudes geodetic longitudes.

3.4.4.1.2 Stereographic Coordinates
The HCS uses a different coordinate system to locate the aircraft. It is called the stereographic coordinate
system. It is a Cartesian, planar coordinate system. The points on the surface of the earth are projected
onto a plane which is tangent to the earth at a point within the ARTCC airspace. This representation of
points on a plane when they are really on an ellipsoid introduces distortion or errors in position. However,
for points close to the point of tangency, the distortion is small and can be ignored.

The stereographic coordinate system is an XY plane with the XY grid lined up approximately with the
lines of latitude and longitude for points near the point of tangency. The parallel of constant latitude
passing through the point of tangency is projected onto the stereographic plane as a line of constant Y
value. The meridian of constant longitude passing through the point of tangency is projected onto the
stereographic plane as a line of constant X value. At other points on the stereographic plane, the
projections of lines of constant latitude or of constant longitude are curved and do not exactly line up with
the lines of constant Y or X.

In the northern hemisphere, the line of constant X value on the stereographic plane passing through the
point of tangency points to true north. As the Y coordinate of a point increases in value, the point gets
closer to the north pole. The projection of the north pole is on this line through the point of tangency.
Similarly the line of constant Y value passing through the point of tangency points due east.

The origin of the stereographic coordinate system is usually not the point of tangency but, in the
continental US, is a point in the southwest corner of the ARTCC airspace.

The point of tangency of the stereographic plane is defined by a geodetic latitude, a geodetic longitude, and
a distance from the center of the ellipsoid. The location of the point of tangency is determined by the
locations of the ARTCC’s surveillance radars and is chosen to minimize position errors caused by the
projection of an ellipsoid onto a plane.

3.4.4.1.3 Conformal Coordinates
It is convenient to do the coordinate conversion in two steps. A point is first converted to an intermediate
coordinate system, and then converted from this intermediate system to the stereographic system. The
intermediate coordinate system is a sphere whose center is the same as the center of the ellipsoid and
whose radius is based on the locations of the ARTCC’s surveillance radars. The angles between lines on
the ellipsoid remain unchanged when they are projected onto the sphere. Therefore the coordinate
transformation is a conformal transformation and the values of the latitudes and longitudes in this

 86

intermediate coordinate system are referred to as conformal latitudes and longitudes. The radius of the
sphere is called the conformal radius of the earth. The geodetic latitude and longitude are first converted to
a conformal latitude and longitude, and then the conformal latitude and longitude are converted to the
stereographic X and Y coordinates. The conformal longitude is the same as the geodetic longitude; only
the latitude is changed upon converting from geodetic to conformal coordinates.

3.4.4.1.4 Geodetic to Conformal Projection
The ellipsoid and the conformal sphere are concentric - that is, they have a common center. The radius of
the sphere determines the scale of the projection in the stereographic plane and is chosen to minimize the
errors introduced by the projection. The geodetic latitude of a point on the ellipsoid is the elevation above
the equatorial plane of a line perpendicular to a plane tangent to the ellipsoid at that point.

The geometry of the conformal spherical projection is shown in Figure 3.4.4-1. The eccentricity of the
earth is greatly exaggerated in the figure to show the geometry more clearly. A point Pg on the surface of

the ellipsoid has a geodetic latitude of φg . This is the angle that a normal to the tangent at the point Pg

makes with the equator. The conformal projection of the point Pg onto the sphere is the point P . The

conformal latitude of the point P is φ .

A conformal projection is one in which the change in scale at a given point is the same in all directions.
The equation for the projection is derived by making the change in scale in mapping from the ellipsoid to
the sphere along a meridian of longitude on the sphere equal to the change in scale along a parallel of
latitude on the sphere. Since the lines of longitude are orthogonal to the lines of latitude, making the scale
equal in the directions of constant latitude and constant longitude makes the scale equal in all directions.

The conformal value of a latitude when converted depends only on its original geodetic value and on the
eccentricity of the ellipsoid.

3.4.4.1.5 Conformal to Stereographic Projection
A point on the conformal sphere is projected onto the stereographic plane in the following way. See Figure
3.4.4-2. The focal point for the projection is the point on the sphere which is directly opposite the point of
tangency (the antipode). A line is drawn from the focal point to the point on the sphere being projected.
This line is then extended to intersect the stereographic plane which is tangent to the sphere at the point of
tangency. The point of intersection of the line with the tangent plane is the projection of the conformal
point onto the stereographic plane.

3.4.4.1.6 Conversion Equations
The equations described here are listed later in Section 3.4.4.2. The conversion of the geodetic latitude to a
conformal latitude is done using a two term power series approximation (Equation 3.4.4-2) to the
conversion equation. This equation is given in NAS-MD-312, Appendix D, Section 2. The original
equation being approximated is given in NAS-MD-320, Appendix A, Section 3.2. Both the sine of the
conformal latitude of the point being converted and the sine of the conformal latitude of the point of
tangency are calculated using the power series equation. The conversion of the conformal latitude and
longitude of a point to its XY stereographic coordinates is done using the two equations found also in
NAS-MD-312, Appendix D, Section 2 (Equation 3.4.4-6 and Equation 3.4.4-7 in this document) and in
NAS-MD-320, Appendix A, Section 3.1. Conversion functions give the X and Y coordinates relative to
the point of tangency. It is necessary to add to these values the coordinates of the point of tangency in the
stereographic plane to get the values of X and Y relative to the origin of the stereographic coordinate
system.

3.4.4.1.7 Constants

 87

Three constants are necessary for the computation. They are the conformal radius of the earth, and the
coefficients of the two terms of the power series equation.

3.4.4.1.8 Units
The latitudes and longitudes are angles and are measured in radians. The conformal radius of the earth is
measured in nautical miles and therefore the X and Y coordinate values are in nautical miles also.

3.4.4.1.9 Internal Error Checking
The absolute values for the sines of the latitudes are checked to make sure that they are less than or equal
to 1. Imprecision in the computation may cause a value to exceed 1. When this occurs the value is reset to
1.

3.4.4.1.10 Unit Testing
A limited amount of unit testing was performed on this function. It performed correctly for all of the cases
tested.

Table of Variable Definitions

Function Variable Description Math Symbol
LATR, LONGR

Input data - Geodetic latitude and longitude of
the point being converted (radians)

φg , λ

ACP.COORDS.LATIT Input parameter - Geodetic latitude of the
point of tangency

φ0g

LONGITT Input parameter - Geodetic (& conformal)
longitude of the point of tangency

λ0

XT, YT Input parameter - Stereographic X, Y
coordinates of the point of tangency

X t , Yt

RE Input parameter - Conformal radius of the
earth

R

0.9932773 Constant - the first order coefficient in the
power series expression for the conformal
latitude in terms of the geodetic latitude

A

0.0066625 Constant - the third order coefficient in the
power series expression for the conformal
latitude in terms of the geodetic latitude

B

N/A Conformal latitude of the point being
converted

φ

SIN_PHI Sine of the conformal latitude of the point
being converted

sinφ

N/A Conformal latitude of the point of tangency φ0
SIN_PHI0 Sine of the conformal latitude of the point of

tangency
sinφ0

COS_PHI Cosine of the conformal latitude of the point
being converted

cosφ

COS_PHI0 Cosine of the conformal latitude of the point
of tangency

cosφ0

DLONG The difference in longitude (both geodetic and
conformal) between the point being converted
and the point of tangency

∆λ

X, Y Output data - Stereographic X, Y coordinates
of the point being converted

X , Y

 88

3.4.4.2 Mathematics:
The following equations are used in this function to calculate the stereographic X and Y
coordinates of a point, given its geodetic latitude and longitude. First calculate the difference in
the longitudes.

 ∆λ λ λ= −0 Equation 3.4.4-1

Next , convert the geodetic latitudes of the point being converted and the point of tangency to
their corresponding conformal latitudes. Actually the conformal latitudes are not explicitly
calculated. Their sines and cosines are calculated.

 sin sin sinφ φ φ= +A Bg g
3 Equation 3.4.4-2

 sin sin sinφ φ φ0 0
3

0= +A Bg g Equation 3.4.4-3

 cos sinφ φ= −1 2 Equation 3.4.4-4

 cos sinφ φ0
2

01= − Equation 3.4.4-5

The next two equations convert the conformal latitude φ and conformal longitude λ to the
stereographic coordinates X and Y . The first term in each equation is the value of the
coordinate relative to the point of tangency. Since the origin of the stereographic coordinate
system is not at the point of tangency, it is necessary to add to this term the coordinate of the point
of tangency in the stereographic coordinate system.

 X R X t=
+ +









 +2

1 0 0

sin cos
sin sin cos cos cos

∆
∆

λ φ
φ φ φ φ λ

 Equation 3.4.4-6

 Y R Yt=
−

+ +








 +2

1
0 0

0 0

sin cos cos sin cos
sin sin cos cos cos

φ φ φ φ λ
φ φ φ φ λ

∆
∆

 Equation 3.4.4-7

The power series used in Equation 3.4.4-2 and in Equation 3.4.4-3 is a satisfactory approximation. The
function correctly calculates the values of x and y for a given geodetic latitude/longitude coordinate pair.

 89

Assessment Table

REF# Approximation/Assumption Assessment Impact on

TJM

R 3.4.4-1 The point being converted is
sufficiently near the point of
tangency for the algorithm to
work.

 The points that can be stereographically
projected from a sphere are limited to the
hemisphere centered on the point of tangency.
The point being converted must be within 90
degrees of the point of tangency. For
robustness, the function should do this bounds
check before proceeding with the calculation
of X and Y.

Minor

R 3.4.4-2 cosφ0g and cosφg are

calculated

The function unnecessarily calculates the
cosine of the geodetic latitude of the point of
tangency and the cosine of the geodetic
latitude of the point being converted. This
code should be deleted.

Minor

R 3.4.4-3 cosφ and cosφ0 are
compared to 0

The bounds check on the cosine function is
unnecessary because the bounds check has
already been run on the sine calculation.

Minor

R 3.4.4-4 The conformal latitude of the
point of tangency is
calculated every time the
function is called.

This calculation should be done once (for a
given ARTCC) and the result saved for future
use.

Minor

 90

Figure 3.4.4-1: Mapping Geometry - Geodetic to Conformal

 ELLIPSOID

 POLAR
 AXIS

TANGENT

 RADIUS

 CENTER

NORMAL

NOT TO SCALE

Pg

P

φgφ

CONFORMAL
 SPHERE

 EQUATOR

 91

Figure 3.4.4-2: Stereographic Projection

 STEREOGRAPHIC
 PLANE

 POINT OF
TANGENCY

CENTER OF
CONFORMAL
SPHERE

 DIAMETER

PROJECTED
POINT POINT ON

CONFORMAL
SPHERE
BEING
PROJECTED

LINE OF
PROJECTION

FOCUS
(ANTIPODE)

 92

3.4.5 Function: CNV_RADDMS (PL/I)
Converts a latitude or a longitude in radians to degrees, minutes, and seconds.

3.4.5.1 Description:
The descriptive information contained here has been obtained from the computer code for this PL/I
procedure. The variable names in capital letters in parentheses are from the code.

Internally in URET an angle is represented both in radians and in degrees, minutes, and seconds, and it is
necessary to convert back and forth between the two formats. This function converts an angle in radian
measure to an angle in degrees, minutes, and seconds. The radian representation is in floating point
format. The degrees, minutes, and seconds format is a character string (7 characters). The first 3
characters are the degree measure, the next 2 characters are the minutes measure, and the last 2 characters
are the seconds measure. The procedure converts the radians into a floating point representation of the
degrees, minutes, and seconds and then converts the floating point number into a character string.

First the radian value is converted to degrees by dividing by the number of degrees in a radian (DG_RAD).
This resulting number is rounded up to the nearest second by adding a half second and then converting the
number of seconds calculated later in the procedure from floating point format to fixed point format.
(Conversion from floating point format to fixed point format truncates the fractional part of the number.)
Negative angles are similarly rounded downward.

The integral number of degrees is found by converting the floating point representation of the number of
degrees (DEGS) to fixed point format (D). Subtracting the integral number of degrees D from the total
number of degrees and multiplying by 60 (the number of minutes in a second) leaves the minutes and
seconds as a remainder (X) expressed as minutes. Again, converting to fixed point, the integral number of
minutes are found (M). Subtracting both the integral number of degrees and the integral number of
minutes (converted to degrees) from the value for the total degrees and multiplying by 3600, the number of
seconds in a degree, leaves the number of seconds (X again). Converting this value into fixed point format
gives the integral number of seconds (S).

Positive angles have been rounded up to the nearest second; negative angles have been rounded down to
the nearest second.

The three values, the number of degrees (D), the number of minutes (M), and the number of seconds (S),
are combined into a single floating point number (FLTDMS) in which the decimal digits for the 1s and 10s
give the number of seconds, the decimal digits for the 100s and 1000s give the number of minutes, and the
decimal digits for the 10,000s, 100,000s, and 1,000,000s give the number of degrees.

The floating point representation of the degrees, minutes, and seconds are converted into a character string
(DMS).

3.4.5.1.1 Constants
The procedure uses two constants. The number of radians in a degree (DG_RAD) is an included external
constant ; the value of ½ a second expressed in degrees (RND) is an internal constant.

3.4.5.1.2 Units
The input angle is in radians in floating point format. The output angle is in degrees, minutes, and seconds
- represented as a character string.

Table of Variable Definitions

 93

Function Variable Description Math Symbol
RAD Input variable - Angle in radians φr
DG_RAD Input constant - Number of radians in a degree K1
RND Internal constant - ½ of angular second

expressed in degrees
K2

DEGS Number of degrees in the input angle φd
D Integral number of degrees in the input angle D
X Remainder of minutes and seconds after the

integral number of degrees have been
subtracted from the input angle, units are
minutes

R1

M Integral number of minutes in the input angle M
X Remainder of seconds after the integral

number of degrees and the integral number of
minutes have been subtracted from the input
angle, units are seconds

R2

S Integral number of seconds in the input angle
(rounded up or rounded down)

S

FLTDMS Degrees, minutes, and seconds in the input
angle expressed in floating point format

DMS fl

DMS Degrees, minutes, and seconds in the input
angle expressed as a character string

DMSst

3.4.5.2 Mathematics:
The angular measure in radians is converted to angular measure in degrees by dividing by K1 , the
number of radians in a degree, and then is prepared to be rounded up by adding K2 , the value of
½ a second expressed in degrees. If φr is negative, the constant K2 is subtracted to round down.

 φ
φ

d
r

K
K= +

1
2 Equation 3.4.5-1

Then the integral number of degrees D is extracted from φd by using the PL/I function FIXED .
This function truncates the fractional part of the number.

 D FIXED d= ()φ Equation 3.4.5-2

The remainder of minutes and seconds is obtained by subtraction and is converted from degrees to
minutes by multiplying by 60.

 R Dd1 60= −() *φ Equation 3.4.5-3

The integral number of minutes M is extracted from R1 by using the PL/I function FIXED.

 M FIXED R= ()1 Equation 3.4.5-4

The remainder of seconds is obtained by subtraction and is converted from degrees to seconds by
multiplying by 3600.

 94

 R D M
d2 60

3600= − −() *φ Equation 3.4.5-5

The integral number of seconds S is extracted from R2 by using the PL/I function FIXED.

 S FIXED R= ()2 Equation 3.4.5-6

The values obtained for the integral number of degrees, minutes, and seconds are combined into a
single floating point number as follows.

 DMS D M Sfl = + +* *10000 100 Equation 3.4.5-7

This floating point number is converted into a character string by a string operation.

 DMS STRING DMSst fl= () Equation 3.4.5-8

The function correctly converts a radian angular value to degrees, minutes, and seconds
representation.

3.4.6 Function: CNV_SPEED (C)
Converts the given speed to its equivalent True Airspeed, Indicated Airspeed, and Mach at the given
altitude, temperature and pressure.

3.4.6.1 Description:
This function converts the given airspeed, at a given altitude, temperature, and pressure, returning Mach,
True Airspeed and Indicated Airspeed. Calculation of Indicated Airspeed assumes the speed of sound,
temperature and pressure at sea level are all standard.

 95

Table of Variable Definitions

Function Variable Description Math Symbol
*temp Temperature at the current altitude (Supplied

as an input, ºK)
T1

pr The pressure ratio of current altitude pressure
over sea level standard pressure.

p
ps

1

_P0 Standard sea level pressure
(= 29.92126 inches of mercury)

ps

*pres Freestream pressure at the current altitude
(Supplied as an input, inches of mercury)

p1

R Universal Gas Constant of Air
(= 287 m2/s2 ºK)

R

CONSTANT_1 Constant (=38.967876 kts/ ° K) γ R
_Cso Standard speed of sound at sea level

(=661.47862 kts)
as

cs Speed of sound at the current altitude a1
*tas True airspeed (If supplied as an input, ft/s. It

is returned as ft/s)
V1 = Vt

*ias Indicated airspeed (kts) Vias
*mach Mach number (between 0 and 1) M

3.4.6.2 Mathematics:
 This function uses three equations which define Mach, True Airspeed, and Indicated Airspeed

(Equation 3.4.6-11 , Equation 3.4.6-12, and Equation 3.4.6-13) as a basis. All three of these
equations are expressed with common terms, namely: the speed of sound, a, and the ratio of the
total and static pressure difference over a static pressure, ()p p p0 − . However, the values of a
and p may be different depending on the airspeed definition of assumed altitude (i.e. Indicated
Airspeed assumes sea level altitude while Mach and True Airspeed assume the current altitude of
the aircraft).

 When this function is given a value for an airspeed, it will solve the corresponding airspeed

equation for ()p p p0 − . Using this term, the function then solves the remaining two airspeed
equations by making the necessary corrections for the altitude assumptions. (This is shown in
Sections 3.4.6.2.1, 3.4.6.2.2, and 3.4.6.2.3).

 The derivation of the three airspeed equations from classic thermodynamic and atmospheric

relationships is provided below. Sections 3.4.6.2.1, 3.4.6.2.2, and 3.4.6.2.3 then show how the
process of airspeed conversions is performed in the CNV_SPEED function.

 NOTE: This function begins by determining the geopotential altitude h, as in Section 3.4.7, but

then never uses this result anywhere else in the code.

 96

Derivation:

 Start with the energy equation for a subsonic, isentropic, compressible flow7

 c T V c Tp p1
1
2 1

2
0+ = Equation 3.4.6-1

 which can also be expressed as

T
T

V
c Tp

0

1

1
2

1
1

2
= + Equation 3.4.6-2

 where
 cp = the specific heat for a perfect gas at constant pressure,
 T1 = the temperature at a point in the freestream flow

V1 = the velocity at a point in the freestream flow. This is True Velocity.
 T0 = the temperature at the stagnation point8.

 By definition, cp is expressed as

 c R
p =

−
γ

γ

1
 Equation 3.4.6-3

 where
 γ = the constant which represents the ratio of specific heats at constant
 pressure to constant volume c cp v

 R = the universal gas constant.

Substitute the expression for cp from Equation 3.4.6-3 into Equation 3.4.6-2, which gives the
result

()T

T
V
RT

0

1

1
2

1
1

1
2

= +
−γ

γ
 Equation 3.4.6-4

 The speed of sound at a point in the freestream flow is defined as

 a RT1
2

1= γ Equation 3.4.6-5

7 An isentropic process is one in which there is neither heat exchange nor effect due to friction. A
compressible flow is one in which the density of the fluid (i.e. air) can change from point to point
8 Velocity at the stagnation point is zero.

 97

Since the right hand side of Equation 3.4.6-5 is found in Equation 3.4.6-4, the term a1
2 can be

substituted, giving the result

()T

T
V
a

0

1

1
2

1
21

1
2

= +
−γ

 Equation 3.4.6-6

 Mach is defined as

 M
V
a

= 1

1
 Equation 3.4.6-7

Therefore, since the expression for Mach is found in Equation 3.4.6-6, M1

2 can be substituted,
giving the result

()T

T
M0

1
1
21

1
2

= +
−γ

 Equation 3.4.6-8

 An isentropically compressed gas has the following relationship

p
p

T
T

0

1

0

1

1
=











−
γ

γ
 Equation 3.4.6-9

 Where p0 and p1 represents the pressure at the stagnation and freestream point, respectively.

Therefore, combining Equation 3.4.6-8 and Equation 3.4.6-9 and solving for Mach gives the
result

 M
p
p1

2 0

1

1

2
1

1=
−









 −

















−

γ

γ
γ

 Equation 3.4.6-10

 which is equivalent to

 M
p p

p1
2 0 1

1

1

2
1

1 1=
−

−
+









 −

















−

γ

γ
γ

 Equation 3.4.6-11

 98

Next, substitute Equation 3.4.6-7 into Equation 3.4.6-11 and solve for V1

()

V
a p p

p1
2 1

2
0 1

1

1

2
1 1 1=

−
−

+










 −



















−

γ

γ
γ

 Equation 3.4.6-12

 Calibrated airspeed is the speed the aircraft would be flying if it were at sea level. By assigning

 a as1 = = the standard sea level value for the speed of sound
 ps = the standard sea level value for pressure

 calibrated airspeed Vcas can be defined using Equation 3.4.6-12

()

V
a p p

pcas
s

s

2
2

0 1

1

2
1 1 1=

−

−
+











 −



















−

γ

γ
γ

 Equation 3.4.6-13

URET assumes no instrument error and makes no distinction between indicated airspeed and
calibrated airspeed.

 V Vcas ias=

For all of the following conversions, pressure and temperature are calculated using the
CNV_STD_ATMOS function (see Section 3.4.7) or is measured using the DB_AIR_AT_POINT
function. The above derivation was based on Anderson’s Introduction to Flight, 1989.

3.4.6.2.1 Given Indicated Airspeed, Determine Mach and True Airspeed

 Solve Equation 3.4.6-13 for ()p p ps0 1−

() ()

A
p p

p
V
as

ias

s
1

0 1
2

2

11
2 1 1=

−
=

−
+











 −

−γ
γ

γ

 Equation 3.4.6-14

 and substitute into Equation 3.4.6-11. Adjust this result by dividing by the pressure ratio

 M
A p

p
s2 1

1

1

2
1 1 1=

−
+









 −

















−

γ

γ
γ

 Equation 3.4.6-15

 True airspeed is then calculated using Equation 3.4.6-7

 V a Mt = 1

 99

3.4.6.2.2 Given True Airspeed, Determine Mach and Indicated Airspeed

 Mach is determined by Equation 3.4.6-7. Solving Equation 3.4.6-11 for ()p p p0 1 1−

() ()

A
p p

p M2
0 1

1

2
11

2 1 1=
−

=
−

+










 −

−γ
γ

γ

 Equation 3.4.6-16

 and adjusting A2 by the pressure ratio to get

() ()

A PR
p p

p
p
p

p p
ps s

2
0 1

1

1 0 1=
−

=
−

 Equation 3.4.6-17

 Substitute this result into Equation 3.4.6-13

 V
a

A
p
pcas

s

s

2
2

2
1

1

2
1 1 1=

−
+









 −

















−

γ

γ
γ

 Equation 3.4.6-18

3.4.6.2.3 Given Mach, Determine True Airspeed and Indicated Airspeed

Solve Equation 3.4.6-7 for V1, then use the method in Equation 3.4.6-16 through Equation 3.4.6-
18 to determine Vias

Assessment Table

REF# Approximation/Assumption Assessment Impact on
TJM

R 3.4.6-1 Indicated airspeed is equivalent
to calibrated airspeed.
V Vcas ias= . Assumes no
instrument error

Reasonable. Instrument error is usually
negligible in current aircraft.

Minor

R 3.4.6-2 Subsonic airspeeds Reasonable for aircraft flying within
controlled airspace

Important

R 3.4.6-3 Air flow is isentropic and
compressible.

Reasonable for subsonic aircraft. These
assumptions are needed to simplify
mathematical modeling

Minor

 100

3.4.7 Function: CNV_STD_ATMOS (PL/I)
Determines the standard atmospheric temperature and pressure at a specified altitude.

3.4.7.1 Description:
Temperature and pressure are functions of altitude for the standard atmosphere. The variation of
temperature with respect to altitude is based on experimental evidence (see Figure 3.4.7-1). Pressure is
derived from temperature and altitude using the equation of state for a gas and the hydrostatic equation
(shown in Equation 3.4.7-4 and Equation 3.4.7-3, respectively). The measured altitude is the geometric
altitude above sea level and is supplied as an input. To simplify the calculations, the geometric altitude is
converted to a geopotential altitude, which assumes that the effect of gravity remains constant over all
altitudes.

216.66

216.66

288.16

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

200 210 220 230 240 250 260 270 280 290

Temperature, K

A
lti

tu
de

, f
t

Figure 3.4.7-1: Temperature Distribution in the Standard Atmosphere

 101

Table of Variable Definitions

Function Variable Description Math Symbol

ALT The geometric altitude (Supplied as an input, ft) hG
HG The geopotential altitude (nmi) h
HB Base of second altitude layer

(= 5.9395248 nmi)
hB

ERAD The radius of the earth at latitude 45 (nmi). From
the North American Datum, 1983, r45 = 3438.1693
nmi

r

TM0 Sea level standard temperature
(= 288.15 K)

T0

TB Standard Temperature at the base of the second
altitude layer (= 216.66 K)

TB

TEMP Standard temperature at the current altitude
(Returned as an output, K)

T

LB Temperature gradient of the first altitude layer (= -
12.038K/nmi)

a

PR The pressure ratio of current altitude pressure over
sea level standard pressure.

p
p0

P0 Standard sea level pressure
(= 29.92126 inches of mercury)

p0

PRES Standard pressure at the current altitude (Returned
as an output, inches of mercury)

p

R Universal Gas Constant of Air
(= 287 m2/s2K)

R

G Sea level gravitational acceleration g0
C2 Constant (= -5.2558761) g

aR
0

C3 Constant (= 0.223361). The pressure ratio of the
standard pressure at the base of the second altitude
layer over the standard sea level pressure

p
p

B

0

C4 Constant (= 0.29203894) g
RTB

0

3.4.7.2 Mathematics:
 The CNV_STD_ATMOS function first converts the input geometric altitude from feet to nautical

miles (hG), then defines geopotential altitude as:

 h r
r h

h
G

G=
+









 Equation 3.4.7-1

 This equation makes the assumption that gravitational acceleration is independent of altitude.

 If the altitude is above sea level but below the first isothermal layer of the standard atmosphere

()0 ≤ ≤h hB , there exists a temperature gradient with respect to altitude and temperature which is
calculated as follows:

 102

 ()T h
h

T T
B

B= −








 −28816 0. Equation 3.4.7-2

 However, if the altitude is greater than the first isothermal layer of the standard atmosphere

()h hB≥ , temperature remains constant9 (T = 216.66 K)

 Pressure is derived by dividing the hydrostatic equation

 dp g dh= −ρ 0 Equation 3.4.7-3

 by the equation of state for a perfect gas

 p RT= ρ Equation 3.4.7-4

 which gives the result

 dp
p

g
RT

dh= − 0 Equation 3.4.7-5

 where ρ = air density.

 When altitude is above sea level but below the first isothermal layer of the standard atmosphere

()0 ≤ ≤h hB , temperature variation follows a constant rate:

 a dT
dh

≡ Equation 3.4.7-6

 or

 dh
a

dT=
1 Equation 3.4.7-7

 Substitute Equation 3.4.7-7 into Equation 3.4.7-5 and integrate to determine the pressure ratio

 dp
p

g
aR

dT
Tp

p

T

T

0 0

0∫ ∫= − Equation 3.4.7-8

 p
p

T
T

g
aR

0 0

0

=










−





 Equation 3.4.7-9

9 The temperature remains constant until a geopotential altitude exceeds 25 km (82000 ft). It is assumed
that controlled aircraft will not exceed this altitude.

 103

 These terms can be re-arranged to reflect the equation within the function

 p
p

T
T ah

g
aR

0

0

0

0

=
+

















 Equation 3.4.7-10

 When the altitude is greater than the first isothermal layer of the standard atmosphere ()h hB≥ ,

the pressure ratio is determined by integrating Equation 3.4.7-5.

 dp
p

g
RT

dh
p

p

B h

h

B B
∫ ∫= − 0 Equation 3.4.7-11

()p

p e
B

g
RT

h h
B

B
=

−








 −0

 Equation 3.4.7-12

 These terms can be re-arranged to reflect the equation within the function

()p

p
p
p eB

g
RT

h h
B

B

0 0

0

=









 −

 Equation 3.4.7-13

Finally, Equation 3.4.7-10 or Equation 3.4.7-13 are solved for p, which is the standard
atmospheric pressure at that altitude. Temperature (T) and pressure (p) are returned as outputs of
the function.

This function appears to be reasonable and follows the classic derivations for the standard
atmosphere10.

10 Refer to Anderson’s Introduction to Flight, 1989 Chapter 3.

 104

Assessment Table

REF# Approximation/Assumption Assessment Impact
on TJM

R 3.4.7-1 Equation 3.4.7-1, geopotential altitude.
Approximates that the gravitational
acceleration is a constant, independent
of altitude.

Reasonable. This is a classic
assumption to simplify calculations and
should have very little impact.

Minor

R 3.4.7-2 Equation 3.4.7-2, Equation 3.4.7-3, and
Equation 3.4.7-4 all assume that the
geopotential altitude will not exceed
82021 ft

Reasonable for aircraft in controlled
airspace.

Minor

3.4.8 Function: CNV_STEREO_GNOMONIC (PL/I)
Converts stereographic X,Y coordinates to gnomonic X,Y coordinates. X and Y are in nautical miles.

3.4.8.1 Description:
The descriptive information contained here has been obtained from the computer code for this PL/I
procedure, from the URET Trajectory Modeling Algorithmic Definition document (MTR 96W0000072)
and from the reference stated in the text.

3.4.8.1.1 Stereographic Coordinates
The HCS uses the stereographic coordinate system to locate the aircraft. It is a Cartesian, planar coordinate
system. The points on the surface of the earth are projected onto a plane which is tangent to the earth at a
point within the ARTCC airspace. This representation of points on a plane when they are really on an
ellipsoid introduces distortion or errors in position. However, for points close to the point of tangency, the
distortion is small and can be ignored.

The latitude and longitude of a point on the earth’s surface are based on a model of the earth as an ellipsoid
of revolution. Points on the surface of the ellipsoid are projected onto the surface of a sphere (the
conformal sphere) having the same center as the ellipsoid. Then the points on the sphere are projected onto
the tangent plane using as a focal point the point on the sphere which is directly opposite the point of
tangency (the antipode). This projection is illustrated in Figure 3.4.8-1. The projection is also described
and illustrated in the description of the function CNV_LLXY. The location of a point thus placed on the
tangent plane is specified by its stereographic coordinates.

3.4.8.1.2 Gnomonic Coordinates
The gnomonic projection is similar to the stereographic projection. Points on the sphere are projected onto
the same tangent plane. For a gnomonic projection, the focal point is the center of the sphere. The
location of a point projected onto the sphere in this way is specified by its gnomonic coordinates. The
gnomonic projection is also illustrated in Figure 3.4.8-1.

3.4.8.1.3 Coordinate Conversion
Conceptually, this function, referring to Figure 3.4.8-1, takes a stereographic point A on the tangent plane,
reverse projects it to the point B on the conformal sphere, and then projects it (the point B) back onto the
tangent plane as a gnomonic point C. Given the stereographic coordinates of the point A, the function
calculates the gnomonic coordinates of the point C.

 105

3.4.8.1.4 Use of the Gnomonic Projection
A gnomonic projection of the surface of a sphere onto a plane introduces more distortion that a
stereographic projection. However, great circle routes on the sphere are projected as straight lines on the
tangent plane. This characteristic is used in the following way.

Let VS and ZS be the starting and ending points of a route. When an aircraft flies from VS to ZS, it flies the
shortest distance from VS to ZS which is the great circle route. VS and ZS are defined by their stereographic
coordinates. Great circle routes are approximated on the stereographic plane by a series of straight line
segments. The stereographic coordinates of the ends of these line segments are found by first converting
the stereographic coordinates of VS and ZS to gnomonic coordinates VG and ZG. The great circle route
from VS to ZS in gnomonic coordinates is the straight line VGZG. This straight line from VG to ZG is easily
divided into a series of shorter line segments - VGWG, WGXG, XGYG, and YGZG. The gnomonic
coordinates for WG, XG, YG, and ZG are then converted to their corresponding stereographic coordinates.
In this way the great circle route from VS to ZS is approximated in the stereographic plane by the straight
line segments VSWS, WSXS, XSYS, and YSZS.

3.4.8.1.5 Note
The function being described in this section, CNV_STEREO_GNOMONIC, converts the stereographic
coordinates to gnomonic coordinates. A companion function, CNV_GNOMONIC_STEREO, converts
gnomonic coordinates to stereographic coordinates.

3.4.8.1.6 Conversion Equations
The equations, listed later on in the section, are given in NAS-MD-312, Appendix C, page C-1. (The
equations are misprinted in the 10 May 1991 edition.)

The conversion functions (Equation 3.4.8-3 and Equation 3.4.8-4) convert X and Y coordinates relative to
the point of tangency. It is necessary to subtract the values of the stereographic coordinates of the point of
tangency from the values of the stereographic coordinates X and Y to get the values of X and Y relative to
the origin of the stereographic coordinate system (Equation 3.4.8-1 and Equation 3.4.8-2).

3.4.8.1.7 Constants
One constant is necessary for the computation. It is the conformal radius of the earth

3.4.8.1.8 Units
The stereographic coordinates, the gnomonic coordinates, and the radius of the earth are all in nautical
miles.

Table of Variable Definitions

Function Variable Description Math Symbol
SX, SY Input variable - Stereographic X, Y

coordinates of the point being converted
X S , YS

DX, DY Stereographic X, Y coordinates of the point
being converted relative to the point of
tangency

X r , Yr

ACP.XTANG, ACP.YTANG Input parameters - Stereographic X, Y
coordinates of the point of tangency

X t , Yt

ACP.RAD_EARTH Input parameter - Conformal radius of the
earth

R

GX, GY Output variables - Gnomonic X, Y coordinates
of the point being converted

X G , YG

 106

3.4.8.2 Mathematics:
The following equations are used in the function CNV_STEREO_GNOMONIC to calculate the
gnomonic coordinates of a point, given its stereographic X and Y coordinates. First the
coordinate values relative to the point of tangency are obtained.

 X X Xr S t= − Equation 3.4.8-1

 Y Y Yr S t= − Equation 3.4.8-2

Then the conversion functions are applied.

 X
X

X Y
R

G
r

r r

=

−
+

1
4

2 2

2

 Equation 3.4.8-3

 Y
Y

X Y
R

G
r

r r
=

−
+

1
4

2 2

2

 Equation 3.4.8-4

The function correctly calculates the gnomonic coordinate values given the stereographic
coordinate values.

 107

Figure 3.4.8-1: Stereographic to Gnomonic Projection

 POINT OF
TANGENCY

GNOMONIC
FOCUS -
CENTER OF
CONFORMAL
SPHERE

 DIAMETER

STEREOGRAPHICALL
Y
 PROJECTED POINT

POINT ON
CONFORMAL
SPHERE
BEING
PROJECTED

STEREOGRAPHIC
 LINE OF
PROJECTION

STEREOGRAPHIC
 FOCUS
(ANTIPODE)

GNOMONIC
LINE OF
PROJECTION

 GNOMONICALLY
PROJECTED
POINT

C

B

A

 108

3.4.9 Function: CNV_XYLL (PL/I)
Converts the stereographic coordinates X, Y of a point to a geodetic latitude and a geodetic longitude. The
X and Y coordinates are in nautical miles from the origin of the ARTCC coordinate system. Latitude and
longitude are in radians in the International Ellipsoid of Reference.

3.4.9.1 Description:
The descriptive information contained here has been obtained from the computer code for this PL/I
procedure, from the URET Trajectory Modeling Algorithmic Definition document (MTR 96W0000072),
and from the references stated in the text.

3.4.9.1.1 Stereographic Coordinates
The HCS uses a stereographic coordinate system to locate the aircraft. The stereographic coordinate
system is a Cartesian, planar coordinate system. The points on the surface of the earth are projected onto a
plane which is tangent to the earth at a point within the ARTCC airspace. This representation of points on
a plane when they are really on an ellipsoid introduces distortion or errors in position. However, for points
close to the point of tangency, the distortion is small and can be ignored.

The stereographic coordinate system is an XY plane with the XY grid lined up approximately with the
lines of latitude and longitude for points near the point of tangency. The parallel of constant latitude
passing through the point of tangency is projected onto the stereographic plane as a line of constant Y
value. The meridian of constant longitude passing through the point of tangency is projected onto the
stereographic plane as a line of constant X value. At other points on the stereographic plane, the
projections of lines of constant latitude or of constant longitude are curved and do not exactly line up with
the lines of constant Y or X.

In the northern hemisphere, the line of constant X value on the stereographic plane passing through the
point of tangency points to true north. As the Y coordinate of a point increases in value, the point gets
closer to the north pole. The projection of the north pole is on this line through the point of tangency.
Similarly the line of constant Y value passing through the point of tangency points due east.

The origin of the stereographic coordinate system is usually not the point of tangency but, in continental
US, is a point in the southwest corner of the ARTCC airspace.

The point of tangency of the stereographic plane is defined by a latitude, a longitude, and a distance from
the center of the ellipsoid. The location of the point of tangency is determined by the locations of the
ARTCC’s surveillance radars.

3.4.9.1.2 Geodetic Coordinates
Aircraft are located on the surface of the earth by a latitude and a longitude. The earth is almost a sphere,
but not quite. It is modeled by an ellipsoid of revolution. This ellipsoid is created by rotating an ellipse
about its minor axis. The axis becomes the earth’s polar axis - the line connecting the north pole to the
south pole. The International Ellipsoid of Reference is used. The distance in this model from the center of
the earth to the north (or to the south) pole is 3432.4579 nautical miles. The distance from the center to
the equator is 3444.0540 nautical miles. Latitudes and longitudes referred to this ellipsoid model are called
the geodetic latitudes and geodetic longitudes.

3.4.9.1.3 Conformal Coordinates
It is convenient to do the conversion in two steps. A point’s stereographic coordinates are first converted
to a pair of intermediate coordinates, and then the intermediate coordinates are converted to the geodetic
coordinates. The intermediate coordinate system is a sphere whose center is the same as the center of the
ellipsoid and whose radius is based on the locations of the ARTCC’s surveillance radars. The angles
between lines on the sphere remain unchanged when they are projected onto the ellipsoid. Therefore the
coordinate transformation is a conformal transformation and the values of the latitudes and longitudes in

 109

this intermediate coordinate system are referred to as conformal latitudes and longitudes. The radius of the
sphere is called the conformal radius of the earth. The geodetic longitude is the same as the conformal
longitude; only the latitude is changed upon converting from conformal to geodetic coordinates. The
stereographic X and Y coordinates are first converted to a conformal latitude and longitude, and then the
conformal latitude and longitude are converted to the geodetic latitude and longitude.

3.4.9.1.4 Stereographic to Conformal Projection
The projection of a point on the stereographic plane onto a point on the conformal sphere is illustrated in
Figure 3.4.9-1. The focal point (labeled “FOCUS” in the figure) for the projection is the point on the
sphere which is directly opposite the point of tangency. A line of projection is drawn from the focal point
to the point on the stereographic plane being projected (the “STEREOGRAPHIC POINT”). The point of
intersection of this line with the conformal sphere (the “CONFORMAL POINT”) is the projected point.

3.4.9.1.5 Conformal to Geodetic Projection
The ellipsoid and the conformal sphere are concentric - that is, they have a common center. The radius of
the sphere determines the scale of the projection in the stereographic plane and is chosen to minimize the
errors introduced by the projection. The geodetic latitude of a point on the ellipsoid is the elevation above
the equatorial plane of a line perpendicular to a plane tangent to the ellipsoid at that point.

The geometry of the conformal spherical projection is shown in Figure 3.4.9-2. The eccentricity of the
earth is greatly exaggerated in the figure to show the geometry more clearly. A point P on the surface of
the sphere has a conformal latitude of φ . This is the angle a radius vector makes with the equatorial plane
of the sphere. A point Pg on the surface of the ellipsoid has a geodetic latitude of φg . In the two

dimensional drawing of the figure this is the angle that the normal to the tangent at the point Pg makes

with the equator. The conformal projection of the point P on the sphere onto the ellipsoid is the point Pg .

A conformal projection is one in which the change in scale at a given point is the same in all directions.
The equation for the projection is derived by making the change in scale in mapping from the ellipsoid to
the sphere along a meridian of longitude on the sphere equal to the change in scale along a parallel of
latitude on the sphere. Since the lines of longitude are orthogonal to the lines of latitude, making the scale
equal in the directions of constant latitude and constant longitude makes the scale equal in all directions.

The geodetic value of a latitude when converted depends only on its original conformal value and on the
eccentricity of the ellipsoid.

3.4.9.1.6 Conversion Equations
The equations described here are listed later on in the section. Unless otherwise noted the equations in this
function are found in URET Trajectory Modeling Algorithmic Definition document (MTR 96W0000072,
Appendix A.4).

The coordinate conversion is done in two steps. The stereographic coordinates are converted into
conformal (spherical) coordinates , and then the conformal coordinates are converted into geodetic
coordinates. The second conversion is done by two equations (Equation 3.4.9-15 and Equation 3.4.9-20).
The remaining equations are required to convert the stereographic coordinates to spherical coordinates.

A spherical triangle is formed on the surface of the conformal sphere by the three principal points. The
geometry of the triangle is shown in Figure 3.4.9-3. The three points are the point being converted, the
point of tangency, and the north pole. Spherical trigonometry is used to calculate the projection of the
point on the stereographic plane onto the sphere. The triangle will be degenerate if the three points are not
distinct. If the point of tangency is coincident with the north pole the triangle is degenerate and cannot be
solved. Similarly if the point being converted is coincident with the north pole the triangle is degenerate
and cannot be solved. In both cases the Law of Cosines has a divide by zero. If the point being converted

 110

is coincident with the point of tangency, the triangle is again degenerate. However, the equations in this
case are still valid and will yield a solution. The value of the angle β is defined in the code to be zero
when both X r and Yr are zero in Equation 3.4.9-7.

In the spherical triangle in Figure 3.4.9-3, the lengths of the sides are defined by angular measure. The
length of a side is the angle it subtends on the sphere. The diagram shows that the meridian of longitude
from the point of tangency to the north pole subtends an angle of γ radians. This angle is the complement
of the latitude of the point of tangency (See Equation 3.4.9-3).

3.4.9.1.7 Constants
Three constants are necessary for the computation. They are the conformal radius of the earth, and the
coefficients of the two terms of the power series equation for the sine of the conformal latitude in terms of
the sine of the geodetic latitude.

3.4.9.1.8 Units
The X and Y coordinate values and the conformal radius of the earth are measured in nautical miles.

3.4.9.1.9 Internal Error Checking
The absolute values for the sines and cosines are checked to make sure that they are less than or equal to 1.
This is done after the calculations performed by the two power series approximations, the Law of Cosines,
and by the Law of Sines. Imprecision and/or approximation in the computation may cause a value to
exceed 1. When this occurs the value is reset to 1.

3.4.9.1.10 Unit Testing
A limited amount of unit testing was performed on this function. It performed correctly for all of the cases
tested.

Note in the following table that ALPHA is used to represent both α and 2α , and that DLATC is used to
represent φ , sinφg and φg .

 111

Table of Variable Definitions

Function Variable Description Math Symbol
XPOS, YPOS

Input data - Stereographic X, Y coordinates of the point
being converted (nautical miles)

X , Y

ACP.COORDS.LATIT,
ACP.COORDS.LONGIT

Input parameter - Geodetic latitude and longitude of the
point of tangency

φ0g , λ0

ACP.COORDS.XTANG
,
ACP.COORDS.YTANG

Input parameter - Stereographic X, Y coordinates of the
point of tangency

X t , Yt

RAD_EARTH Input parameter - Conformal radius of the earth R
PI Input parameter - number of radians in one half of a

revolution
π

CON_A Constant - the first order coefficient in the power series
expression for the conformal latitude in terms of the
geodetic latitude

A

CON_B Constant - the third order coefficient in the power series
expression for the conformal latitude in terms of the
geodetic latitude

B

CON_C Constant - the first order coefficient in the power series
expression for the geodetic latitude in terms of the
conformal latitude

C

CON_D Constant - the third order coefficient in the power series
expression for the geodetic latitude in terms of the
conformal latitude

D

CON_E Constant - the fifth order coefficient in the power series
expression for the geodetic latitude in terms of the
conformal latitude

E

CON_F Constant - the seventh order coefficient in the power
series expression for the geodetic latitude in terms of the
conformal latitude

F

SIN_PHIg Sine of the geodetic latitude of the point of tangency sinφ0g

SIN_PHI0 Sine of the conformal latitude of the point of tangency sinφ0
PHI0 Conformal latitude of the point of tangency φ0
GAMMA Angular distance from the north pole to the point of

tangency
γ

COS_GAMMA Cosine of the angular distance from the north pole to the
point of tangency

cosγ

SIN_GAMMA Sine of the angular distance from the north pole to the
point of tangency

sin γ

X, Y Stereographic X, Y coordinates of the point being
converted relative to the point of tangency

X r , Yr

ALPHA One half of the angular distance from the point of
tangency to the point being converted

α

COS_ALPHA Cosine of the angular distance from the point of tangency
to the point being converted

cos2α

SIN_ALPHA Sine of the angular distance from the point of tangency to
the point being converted

sin 2α

BETA Angle between the meridian of longitude passing through
the point of tangency and the line joining the point of
tangency to the point being converted

β

 112

COS_DELTA Cosine of the angular distance from the north pole to the
point being converted

cosδ

DELTA Angular distance from the north pole to the point being
converted

δ

SIN_DELTA Sine of the angular distance from the north pole to the
point being converted

sinδ

DLATC Conformal latitude of the point being converted φ
SIN_EPS Sine of the angle at the north pole between the meridian

of longitude going through the point of tangency and the
meridian of longitude going through the point being
converted

sin ε

COS_EPS Cosine of the angle at the north pole between the
meridian of longitude going through the point of
tangency and the meridian of longitude going through the
point being converted

cosε

EPSILON Angle at the north pole between the meridian of
longitude going through the point of tangency and the
meridian of longitude going through the point being
converted

ε

LONGC Output data - conformal (and geodetic) longitude of the
point being converted

λ

SIN_PHI Sine of the conformal latitude of the point being
converted

sinφ

DLATC Sine of the geodetic latitude of the point being converted sinφg

DLATC Geodetic latitude of the point being converted φg

LATC Output data - geodetic latitude of the point being
converted

φg

3.4.9.2 Mathematics:
The following equations are used in the function CNV_XYLL to calculate the geodetic latitude
and longitude of a point, given its stereographic X and Y coordinates.

The angle γ is needed to solve the spherical triangle connecting the point being converted, the
point of tangency, and the north pole. γ is found from the conformal latitude of the point of
tangency φ0 whose sine is given by the following equation from NAS-MD-312, Appendix D,
Section 2.

 sin sin sinφ φ φ0 0
3

0= +A Bg g Equation 3.4.9-1

The angle γ is given then by these two equations

 φ φ0
1

0= −sin Equation 3.4.9-2

 γ π φ= −
2 0 Equation 3.4.9-3

The stereographic coordinates X and Y are translated to an X and Y measured relative to the point
of tangency by subtracting the stereographic coordinates of the point of tangency.

 113

 X X Xr t= − Equation 3.4.9-4

 Y Y Yr t= − Equation 3.4.9-5

The geometry for the angle α can be seen in Figure 3.4.9-1. On the stereographic plane the
point being converted, called the stereographic point in the figure, is offset from the point of
tangency by its relative coordinates X r and Yr . The equation for calculating α is

 α =
+

+ +
−sin 1

2 2

2 2 24
X Y

X Y R
r r

r r
 Equation 3.4.9-6

The geometry for calculating β can be seen in Figure 3.4.9-3. β is the angle between the
meridian of longitude passing through the point of tangency and the line on the sphere joining the
point of tangency with the point being converted. This angle is unchanged when these two lines
are projected onto the stereographic plane. On the stereographic plane, note that β is measured
from the positive Y axis. The equation for calculating β is then

 β =








−tan 1 X

Y
r

r
 Equation 3.4.9-7

If X r and Yr are both zero, β is defined to be zero.

The angle δ is the angular distance of the point being converted from the north pole. The Law of
Cosines for spherical triangles is used to find its value using the previously calculated values for
α and β . See Figure 3.4.9-3.

 cos cos cos sin sin cosδ α γ α γ β= +2 2 Equation 3.4.9-8

The conformal latitude of the point being converted is found from the angle δ .

 δ δ= −cos (cos)1 Equation 3.4.9-9

 φ π δ= −
2

 Equation 3.4.9-10

The difference in longitudes of the point of tangency and the point being converted is the interior
angle of the spherical triangle at the north pole - ε . See Figure 3.4.9-3. Its value is found by
applying both the Law of Sines and the Law of Cosines for spherical triangles in the following
way.

 114

 sin sin sin
sin

ε α β
δ

=
2 Equation 3.4.9-11

 cos
cos cos cos

sin sin
ε

α γ δ
γ δ

=
−2

 Equation 3.4.9-12

 ε ε
ε

= 





−tan sin
cos

1 Equation 3.4.9-13

The longitude, conformal and geodetic, is obtained from the angle ε and the longitude of the
point of tangency.

 λ λ ε= −0 Equation 3.4.9-14

The conformal latitude has been found above in Equation 3.4.9-10. It is converted to the geodetic
latitude by the following Equation 3.4.9-15. This equation is the reversion of Equation 3.4.9-1
above. That is the power series in Equation 3.4.9-1 is inverted to obtain Equation 3.4.9-15.

 sin sin sin sin sinφ φ φ φ φg C D E F= − + −3 5 7 Equation 3.4.9-15

The coefficients C, D, E, and F are functions of the coefficients A and B and are calculated from
the following equations.

 C
A

=
1 Equation 3.4.9-16

 D B
A

= 4 Equation 3.4.9-17

 E B
A

=
3 2

7 Equation 3.4.9-18

 F B
A

=
12 3

10 Equation 3.4.9-19

 115

The geodetic latitude φg is obtained by the inverse sine function.

 φ φg g= −sin (sin)1 Equation 3.4.9-20

The function correctly calculates the geodetic latitude and longitude of a given stereographic X and Y
coordinate pair.

Assessment Table

REF# Approximation/Assumption Assessment Impact on TJM

R 3.4.9-1 The conformal latitude φ0
and colatitude γ of the point
of tangency are calculated by
Equation 3.4.9-1, Equation
3.4.9-2, and Equation 3.4.9-3
every time the function is
called.

This calculation should be done
once (for a given ARTCC) and the
results saved for future use.

Minor

R 3.4.9-2 The variable names ALPHA
and DLATC are used to
represent more than one
variable.

Distinct variables should have
distinct variable names.

Minor

R 3.4.9-3 Truncated power series are
used to calculate angles.

The power series approximations,
Equation 3.4.9-1 and Equation
3.4.9-15 are adequate.

Critical.
Coordinate
conversion is
basic to the
conflict probe
calculations.

R 3.4.9-4 It is assumed that neither the
point being converted nor the
point of tangency are at the
north pole.

Neither the point of tangency nor
the point being converted may be
at the north pole. The function
should check the input data for
these two cases.

Minor
This case does not
occur within the
U.S.

 116

Figure 3.4.9-1: Stereographic Projection Details

2α

α

α
R

R

R

CONFORMAL
 SPHERE

CENTER

 FOCUS

 POINT OF
TANGENCY

STEREOGRAPHIC
POINT

CONFORMAL
 POINT

 LINE OF
PROJECTION

STEREOGRAPHIC
PLANE

 117

Figure 3.4.9-2: Mapping Geometry - Conformal to Geodetic

 ELLIPSOID

 POLAR
 AXIS

TANGENT

 RADIUS

 CENTER

NORMAL

NOT TO SCALE

Pg

P

φgφ

CONFORMAL
 SPHERE

 118

Figure 3.4.9-3: Spherical Triangle on the Conformal Sphere

δγ

2α

ε

NORTH
POLE

POINT
BEING
CONVERTED

 POINT OF
TANGENCY

CONFORMAL
SPHERE

 EQUATOR

SPHERICAL
TRIANGLE

β

 119

3.4.10 Function: DB_AIR_AT_POINT (PL/I)
Determines the wind, temperature, and pressure at the specified point.

3.4.10.1 Description:
Determines the wind, temperature, and pressure at the specified point. It uses the values at the closest grid
point.

3.4.10.2 Mathematics:

-Interpolation is turned off in D1.1
-Indices are calculated based on max, min and increments in the x, y, and z coordinates
-All indices truncate the decimals during calculation, therefore a 1 is added to the expression to
ensure there is no zero index calculated

-If (x - xmin) >or= 1/2 xinc, use the next increment index

-If (x - xmin) < 1/2 xinc, use the current increment index

Use the index values for

 WIND_X_AT_PT
 WIND_Y_AT_PT
 TEMPERATURE_AT_PT
 PRESSURE_AT_PT

Indices are calculated as:

 I =
− +





+
x x

xy

xy

inc

inc

min 2 1

J =
− +





+
y y

xy

xy

inc

inc

min 2 1

K =
− +





+
z z

z

z

inc

inc

min 2 1

These indices correspond to the values in the AIR database

Assumes that weather is a constant throughout a weather grid, 50nmi x 50nmi x 1000ft in (x, y, z).

3.4.11 Function: DB_CDMERG (PL/I)
This function inserts a Clearance Directive (CD, otherwise known as a Planned Action, PA) into a linked
list of CDs.

 120

3.4.12 Function: DB_FIND _AUD_PTR (PL/I)
This function returns a pointer to a specified aircraft unique data (AUD) data structure as well as the
structure’s size. The AUD data structure is specified by an index number.

3.4.13 Function: GM_BRNG (PL/I)
Computes the bearing from the origin to a specified point.

3.4.13.1 Description:
Computes the bearing from the origin to a specified point.

Table of Variable Definitions

Function Variable Description Math Symbol
X, Y Components of the specified point x, y
MAGNITUDE The scalar magnitude of the heading vector x y2 2+
BEARING Bearing with respect to North ψ

3.4.13.2 Mathematics:
The function performs the following simple calculations and logic.

If x = 0
 If y ≥ 0 thenψ = 0
 If y < 0 thenψ π=

Else

 If x y2 2 0+ > then ψ =










+















−cos 1
2 2

x
x

y

x y

 Else ψ = 0

 If x < 0 then add π to ψ

These calculations and logic appear to be reasonable and are based on sound trigonometric
identities.

3.4.14 Function: GM_CONVEX (C)
This function determines if a test point (xt, yt) is inside a polygon region defined by the boundary points
(vertices: ver[n][2]).

 121

3.4.14.1 Description:
The algorithm to detect if a point lies within an octagon is based on the following theorem:

A point Pt(xt, yt) is outside an octagon if and only if:

()Q V V Pt

i n
V V

i i

n

− ≤

=
=

1

0

0
1 2

, , ;
, ,...,

 where the octagon vertices are listed in a counterclockwise manner

The function checks the inequality for every point in the octagon, ensuring that the point is not outside the
polygon region.

Table of Variable Definitions

Function
Variable

Description Math Symbol

xt, yt x, y coordinates of the test point xt, yt
ver 2 dimensional array containing the coordinates of the matrices (i.e.

ver[0][0] = X0 , ver[0][1]=Y0, …)
Xi, Yi

n number of boundary points (or number of vertices) n
OUT status return variable of function, OUT=0 means test point is

outside octagon

IN status return variable of function, IN=1 means test point is inside
octagon

3.4.14.2 Mathematics:
As stated previously in the description, the function utilizes the following theorem to evaluate if a
test point lies outside an octagon.

()Q V V Pt

i n
V V

i i

n

− ≤

=
=

1

0

0
1 2

, , ;
, ,..., Equation 3.4.14-1

 (where the octagon vertices are listed in a counterclockwise manner)

For the octagon polygon, the matrix determinant Q is evaluated for each i=1, 2, .. 8 and if any of
the boundary points has a determinant less than or equal to zero, then the test point is outside the
octagon. The function uses a fairly straightforward loop illustrated in Figure 3.4.14-2.

 122

Derivation:

Figure 3.4.14-1: Side of octagon and test point

The function loops around each linear segment of the octagon in a counterclockwise direction.
The loop starts with the first linear segment, illustrated in Figure 3.4.14-1 above. The vertices are
the end points of the linear segment. These end points are used to set up a linear equation:

y y
x x

y y
x x

1 2

1 2

2

2

−
−









 =

−
−









 Equation 3.4.14-2

 where x, y are the coordinates of the test point and
 the vertices are the coordinates x1, y1 to x2, y2

The above equation can be expanded to a similar form as the determinant, as shown below.

 y y
x x

x
y y
x x

x y y1 2

1 2

1 2

1 2
2 2

−
−









 −

−
−









 + =

 y y
x x

x
y y
x x

x y y1 2

1 2

1 2

1 2
2 2

−
−









 −

−
−









 −









 =

 () ()y y
x x

x
y y x y x x

x x
y1 2

1 2

1 2 2 2 1 2

1 2

−
−









 −

− − −

−









 =

 y y
x x

x
x y y x

x x
y1 2

1 2

1 2 1 2

1 2

−
−









 +

−
−









 =

 () () ()y y x x y y x y x x1 2 1 2 1 2 1 2− + − = − Equation 3.4.14-3

x1,y1

x2,y2

Test
point

Octagon

 123

The equation above expressed in determinant becomes:

x y
x y
x y

1
1
1

01 1

2 2

= , if x, y on the line segment

 x
y
y

y
x
x

x y
x y

1

2

1

2

1 1

2 2

1
1

1
1

0− + =

 () () ()x y y y x x x y y x1 2 1 2 1 2 1 2 0− − − + − =

Referring back to Equation 3.4.14-3, if the equation is rearranged and the difference in the y axis
between the line and the test point is calculated, the equation becomes:

 ∆. y
y y
x x

x
x y y x

x x
y=

−
−









 +

−
−









 −1 2

1 2

1 2 1 2

1 2
 Equation 3.4.14-4

Referring back to Figure 3.4.14-1, there are three cases that the above Equation 3.4.14-4 will
evaluate:

1. If ∆. y < 0, then the test point y is above the line and outside the octagon.
2. If ∆. y > 0, then the test point is below the line and inside the octagon.
3. If ∆. y = 0, then the test point is on the line and on the octagon exactly.

The function iterates for each side of the octagon and the orientation remains the same, since the
direction of the iteration is constant. For the case 3, the function considers the test point outside
the octagon (a conflict on the octagon exactly meets separation standards and is not a violation).

Assessment Table

REF# Approximation/Assumption Assessment Impact
on APD

R 3.4.14-1 The method description listed in the comment
section of the function states that the test point is
inside the polygon if the Q determinant is less
than or equal to zero. This is exactly opposite
the code what the code does.

Needs
correction.

Minor

 124

For loop begins at i=0, with i<n,
and incrementing i by 1

Increment for next
vertex
j=i+1

Is j=n?

Yes

No

Reset to start of
polygon region, j=0

Is Eq. 1 <=0

Yes

Test point is outside
region, set flag

No

 Is i<n?
Yes

No

Function ends with
outside point found

Function ends with
inside point found

Figure 3.4.14-2: GM_CONVEX Main Function Loop

 125

3.4.15 Function: GM_INSEC (C)
Computes the intersection point of two line segments.

3.4.15.1 Description:
The function receives the end point x and y coordinates for two line segments or points. It first determines
if the two line segments or points intersect and then categorizes for the following cases:

0. Line 1 is a point and line 2 is also a point.
1. Line 1 is a point and line 2 is a line.
2. Line 1 is a line and line 2 is a point.
3. Line 1 and line 2 are parallel or collinear.
4. Line 1 and line 2 intersect.

The function calculates the intersection point based on the case type defined above. There is a distinction
made between the given line segments and the calculated infinite lines containing those segments. For
example, an intersection may take place on the line, without taking place on the line segment, and if that
case was determined, the status variable would return a value 1 or 2.

Table of Variable Definitions

Function Variable Description Math
Symbol

x1, y1 Initial x, y coordinates of segment 1 x1, y1
x2, y2 Second x, y coordinates of segment 1 x2, y2
x3, y3 Initial x, y coordinates of segment 2 x3, y3
x4, y4 Second x, y coordinates of segment 2 x4, y4
ratio1 ratio of intersection to line 1;

= distance between one end point and the intersection
point / length of the line segment;
ratio = 9999, indicates ratio has no meaning

ratio1

ratio2 ratio of intersection to line 2; (same as above) ratio2
delta1, delta2, delta3, delta4 difference values for each set of line end points,

= (y1 - y2) , = (x1 - x2), = (y3 - y4), = (x3 - x4),
respectively

δ1, δ2, δ3, δ4

delta = (δ1) ∗ (δ4) − (δ2) ∗ (δ3) δ

3.4.15.2 Mathematics
Initial Function Check
The function begins by checking if the two given lines do not intersect. Using the following
expression, the two lines will not intersect if δ equals zero.

 δ = (δ1)(δ4) − (δ2)(δ3) Equation 3.4.15-1

 126

If δ = 0, either the line’s slopes are equal to each other, making them parallel or collinear, or one
(or both) of the lines is actually a point. This can be derived setting δ to zero and rearranging the
terms in Equation 3.4.15-1

 0 = (y1 - y2)(x3 - x4) - (x1 - x2)(y3 - y4)

 (y1 - y2)(x3 - x4) = (x1 - x2)(y3 - y4)

 (y1 - y2)/(x1 - x2) = (y3 - y4)/(x3 - x4)

 m1=m2 Equation 3.4.15-2

In Equation 3.4.15-2, the slope of line 1 equals m1 and slope line 2 equals m2. The function uses
this result, but protects against single precision round off error by using the following inequality
and areas.

Figure 3.4.15-1: Example of area diagram for δ’s

The function utilizes the δ by the following inequality. If the statement is false, the lines must
intersect.

 δ2 <= (ε2 temp)
 where temp = (δ1

2 + δ2
2)(δ3

2 + δ4
2); ε = 0.0001

From Figure 3.4.15-1, the distance of the line 1 is δ5 = δ δ1

2
2

2+ and the line 2 is δ6 =

δ δ3
2

4
2+ , so temp = (δ5

2)(δ6
2). The inequality is comparing the squared areas, or the ratio

between temp (the area defined by the two lines) and the difference in the areas created by the δ
terms (shaded areas in Figure 3.4.15-1). If the squared ratio, δ2 / temp, is greater than the epsilon
value squared, the shaded area in the Figure 3.4.15-1 should be approximately zero, which
produces the same result as Equation 3.4.15-2.

The algorithm continues by examining each case separately, and determining the intersection
point if one exists.

δ3
δ1

δ4

δ2

δ5

δ6

 127

Case 0
For Case 0 (TWO_POINTS) both lines are points, therefore if both points are equal an
intersection is evaluated at that point. If both points do not equal, then no intersection status is
evaluated.

Case 1-2
For Case 1 and 2 (ONE_POINT_TWO_LINE or ONE_LINE_TWO_POINT), one of the lines is a
point and the other is a line segment. For Case 1, the point at x1 and y1 is determined to be on the
other line, on the line segment, or not on the line at all. If the point 1 at (x1, y1) lies on the line 2
from (x3, y3) to (x4, y4), the slope of a line from point 1 to (x3, y3) must be equal to the slope of line
2. Therefore, the function assumes an intersection does occur if the following equation is
evaluated true.

 (y3 - y1)(x4 - x3) = (y4 - y3)(x3 - x1) Equation 3.4.15-3

This is true only if the slopes are equivalent, specifically:

 (y4 - y3)/(x4 - x3) = (y3 - y1)/(x3 - x1) Equation 3.4.15-4

If the intersection point lies on the line segment, the point 1 must be between the points 3 and 4 or
(x3, y3) and (x4, y4), which returns the SEG_INSEC value. If the point 1 lies outside the line
segment’s end points, the intersection point is the same, but the status is returned with the
intersection on the extension (SEG1_EXT2_INSEC).

For the Case 2, the line is defined for line segment 1 (points x1, y1 to x2, y2) and the point 2 (x3, y3).
The function loop is identical to the description for Case 1.

Case 3
For Case 3, the two lines are parallel and the function determines if they are collinear. The sum
for the x coordinates is calculated and checked for the zero condition. If the sum adds to zero, the
lines are evaluated as collinear, since the slopes are equivalent. If the sum is not equal to zero, the
lines may still be collinear only if the following equation for δ is equal to zero.

 δ = (δ4) (y3 - y1) - (δ3)(x3 - x1) Equation 3.4.15-5

Derivation:
Show that the two point slope line equations with equal slopes and solved simultaneously for the
same x and y (representing the collinear case) reduce to Equation 3.4.15-5.

Equation for line 1: (y - y1) / (x - x1) = (y2 - y1) / (x2 - x1)
Equation for line 2: (y - y3) / (x - x3) = (y4 - y3) / (x4 - x3)

Rearrange the terms for line 1 equation and substitute δ values:

 y = [((y2 - y1) / (x2 - x1))x]- [((y2 - y1) / (x2 - x1))x1 - y1)]

 y = [(δ1/ δ2)x]- [(δ1/ δ2) x1 - y1] Equation 3.4.15-6

It can also be shown for line 2 equation that:

 128

 y = [(δ3/ δ4) x]- [(δ3/ δ4)x3 - y3] Equation 3.4.15-7

By equating Equation 3.4.15-6 and Equation 3.4.15-7, the two line equations are being set
collinear, if the slopes are equal. With the slopes equal, let m = (δ1/ δ2) = (δ3/ δ4). Therefore,
solve this equation to determine the δ from Equation 3.4.15-5.

 [mx]- [(mx1) - y1] = [mx]- [(mx3) - y3]

 0 = mx1 - mx3 + y3 - y1

 m(x3 - x1) = (y3 - y1) Equation 3.4.15-8

By using m = (δ3/ δ4) from above, Equation 3.4.15-8 reduces to Equation 3.4.15-5:

 (δ3/ δ4) (x3 - x1) = (y3 - y1)

 0 = [δ4(y3 - y1)] - [δ3(x3 - x1)] Equation 3.4.15-9

To show that the x coordinate sum can be used to check for collinear lines, determine if the line
equations for both lines are equivalent and thus collinear when the sum of the x coordinates is
equal to zero.

Let, xs = x1 + x2 + x3 + x4 = 0, so :

For the x values to sum to zero, they either all must be zero or the variables must have both
positive and negative values. Unless there are other assumptions relating to the source of the x
coordinates, the sum and the equivalent slopes do not ensure that the lines are collinear. This
check may only be an error trap for all zero values for the x coordinates and used for single
precision arithmetic, but this assumes all the x coordinates are positive (in the first quadrant).
Therefore, there is no reason for keeping this portion of the source code at this time.

Case 4
For Case 4, the lines do intersect, so the function will return both the intersection coordinates and
the status category. The status is based on whether the two lines intersect either within the two
segments (SEG_INSEC), on one segment and the other line extension (i.e. SEG1_EXT2_INSEC),
or both line extensions (EXT_NO_INSEC). The function calculates the ratios between the
distance of the intersection point to the beginning segment point and the total segment length.
This ratio is calculated for both lines and used to determine the intersection point and what status
is returned. The function expresses the following formula for the ratio of the intersection distance
to the segment length of line 1.

 ratio1 = [(x3 -x1)(δ3) - (y3 - y1)(δ4)] / (δ) Equation 3.4.15-10

 129

Derivation:
To solve for Equation 3.4.15-10, it is first necessary to derive general intersection equations from
the two line equations, again:

Equation for line 1: (y - y1) / (x - x1) = (y2 - y1) / (x2 - x1)
Equation for line 2: (y - y3) / (x - x3) = (y4 - y3) / (x4 - x3)

Solve for y for each line:

 y = m1x - m1x1 + y1 Equation 3.4.15-11

 y = m2x - m2x3 + y3 Equation 3.4.15-12

 As in Equation 3.4.15-2, the slopes are:

 m1= (y2 - y1) / (x2 - x1); m2= (y4 - y3) / (x4 - x3)

 Equate Equation 3.4.15-11 and Equation 3.4.15-12 and then solve for x:

 x = (m1x1 - m2x3 + y3 - y1) / (m1 - m2) Equation 3.4.15-13

Now, it is necessary to represent the ratio1 in terms of the x coordinates. This can be
accomplished by using similar triangles as illustrated in the following diagram.

Figure 3.4.15-2: Ratio of Distance B to A

As illustrated in Figure 3.4.15-2 above, the ratio of Equation 3.4.15-10 can be expressed as the
ratio of distance B to A. From similar triangles, the ratio B/A is equivalent to E/D. This second
ratio can be expressed as:

 ratio1 = E / D = (x - x1) / (x2 - x1) Equation 3.4.15-14

D

A

C

 B

 E F

 130

Using Equation 3.4.15-13, the ratio can be shown to be equivalent to Equation 3.4.15-10. First,
substitute the variable x from Equation 3.4.15-13 into the following equation for the ratio E/D:

 ratio1 = E / D = (x - x1) / (x2 - x1) =

 = [(y3 - y1 + m1x1 - m2x3) - x1(m1-m2)] / [(m1 - m2)(x2 - x1)] Equation 3.4.15-15

Multiply and cancel the terms in the numerator to get the following,

 ratio1 = [m2(x1-x3) + y3 - y1] / [(m1 - m2)(x2 - x1)]

Now, multiplying the slopes: m1= (y2 - y1) / (x2 - x1) and m2= (y4 - y3) / (x4 - x3) in the numerator
and denominator, provides the following expression for the ratio1:

= [((y4 - y3)/(x4 - x3))(x1-x3) + y3 - y1] / [((y2 - y1)(x4 - x3)+(y4 - y3)(x1 - x2))/(x4 -x3)]

= [(y4 - y3)(x1- x3)+(y3 - y1)(x4 - x3)] / [(y2 - y1)(x4 - x3)+(y4 - y3)(x1 - x2)]

= [(y3 - y4)(x3 - x1) - (y3 - y1)(x3 - x4)] / [(y1 - y2)(x3 - x4) - (y3 - y4)(x1 - x2)]

Thus, by substituting the δ terms the Equation 3.4.15-10 is returned.

 ratio1 = [(δ3)(x3 -x1) - (y3 - y1)(δ4)] / [δ]

An analogous argument can be shown for the ratio2 for line 2’s intersection. The ratio is the
intersection to endpoint distance to segment distance, so if the ratio is greater than one, the
intersection is certainly outside the segment. The function evaluates the ratios to determine if the
intersection is outside the segment. The function uses the following expression, returning a true
value when the intersection is outside the given segment:

 [Absolute value (ratio2 - 0.5)] > [0.5 + ε] Equation 3.4.15-16

The epsilon (ε) value is a small value (i.e. 0.0001) for approximation in the comparison. If the
intersection is outside one of the line segments and located on the line extension, the ratio may not
be greater than one (although a ratio greater than one always proves that the intersection is outside
the line segment). When the intersection distance is within the segment length but outside the line
segment, depending on the orientation of the points, the ratio will either be greater than 1 or a
negative number. This negative value will ensure that Equation 3.4.15-16 returns true, the correct
result.

Note: In GM_PTLINE, another approach was used to calculate the intersection point to a line.
In summary, GM_PTLINE used Equation 3.4.15-13 and the point slope equation of the line to find
the intersection point. A ratio was not used in this algorithm to determine if the intersection took
place inside the line segment, but a simple check in the x coordinates was utilized.

 131

Assessment Table

REF# Approximation / Assumption Assessment Impact

on APD

R 3.4.15-1 Two flight segments have the same slope, but
may not have the same sum for collinear lines.
It assumes the coordinates are only positive,
which stems from an early version of URET.

Incorrect
assumption.

Minor*

R 3.4.15-2 The check for the intersection of the lines, the
check for parallel/collinear line pairs, and the
final determination of the intersection point all
incorporate adjustments to minimize the effect
of floating point arithmetic error in single
precision. The problem is that these
adjustments are undocumented in the code.

Need more
documentation
or comments
explaining these
adjustments.

Minor

*Minor impact in APD since the consequence may produce either a parallel or collinear line
which results in the same outcome in only one APD function call, the CFP_FINE function.
However, the impact of GM_INSEC’s assumptions on other module’s functions is yet to be
determined.

3.4.16 Function: GM_PTLINE (PL/I)
Finds the relationship between a point and a line.

3.4.16.1 Description:
This function will calculate the minimum distance between a point and a line and will indicate if the point
is actually on the line. The GM_PTLINE function takes the coordinates of two end-points of a line
segment and the coordinates of the point as inputs. The function returns the shortest distance from the
point to the line, the coordinates of the point where the normal line, from the point to the line, intersects the
line segment, and a status indicator which signals if the point lies on the line segment.

Table of Variable Definitions

Function Variable Description Math Symbol
X1, Y1 The two dimensional Cartesian coordinates of

the first point which defines the line segment
x y1 1,

X2, Y2 The two dimensional Cartesian coordinates of
the last point which defines the line segment

x y2 2,

X3, Y3 The two dimensional Cartesian coordinates of
the point

x y3 3,

XI, YI The two dimensional Cartesian coordinates of
the point projected onto the line segment

x yint int,

D The minimum distance from the point to the
line segment

d

S1 Slope of the line segment m1
S2 Slope of the normal line to the line segment m2

3.4.16.2 Mathematics:
Find the slope an equation for the line (L) which includes the line segment.

 132

 Slope = m
y y
x x1

2 1

2 1
=

−
−

 Equation 3.4.16-1

 ()L : y y m x x= + −1 1 1 Equation 3.4.16-2

Find the equation for the line ()′L through the point (x3 , y3) which is perpendicular to L.

 The slope of ′ =L = - 1

1
2m

m Equation 3.4.16-3

 ()′ = + −L : y y m x x3 2 3 Equation 3.4.16-4

Find the point where ′L crosses L by solving their equations simultaneously.

 x
y y m x m x

m mint =
− + −

−
3 1 1 1 2 3

1 2
 Equation 3.4.16-5

 ()y m x x yint int= − +1 1 1 Equation 3.4.16-6

 Determine if ()x yint int, fall on the line segment.

In this function, if the line segment is not determined to be vertical or horizontal, there seems to be an
inaccurate assumption that ()x yint int, will be on the line segment, between ()x y1 1, and ()x y2 2, , if one
of the following equations are satisfied:

() ()

() ()

x x x

x x x

1 2

2 1

1 1

1 1

− ≤ ≤ +

− ≤ ≤ +

int

int

or Equation 3.4.16-7

This assumption is incorrect anytime xint is greater than the largest x value along the segment (either x1
or x2) or if it is less than the smallest x value along the segment.

However, if the function determines that ()x yint int, is indeed on the line segment then calculate the
distance

 () ()d x x y y= − + −3
2

3
2

int int Equation 3.4.16-8

If the function determines that ()x yint int, is not on the line segment, it will return the smaller distance
between the point and either end-point of the line segment.

 133

 () () () ()d x x y y x x y y= − + − − + −





min 3 1
2

3 1
2

3 2
2

3 2
2 or Equation 3.4.16-9

The function then returns d, the coordinates of the point ()x yint int, , and a status indicator whether

()x yint int, is on the line segment.

This approach is closed form and correct except for the assumption made in Equation 3.4.16-7, which will
need further explanation.

Assessment Table

REF# Approximation/Assumption Assessment Impact on TJM

R 3.4.16-1 Equation 3.4.16-7 Assumes a larger line segment in the x
dimension. Appears to be incorrect.

Minor

3.4.17 Function: GM_REGN (PL/I)
In the x-y plane, this function determines if a test point (xt, yt) lies within a polygon region defined by the
a set of boundary points (x[n], y[n]).

3.4.17.1 Description:
The function uses the PL/I random number generator to create a random number. The function uses this
random number and the maximum and minimum x and y coordinates of the region to create a point outside
the polygon region. The outside point is joined with the test point to form a line segment. The test line is
checked for intersections against the segments defining the circumference of the polygon region. The
function results in a number of intersections. The function makes n number of random number calls
(currently 8 maximum) if the intersection point is too close to the end of a polygon segment. The
maximum number of intersection checks is therefore n times the number of polygon vertices. If the
number of intersections is even, the test point is outside the region. If the number of intersections is odd,
the test point is inside the region.

 134

Table of Variable Definitions

Function Variable Description Math Symbol
xmin, xmax minimum and maximum x coordinates of the

polygon region in feet
xmin, xmax

ymin, ymax minimum and maximum y coordinates of the
polygon region in feet

ymin, ymax

rv random number value rv
xr, yr x, y coordinates of random generated point in feet xr, yr
*x1, y1 x, y coordinates of the start point of the line (ft) x1, y1
x2, y2 x, y coordinates of the end point of the line (ft) x2, y2
xt, yt x, y coordinates of the test point (ft) xt, yt
xi, yi x, y coordinates of the intersection point (ft) xi, yi
p, t ratio’s returned by gm_insec p, t
pton point on line status; pton=1 point is on a line

segment of the boundary region’s polygon, pton=0
point is not on a line of this boundary

pton

istat intersection status; istat=0 line segments intersect
between endpoints

istat

i, k loop counters i, k
pntsep constant used as delta separation allowed to

consider a point on a line; currently set at 1 ft.;
used for the TKM_GM_TSTPNT

pntsep

eps epsilon value used as effective difference of zero;
currently = 0.001

ε

nrpt number of random point tries that function iterates nrpt
n number of polygon end points n

3.4.17.2 Mathematics:
The function determines if a test point lies within a polygon region in the x-y plane defined by the
arrays of boundary points (x[n], y[n]).

The first step in the function is to determine the minimum and maximum boundary distances.
These extreme points are used to perform a gross check for the test point. If the test point lies
outside the extreme points of the polygon, the function returns an outside the region result for the
test point. However, if the test point is equal to or inside the extreme points, a random number is
generated. The number is used to define a random point outside the polygon region by using the
extreme points already defined.

The function generates the random number by the RAND function in an overall loop structure i
from 1 to 8. The value of i is MOD by 4. Therefore, the result is expressed in Table 3.4.17-1
where each MOD value is carried out a maximum of twice.

 135

Iteration
number

MOD value Resulting random point is
generated

1 1 point above the region
2 2 point to the right of the region
3 3 point below the region
4 0 point to the left of the region
5 1 point above the region
6 2 point to the right of the region
7 3 point below the region
8 0 point to the left of the region

Table 3.4.17-1: Iteration key GM_REGN

For i = equals 4 or 8, the random point is generated to the left of the polygon region. The
expression to determine this point is :

 ()xr x x x= − −min . max min1005 Equation 3.4.17-1

 ()yr y rv y y= + −min max min Equation 3.4.17-2

For the x dimension, the point is placed 0.5% to the left of the length of the polygon. For the y
dimension, the point is placed a uniform random variable distance within the width of the
polygon.

For the other directions (i.e. to the right, below, and above), the calculation is performed
analogously to Equation 3.4.17-1 and Equation 3.4.17-2.

After each random point is generated, the function runs a second loop for each segment of the
polygon. For each segment, the GM_TSTPNT is called to determine if the test point is on the
segment. If it is, the test point is considered inside the region and the function ends with an inside
result. However, if the GM_TSTPNT determines the point is not on the line the test point is
combined with the current random point to form a segment.

Now, GM_INSEC is called to determine if an intersection takes place between the test point to
random point segment versus the polygon segment. A counter is incremented (icnt) for each
intersection found. If an intersection is found, but the ratio of the distance to the end point of the
polygon segment is less than ε or greater than 1− ε , then the loop ends without finishing the
rest of the polygon segments and the next random point is generated. The i loop ends with either
nrpt random points generated or a successful iteration through the k loop, where each polygon
segment is checked.

The function ends by returning the MOD value of icnt by 2. This value will return a 0 or 1 for the
number of intersections determined to be even or odd, respectively. If an odd number of
intersections are found, the test point does lie inside the region. If the number of intersections is
an even number, the test point lies outside the region. The flow chart in Figure 3.4.17-1
illustrates the logic for this function.

 136

Find the max and min
values for the polygon

shape.

Is the test point
within the max and

min values?

Yes

No
Return(outside the

polygon)

Random point outside
polygon generated

Main loop begins:
k=0 from k to (n-1)

Call GM_TSTPNT for
test point on polygon

segment

Is test point outside
polygon segment?

Yes

No
Return(inside the
polygon segment)

Call GM_INSEC and is
intersection found?

Is intersection
found too close to

end point?

Yes

No

Break out of k loop:
generate an other

random point

k loop ends

Yes

Return (MOD icnt by 2)

No

Main loop begins: i=1
from i to nrpt maximum

Figure 3.4.17-1: Logic of GM_REGN

 137

Assessment Table

REF# Approximation/Assumption Assessment Impact

on APD

R 3.4.17-1 The ε value assumes the value
for the ratio returned by
GM_INSEC is approximately 1
or 0. The value currently
chosen is 0.001 which is very
reasonable.

A reasonable choice for the parameter has
been chosen and if the intersection point is
effectively on the end point of the polygon
line segment, an other random point is
chosen (total of nrpt of them)

Minor

R 3.4.17-2 The choice of nrpt random
point iterations seems
reasonable, though if more are
required the result will be to
falsely determine the point is
outside the region (return 0).

The number nrpt=8 chosen seems
reasonable and can only be verified by
unit testing.

Important

R 3.4.17-3 This function is subject to the
critical and important
approximations of
TKM_GM_TSTPNT, since it
uses this function to check if
the test point lies on each
polygon line segment.

Refer to the GM_TSTPNT function’s
Assessment Table. They will directly
effect this function GM_REGN.

Critical

3.4.18 Function: GM_TSTPNT (PL/I)
This function determines if a point lies on a specified line. To lie on this line, the point may be a small
epsilon distance from the line and still be considered on the line.

3.4.18.1 Description:
Given the x and y coordinates (in feet) of the end points of the line and the x and y coordinates of a point
(in feet), the function first determines the location of an intersection point which forms a perpendicular line
from the given point to the given line (refer to Figure 3.4.18-1). Next, the function determines the distance
of this perpendicular line and compares it to the minimum epsilon distance. If the distance of the normal
line is less than the minimum distance, the point is considered on the line.

Figure 3.4.18-1: Diagram of test point to line distance

x1, y1

x2, y2

xt, yt

xi, yi

distance from
point to line

 138

Table of Variable Definitions

Function Variable Description Math Symbol
x1, y1 x, y coordinates of the start point of the line (ft) x1, y1
x2, y2 x, y coordinates of the end point of the line (ft) x2, y2
xt, yt x, y coordinates of the test point (ft) xt, yt
pntsep separation allowed between 2 points pntsep
delx delta difference of the line in x dimension (ft) δ . x
dely delta difference of the line in y dimension (ft) δ . y
s1 slope of the line from x1,y1 to x2,y2 m
s2 slope of the normal line from xt, yt to xi, yi -1/m
xi, yi x, y coordinates (ft) of intersection point of test

point to line
xi, yi

eps epsilon value for considering the line to vertical
or horizontal (currently set at 100 feet)

ε

d perpendicular distance (ft) from the test point to
the line

d

3.4.18.2 Mathematics:
The function starts by calculating the delta differences of each dimension of the line. These
variables include the following:

 δ . x x x= −2 1 Equation 3.4.18-1

 δ . y y y= −2 1 Equation 3.4.18-2

These deltas are used to determine if the line is a vertical line or horizontal line. For the x
dimension, if the line’s δ . x is less an ε value, consider the line to be a vertical line. The
function checks if the test point is greater than the distance pntsep in the x dimension and if so
considers it not on the line. If the test point is less than the distance pntsep in the x dimension and
is within the y dimensions of the line, it is considered on the line. An analogous check is made for
the y dimension.

Now, the line is not a vertical or horizontal line and the perpendicular distance will need to be
calculated between the test point and the line. The first step is to determine the following slope
equations:

 s m y
x

1 = =
δ
δ

.

.
 Equation 3.4.18-3

 s
m

x
y

2 1
= − = −

δ
δ

.

.
 Equation 3.4.18-4

The equation of the line is expressed for the given line and the line formed by drawing a
perpendicular line from the test point to the line. By solving these two equations simultaneously
for x and y, the resulting formulas give the x and y coordinates of the intersection point used in
the function to solve for the distance d.

 139

 The given line:

 ()y y m x x− = −1 1 Equation 3.4.18-5

The normal line from the test point to the line:

 ()y yt
m

x xt− = − −
1 Equation 3.4.18-6

Solving them simultaneously for x (note the x below is equivalent to xi in the code):

 () ()m x x y yt
m

x xt− + − = −





−1 1
1

 mx mx x
m

xt
m

yt y− + − = −1 1

 x m
m

yt y xt
m

x m+





= − + +
1

1 1

 x
yt y xt

m
x m

m
m

=
− + +

+





1 1

1
 Equation 3.4.18-7

Now, solve for y (or yi in the code) for the intersection point using the x value in Equation 3.4.18-
7 and use Equation 3.4.18-5 to solve for y.

The last check determines the distance of the intersection point using the general distance formula:

 () ()d xt x yt y2 2 2= − + − Equation 3.4.18-8

The function proceeds by checking this distance d against the pntsep distance, and if this distance
is greater than the pntsep distance the test point is evaluated as not on the given line. However, if
the distance is less than pntsep, the test point is checked to determine if it is between the end
points of the line. For example, this checks for cases when the distance in Equation 3.4.18-8
is zero because the test point is collinear with the given line, but not within the line segment and
could actually be a large distance from the endpoints of the line. (NOTE: To determine if the test
point is within the line segment, the function extends the line by the pntsep value, currently 1
foot.)

 140

Assessment Table

REF# Approximation/Assumption Assessment Impact

on TJM

R 3.4.18-1 If the test point is less than a
distance pntsep from the given
line, the point is evaluated to be
between the end points of the
given line segment. However,
the line is extended by pntsep
for the PL/I version and by ε
for the TKM version of
GM_TSTPNT in C. The
pntsep value is 1 foot and the
ε value is 100 feet.

The transfer from C to PL/I will provide
different results not because of coding in a
different language, but because different
comparison values are used. An
investigation into the potential reasons for
the change are necessary and should be
documented.

Important

R 3.4.18-2 The check carried out to
determine if a point is between
the end points of the line
segment when the line segment
is either vertical or horizontal
uses the pntsep value to extend
the lines under the PL/I version
but not for the C version here.

It is actually more accurate not to use the
pntsep value, but this may cause errors due
to round off during floating point arithmetic.
Therefore, an investigation is required to
determine why this was not used in the C
version and used in this PL/I version only.

Important

3.4.19 Function: GM_TURN (PL/I)
Determines the turn angle to go from one bearing to another.

3.4.19.1 Description:
This function will take the difference between an initial bearing and a final bearing, supplied as inputs, and
return the turn angle, where right turns are positive and left turns are negative.

Table of Variable Definitions

Function Variable Description Math Symbol
INITIAL_BRNG The initial bearing, in radians, from north Ψi
FINAL_BRNG The final bearing, in radians, from north Ψf
TURN_ANGLE The turn angle, in radians. Right turns are

positive, left turns are negative
φ

3.4.19.2 Mathematics:
The function performs the following simple calculations and logic.

First it determines the difference between the two bearings.

 φ = −Ψ Ψf i Equation 3.4.19-1

 141

The function then limits the range to be between -2π and 2π by using the MOD function

 () ()φ φ φ π= sign MOD , 2 Equation 3.4.19-2

It then guarantees that any angle in the first or second quadrant is positive. Conversely, it ensures
any angle in the third or fourth quadrant is negative. For instance, if the angle was greater than π ,
the function subtracts 2π , resulting in a negative (left turn). If the angle was less than -π , the
function adds 2π , resulting in a positive (right turn).

The value for turn angle, in radians, is returned from this function. There are no assumptions or
approximations of significance to be noted.

3.4.20 Function: LO_FIND (PL/I)
Finds the index of a specified name in a specified table.

3.4.20.1 Description:
This function finds the index of a specified name in a specified database table.

The following is a list of the database tables which can currently be searched using this function. This list
includes the database name, description, and the name of the subfunction, if any, which is invoked to
search the particular database table.

Database Description Calling

Sub-Function
ACD Aircraft Class Data LO_BSACD
ALINE A-Line preferred arrival routes LO_BSALINE
APT Airports LO_APT
BAS Blocked Airspace DB_LOC_FIRST
DLINE D-Line preferred departure routes LO_BSDLINE
NODE Fixes LO_BSFIX
RTE Routes LO_BSRTE
SATAPT Satellite Airports LO_BSSATAPT
SEC Sectorization Data

All of the “LO_” subdirectories use a binary search technique to speed the search.

3.4.21 Function: ST_ARD_SSGDATA (PL/I)
Finds various SSG values (time, x, y, altitude, ground speed, true airspeed, pointer to the SSG) for a given
ARD.

3.4.21.1 Description:
Given an ARD, this function will return the time, position data (x, y), altitude, ground speed, and true
airspeed from the SSG which encompasses the given ARD. There is a check to ensure the ARD does not
go beyond the total length of the route. Otherwise, the above values are interpolated (non-linearly in the
case of accelerations) from the start and end point data of the SSG. Since aircraft which are in a hold are
assigned a value of zero for their segment length, hold segments will not be considered.

Table of Variable Definitions

 142

Function Variable Description Math Symbol

X, Y Coordinates of the aircraft at the given ARD (ft) x, y
SSG.X(1), SSG.Y(1),
SSG.X(2), SSG.Y(2)

Coordinates of the start and end points of the state
segment (ft)

x1, y1
x2, y2

ALT Altitude of the aircraft at the given ARD (ft) z
SSG.Z(1), SSG.Z(2) Altitude of the aircraft at the start and end points

of the state segment (ft)
z1, z2

GSPD_ACC Ground Speed acceleration (ft/s/s) ag
TAS_ACC Aircraft true airspeed acceleration (ft/s/s) at
GSPD Ground speed of the aircraft at the given ARD

(ft/s/s)
Vg

SSG.GSPD(1), SSG.GSPD(2) Ground speed of the aircraft at the start and end
points of the state segment (ft/s/s)

Vg1, Vg2

TSPD True airspeed of the aircraft at the given ARD
(ft/s/s)

Vt

SSG.TSPD(1), SSG.TSPD(2) True airspeed of the aircraft at the start and end
points of the state segment (ft/s/s)

Vt1, Vt2

XTIME The time the aircraft will be at the given ARD
(seconds)

t

SSG.TIME(1), SSG.TIME(2) Time associated with the start and end points of
the state segment (seconds)

t1, t2

SSG.SEG_LNG The length of the state segment (ft) l
SSG.ARD Along Route Distance (ft) ard
SSG.TOTDIST ARD at the beginning of the SSG (ft) ard1
SSG.GRADIENT The gradient value of the SSG (ft/ft) g

3.4.21.2 Mathematics:
The function performs the following simple calculations and logic.

First it determines which SSG intervals includes the given ARD.

 ard ard< +1 l Equation 3.4.21-1

 The first SSG that satisfies the above condition will then be used in the following processing.

Initially the function finds the ratio of the length the aircraft traveled from the start of the SSG to
the ARD over the total length of the SSG

 r
ard ard

=
− 1

l
 Equation 3.4.21-2

 143

The function uses this ratio to interpolate the x and y coordinates at the ARD position from the
SSG endpoints.

 ()x x r x x= + −1 2 1 Equation 3.4.21-3

 ()y y r y y= + −1 2 1 Equation 3.4.21-4

Next, the function supplies the ST_XYTOTIME function (See 3.4.34) with the x, y coordinates
and SSG pointer to determine the time, t, at the given ARD position.

Altitude is simply determined by multiplying the gradient by the increment of horizontal distance
traveled from the start of the SSG to the ARD and then added to the altitude at the start of the
SSG.

 ()z z g ard ard= + −1 1 Equation 3.4.21-5

Finally true airspeed and ground speed are calculated. First the function determines the
accelerations in true airspeed or ground speed by finding the difference of these values at the start
and end points of the SSG and dividing by the SSG time interval.

 a
V V

t tg
g g=

−

−
2 1

2 1
 Equation 3.4.21-6

 a
V V

t tt
t t=

−
−

2 1

2 1
 Equation 3.4.21-7

The function uses these values in a simple kinematic equation of motion to determine the current
velocities at the ARD position.

 ()V V a t tg g g= + −1 1 Equation 3.4.21-8

 ()V V a t tt t t= + −1 1 Equation 3.4.21-9

The values for x, y, z, Vg , Vt , t and a pointer to the associated SSG are returned from this
function.

Assessment Table

REF# Approximation/Assumption Assessment Impact on
TJM

R 3.4.21-1 Equation 3.4.21-6 and
Equation 3.4.21-7 assume a
constant acceleration over the
entire length of the segment.

This assumption could cause accuracy
problems when complex accelerations and
variable winds are present

Important

 144

3.4.22 Function: ST_CHK_VP (PL/I)
This function determines any entry and exit points of an aircraft into the airspace defined in the VP_IN
structure given the aircraft’s trajectory represented by SSG data structure.

3.4.22.1 Description:
The function first determines if the first trajectory segment is inside the airspace volume, and if it is indeed
inside, marks it as the entry point into the airspace. The next step is to enter a loop on the trajectory state
segments. Next, the function proceeds into the two filters. First, it enters the gross filter to determine if
each segment potentially is inside the airspace volume. If the state segment passes the gross filter, it enters
the fine filter to determine the specific intersection coordinates.

• GROSS FILTER TEST: The gross filter part of this function first assigns the minimum and
maximum boundary points of the airspace from the VP_IN structure. It also assigns the
minimum and maximum end point dimensions of the particular iteration’s state segment. The
next step is to compare each dimension’s (i.e. x, y, z) minimum and maximum boundaries for
overlap. If the state segment has overlap with the airspace, it proceeds in the function to the
next filter. If the state segment does not have any overlap, the loop proceeds to the next state
segment.

• FINE FILTER TEST: The fine filter part of this function loops through the airspace segments
and calls GM_INSEC to determine if the flight state segment intersects with one or more of
the airspace segments. The fine filter determines if there are any intersections with the
horizontal dimensions in the x-y plane, then determines if there are intersections with the top
of the volume (maximum altitude), and finally determines if there are intersections with the
bottom of the volume

Following the fine filter, the last segment is checked and flagged if inside the airspace volume. The
records in the VP_OUT structure which contain the entry and exit points of the aircraft into the airspace are
sorted by time. Any duplicate intersection points are eliminated as well.

 145

Table of Variable Definitions

Function Variable Description Math Symbol
VP_IN Structure data variable which contains the pre-

calculated information on the airspace volume’s
boundary points

VP_IN

VP_OUT Structure data variable which is filled with entry and
exit information into the given airspace

VP_OUT

VP_MAX_PTS Maximum and minimum coordinates of the airspace
volume

maxz, minz, maxx,
minx, maxy, miny

SSG.X(1), SSG.Y(1),
SSG.X(2), SSG.Y(2)

Coordinates of the start and end points of the state
segment (ft)

x1, y1
x2, y2

SSG.Z(1), SSG.Z(2) Altitude of the aircraft at the start and end points of
the state segment (ft)

z1, z2

XI, YI, ZI Temporary variables for the coordinates of the
intersection point

xi, yi, zi

MIN_SSG_X Minimum x distance (ft) within the given state
segment

min_ssgx

MAX_SSG_X Maximum x distance (ft) within the given state
segment

max_ssgx

SSG_RATIO Ratio along the state segment that marks the
horizontal intersection point

ssg_ratio

RATIO Ratio for the distance in the vertical dimension of the
determined altitude intersection used in Fine Filter to
interpolate for the corresponding x and y coordinates

ratio

REGN_IND Flag variable used as output of the GM_REGN
function where 0 = outside, 1 = inside the airspace

regn_ind

SSG.TIME(1) Time associated with the start point of the state
segment (seconds)

ti

SSG.SEG_LNG The length of the state segment (ft) l
SSG.ARD Along Route Distance (ft) ard
SSG.TOTDIST ARD at the beginning of the SSG (ft) ard1

3.4.22.2 Mathematics:
Pre-Filter Processing
The function starts by initializing a few variables and then checking to see if the first state
segment is inside the airspace volume. This step calls GM_REGN to determine if the point is
inside the airspace volume. If this point is within the volume, the VP_OUT structure is updated
with this point and defined as an END_IN_AIRSPACE condition. The next step is the main loop
which starts the iteration through the state segments of the aircraft trajectory (The current function
only examines linear segments not segments associated with a hold called box state segments.).

Gross Filter
Now, the function starts the check for an intersection with the volume. Any intersections found in
the gross filter or fine filter algorithms are defined by the CROSSING condition. First, the flag
variable FILTER is initialized to zero. There are three checks in the Gross Filter algorithm, one
for each dimension x, y, and z. For example, the check for the x dimension first defines the
minimum and maximum x value for the state segment, min_ssgx and max_ssgx. These values are
compared to the airspace volumes minimum and maximum x values and if the check is true the

 146

FILTER variable is incremented by 1. The check is as follows:

 () ()[]NOT ssgx x or x ssgxmax_ min max min_< < Equation 3.4.22-1

The same comparison is made in the y and z dimensions and the FILTER variable is incremented
accordingly.

Fine Filter

1. Check for horizontal intersections with the sides of the airspace volume.
If the state segment passed the Gross Filter with the FILTER variable resulting in 3, the Fine Filter
begins with a loop to check for horizontal intersections with the state segment and each segment
of the airspace volume. It calls the GM_INSEC function to determine if and where a horizontal
(x, y) intersection takes place between the trajectory state segment and the airspace segment. If an
intersection does take place, the GM_INSEC function provides the ratio along the trajectory state
segment. This ratio is used to interpolate in the altitude dimension (z), as follows:

 ()zi z ssg ratio z z= + −1 2 1_ Equation 3.4.22-2

Therefore, zi is the altitude that the state segment intersects a segment of the airspace volume.
The zi altitude is checked to be within the vertical limits of the airspace volume and if so, the
intersection is stored in the VP_OUT structure. The function ST_FINDARD is called to
determine the along route distance of the intersection point and ST_ARD_SSGDATA is called to
find the time of the intersection based on the along route distance.

2. Check for an intersection with the top of the airspace volume.
If the end point altitudes of the trajectory state segment intersect the top of the airspace volume’s
altitude (maxz), the altitude z1 must be greater than maxz while the z2 altitude must be less than
maxz or altitude z2 must be greater than maxz and the z1 altitude must be less than maxz. The
expression for the top intersection check is as follows:

 () ()[] () ()[]z z and z z or z z and z z1 2 2 1> ≤ > ≤max max max max Equation 3.4.22-3

The ratio of the distance between z1and the maxz to the altitude range of the state segment is
calculated next. The equation for this ratio is presented in Equation 3.4.22-4.

 () ()ratio z z z z= − −max 1 2 1 Equation 3.4.22-4

The ratio is used to interpolate for the x and y coordinates of the altitude intersection. The two
linear equations are solved for the xi and yi coordinates of the altitude intersection and zi is set to
maxz.

 ()xi x ratio x x= + −1 2 1 Equation 3.4.22-5

 ()yi y ratio y y= + −1 2 1 Equation 3.4.22-6

 147

The function GM_REGN is called to determine if the altitude intersection is within the airspace
boundary in the x-y plane. If it is, the along route distance (ARD) and time are calculated by
ST_FINDARD and ST_ARD_SSGDATA. Finally, the ARD, time, and the intersection
coordinates are stored in the VP_OUT structure.

3. Check for an intersection with the bottom of the airspace volume.
For the bottom intersection, the function is calculated in the same manner as the top intersection
was calculated. The check and interpolation equations are analogous to the top intersection and
listed here only for reference.

 () ()[] () ()[]z z and z z or z z and z z1 2 2 1≥ < ≥ <min min min min Equation 3.4.22-7

 () ()ratio z z z z= − −min 1 2 1 Equation 3.4.22-8

Post Filter Processing

1. Following the Fine Filter test, the last end point of the trajectory is checked, using

GM_REGN, to determine whether it is inside or outside the airspace volume. If it is inside,
the state segment end point information is stored in the VP_OUT structure.

2. The next step is the sort loop (Bubble Sort technique) that sorts the intersection points in
ascending order of time.

3. Next, the intersection points are examined for duplicates and if found they are eliminated
from the list. Both points must be category Crossing, the X and Y dimensions must both be
within 1000 feet of each other, and the intersection must occur within 10 seconds of each
other.

4. If the trajectory begins inside the airspace and has a crossing point near this entry point (X
and Y within 1000 feet and within 10 seconds time of the intersections) and there are more
than two intersection points, eliminate these two points. In other words, eliminate the
beginning entry point and crossing point if there are more than two points in the VP_OUT
structure and are close to the boundary.

5. If the trajectory ends inside the airspace and there exists a crossing point that is close to the
end point (within 1000 feet horizontally and 10 seconds in time) and there is greater than or
equal to 2 points in VP_OUT, these two points are eliminated. In other words, eliminate a
pair of near intersections if they are at the end of the trajectory and are very close to the
boundary.

6. The next loop defines the type field of the VP_OUT structure for each intersection point. The
type field defines whether each intersection is associated with an entry or an exit (the
VOL_ENTRY and VOL_EXIT fields).

7. If there is only one intersection point (a crossing point), it must be a point of tangency so the
point is eliminated.

8. A final check is made for other points of tangency (crossing points only). If the function
determines an odd number of crossing intersections, it determines if the trajectory is within 10
seconds before the crossing point and outside the boundary 10 seconds after the crossing
point occurs. The ST_TIME_SSGDATA function is called to determine the coordinates
along the trajectory for the specific time. The GM_REGN function determines if these points
(trajectory location 10 seconds before and after the intersection) are within the airspace
volume. If the point does not meet the conditions of being inside and outside the airspace
within the 10 second window, the crossing intersection point is eliminated from the VP_OUT
structure, since it must be a point of tangency.

Assessment Table

 148

REF# Approximation/Assumption Assessment Impact
on APD

R 3.4.22-1 Linear interpolation is used
to estimate the specific
coordinates of each
intersection point.

The solution of a given set of coordinates
based on the end point coordinates and the
known distance of one dimension (X, Y, or Z)
is a reasonable approximation assuming the
segment is small and the aircraft is only
accelerating moderately.

Important

R 3.4.22-2 A small parameter distance
(1000 feet horizontally and
10 seconds in time) is used
to assume a pair of
intersection points are alike.

The small parameter distance allows an aircraft
to be considered outside the airspace if it is
inside by a distance smaller than the parameter
distance. The 1000 feet / 10 seconds seem like
reasonable choices for an epsilon value.

Important

R 3.4.22-3 A global variable should be
used as the small parameter
distance.

The small parameter value 1000 feet / 10
seconds should be defined by a global variable
to be consistent with other algorithms and
improve the readability of the code.

Minor

3.4.23 Function: ST_CLIMB_DIST (PL/I)
Computes the distance required for a climb

3.4.23.1 Description:
This function calculates the horizontal distance required for a climb without the effect of wind.

Table of Variable Definitions

Function Variable Description Math Symbol

NEXT_ALT The lower level of the altitude layer (ft) h1
ALT The current altitude of the aircraft (ft) h0
TARGET_ALT The target altitude for the descent (ft) ht
GRADIENT The ratio of the change in altitude over the

distance traveled in the horizontal plane. (ft/ft)
gr

CLIMB_GRAD_FACTOR A multiplier which effects the climb gradient.
This value is found from the AMC table for a
particular aircraft.

CGF

DIST The total horizontal distance the aircraft would
fly in still air (ft)

Dtot

3.4.23.2 Mathematics:
 This function uses Equation 3.4.23-2 to compute the horizontal distance an aircraft would be

required to travel to complete a given climb. In the Aircraft Control Characteristics (ACC) table
each aircraft has various altitude layers and corresponding climb gradients assigned to each layer.
Therefore, this function must calculate the horizontal distance required for each altitude layer the
aircraft climbs through, and aggregate these distances into a total.

 The method used is described below. Since the method is simple in form, no derivations were

needed for this description.

The process begins at the current altitude and loops through every altitude layer until the target
altitude is reached. At each altitude layer, the function calls ST_CLIMB _GRADIENT (see

 149

Section 3.4.24) to get the assigned altitude gradient, gr. If the higher level of the altitude layer, h1,
is higher than the target altitude, ht, then assign

 h ht1 = Equation 3.4.23-1

 Add the distance required for the aircraft to climb through the current climb layer

()

D D
h h
C gtot prev

GF r
= +

−1 0 1 Equation 3.4.23-2

where CGF is the climb gradient factor found in the Aircraft Modeling Characteristics (AMC) table
for the particular aircraft.

This process continues to “loop” though every altitude layer between the starting altitude and the
target altitude, keeping track of the total horizontal distance traveled by the aircraft. At the end of
each iteration, the current altitude, h0, is assigned the value of the higher level of the current
altitude layer, h1 (i.e. let h0 = h1, then the next loop starts with the next altitude layer).

This function’s accuracy completely depends on the accuracy of the climb gradients and the climb
gradient factor. The accuracy of these values and their impact on TJM will need to be studied,
tested and proven.

Assessment Table

REF# Approximation/Assumption Assessment Impact

on TJM

R 3.4.23-1 The accuracy of the altitude
layer climb gradients supplied
by
ST_DESCENT_GRADIENT.

This issue must be verified to be as close to
“typical” as possible to minimize
reconformances. Justification of these
values may fall under an analysis of the
Aircraft Characteristics and Adaptation
subsystems

Critical

R 3.4.23-2 The accuracy of the aircraft’s
climb gradient factor supplied by
the AMC table

This issue must be verified to be as close to
“typical” as possible to minimize
reconformances. Justification of these
values may fall under an analysis of the
Aircraft Characteristics and Adaptation
subsystems

Critical

 150

3.4.24 Function: ST_CLIMB_GRADIENT (PL/I)
Computes the climb gradient and IAS (or Mach) for a given aircraft type, altitude, engine, temperature and
aircraft weight, assuming zero wind.

3.4.24.1 Description:
This function simply searches the ACC table for the climb gradient and IAS (or Mach) which corresponds
to the given altitude and temperature and the aircraft type, engine, and weight. The processing begins by
finding the tables which are associated with the given aircraft engine type. Then it searches for the table
with the temperatures and weights which represent the given input temperature and weight. If the input
values fall between two table values, then the function uses linear interpolation to calculate the climb
gradient and airspeed from the two closest table values.

In the current URET version (D1.1), each aircraft type is given a default value for weight found in the
AMC table. This default weight (or effective weight) is the simple average of the Nominal Takeoff Weight
and the Nominal Landing Weight found in the ACD data table.

Assessment Table

REF# Approximation/Assumption Assessment Impact

on TJM

R 3.4.24-1 The accuracy of the altitude
layer climb gradients and the
IAS (or Mach) in the ACC
table.

This issue must be verified to be as close to
“typical” as possible to minimize
reconformances. Justification of these
values may fall under an analysis of the
Aircraft Characteristics and Adaptation
subsystems

Critical

3.4.25 Function: ST_DESCENT_DIST (PL/I)
Computes the distance required for a descent

3.4.25.1 Description:
This function calculates the distance required for a descent. If the aircraft descends through a parameter
altitude which has an associated speed limit restriction (for example, the 250 knot indicated airspeed (IAS)
speed limit for aircraft flying below 10000ft, CFR 91.117) the distance traveled during the deceleration is
also calculated.

 151

Table of Variable Definitions

Function Variable Description Math Symbol

NEXT_ALT The lower level of the altitude layer (ft) h1
ALT The current altitude of the aircraft (ft) h0
TARGET_ALT The target altitude for the descent (ft) ht
DESCENT_IASMACH The current aircraft indicated airspeed (kts) Vias
DESCENT_TAS The current aircraft true airspeed (ft/s) Vt
SPEED_LIMIT The altitude speed limit (in indicated airspeed,

kts)
Vsl

SPEED_LIMIT_TAS The altitude speed limit (in true airspeed, ft/s) Vt_sl
DECEL_TIME The time needed for deceleration (secs) T
IDLE_DECEL The idle deceleration rate for the aircraft ai_dec
DECEL_DIST The horizontal distance the aircraft traveled

during the deceleration (ft)
Ddecel

GRADIENT The ratio of the change in altitude over the
distance traveled in the horizontal plane. (ft/ft)

gr

DESCENT_GRAD_FACTOR A multiplier which affects the descent
gradient. This value is found from the AMC
table for a particular aircraft.

CGF

DIST The total horizontal distance the aircraft would
fly in still air (ft)

Dtot

3.4.25.2 Mathematics:
 This function uses Equation 3.4.25-6 to compute the horizontal distance an aircraft would be

required to travel to complete a given descent. In the ACC table each aircraft has various altitude
layers and corresponding descent gradients assigned to each layer. Therefore, this function must
calculate the horizontal distance required for each altitude layer the aircraft descends through, and
aggregate these distances into a total.

 This function also takes into account the horizontal distance an aircraft travels while it decelerates

to a speed limit at or below a parameter speed limit altitude (Equation 3.4.25-2 to Equation
3.4.25-5).

 The method used is described below. Since the method is simple in form, no derivations were

needed for this description.

The process begins at the current altitude and loops through every altitude layer until the target
altitude is reached. At each altitude layer, the function calls ST_DESCENT_GRADIENT (see
Section 3.4.26) to get the assigned altitude gradient, gr. If the lower level of the altitude layer, h1,
is lower than the target altitude, ht, then assign

 h ht1 = Equation 3.4.25-1

 152

3.4.25.2.1 Calculate the Distance Traveled During Deceleration

The function determines if the aircraft crosses the speed limit altitude (10000 ft) and its current
speed exceeds the speed limit (250 kts)11

 If
 h0 10000≥
 and h1 10000<

 and Vias > 250 Equation 3.4.25-2

 then, convert the IAS and speed limit to True Airspeed (Vt and Vt_sl) at that altitude, using
(CNV_CNVSPD, see Section 3.4.1) and calculate the time needed for the deceleration.

()

T
V V

a
t t sl

i dec

=
− _

_

 Equation 3.4.25-3

 where ai dec_ is the absolute value of the idle deceleration rate found in the ACC table for each

particular aircraft type.

Next, calculate the horizontal distance, Ddecel , the aircraft traveled during the deceleration by
finding the average deceleration speed over the deceleration time

 D
V V

Tdecel
t t sl=

+







 ×_

2
 Equation 3.4.25-4

 and add this result to the total horizontal distance traveled

 D D Dtot prev decel= + Equation 3.4.25-5

where Dtot is the total horizontal distance traveled up to and including this point and Dprev is the
total horizontal distance traveled previous to this point.

3.4.25.2.2 Calculate the Total Distance Traveled

 Add the distance required for the aircraft to descend through the current descent layer

()

D D
h h
C gtot prev

GF r
= +

−0 1 1 Equation 3.4.25-6

where CGF is the descent gradient factor found in the AMC table for the particular aircraft.

This process continues to “loop” though every altitude layer between the starting altitude and the
target altitude, keeping track of the total horizontal distance traveled by the aircraft. At the end of

11 This restriction is based on the Code of Federal Regulations, Title 14, part 91.117, May 1996.

 153

each iteration, the current altitude, h0, is assigned the value of the lower level of the current
altitude layer, h1 (i.e. let h0 = h1, then the next loop starts with the next altitude layer).

This function’s accuracy completely depends on the accuracy of the descent gradients, the descent
gradient factor, and the estimation of the aircraft’s idle deceleration rate. The accuracy of these
values and their impact on TJM will need to be studied, tested and proven.

Assessment Table

REF# Approximation/Assumption Assessment Impact
on TJM

R 3.4.25-1 The accuracy of the altitude
layer descent gradients and the
aircraft’s idle deceleration rate
supplied by
ST_DESCENT_GRADIENT
and the ACC table.

This issue must be verified to be as close to
“typical” as possible to minimize
reconformances. Justification of these
values may fall under an analysis of the
Aircraft Characteristics and Adaptation
subsystems

Critical

R 3.4.25-2 The accuracy of the aircraft’s
descent gradient factor supplied
by the AMC table

This issue must be verified to be as close to
“typical” as possible to minimize
reconformances. Justification of these
values may fall under an analysis of the
Aircraft Characteristics and Adaptation
subsystems

Critical

3.4.26 Function: ST_DESCENT_GRADIENT (PL/I)
Computes the descent gradient and IAS (or Mach) for a given aircraft type, altitude and aircraft weight
assuming zero wind.

3.4.26.1 Description:
This function simply searches the ACC table for the descent gradient and IAS (or Mach) which
corresponds to the given altitude and the aircraft type and weight. If the weight of the aircraft is a value
which falls between two given weight values in the table, this function will linearly interpolate values for
the descent gradient and IAS (or Mach) using these two weights.

In the current URET version (D1.1), each aircraft type is given a default value for weight found in the
AMC table. This default weight (or effective weight) is the simple average of the Nominal Takeoff Weight
and the Nominal Landing Weight found in the ACD data table.

 154

Assessment Table

REF# Approximation/Assumption Assessment Impact

on TJM

R 3.4.26-1 The accuracy of the altitude
layer descent gradients and the
IAS (or Mach) in the ACC
table.

This issue must be verified to be as close to
“typical” as possible to minimize
reconformances. Justification of these
values may fall under an analysis of the
Aircraft Characteristics and Adaptation
subsystems

Critical

3.4.27 Function: ST_FINDARD (PL/I)
This function computes the ARD of a given point in the x and y plane for a specific aircraft trajectory. The
function uses as input the minimum and maximum ARD that the given point should be along the trajectory.

3.4.27.1 Description:
Given the x and y coordinates of a given point and the minimum and maximum ARD for the specified
aircraft trajectory, the function will compute the ARD of the aircraft to reach this point. The function uses
a minimum and maximum parameter set to start and end the search. This prevents errors due to a circular
route in which the route may be at a particular point several times during the route and thus have multiple
locations at the given point.

Table of Variable Definitions

Function Variable Description Math Symbol
XX, YY Coordinates of the given point (ft) xx, yy
SSG.X(1), SSG.Y(1),
SSG.X(2), SSG.Y(2)

Coordinates of the start and end points of the
state segment (ft)

x1, y1
x2, y2

MIN_ARD Minimum ARD the given point can result in min_ard
MAX_ARD Maximum ARD the given point can result in max_ard
AUD_PTR Pointer to aircraft’s unique data structure aud_ptr
ARD Along route distance of given point ard
DARD Distance from point to closest state segment

(or ORS) in the x and y dimensions
dard

D Distance from point to current ORS d
XI, YI Coordinates in x and y dimensions of point of

closest approach (returned from GM_PTLINE
function)

xi, yi

PTLINE_STAT Status of point returned by GM_PTLINE
function which returns 1 if the point is on the
segment and 0 otherwise

pt_status

3.4.27.2 Mathematics:
The function searches the ORS structure of the specific aircraft for the ARD for a given point.
The function starts by initializing a few flag variables and starting the main function loop which
increments through the segment list. The next step checks the current ORS ARD’s against the
minimum and maximum ARD’s (min_ard and max_ard). If the current ORS is not within the
limits, the function iterates to the next ORS.

 155

If current ORS ARD’s are within the limits, the function first assigns the end point coordinate
variables (i.e. x1, y1, x2, y2). The next step is a call to the GM_PTLINE function which returns the
closest distance of the point to the line and the status (i.e. pt_status) of whether the closest
approach point is on the segment or not. It also returns the coordinates of the closest approach
point. If this closest approach point is on the segment, the function increments the ard distance
as follows:

 () ()()ard ors accum dist xi x yi y= + − + −. _ 1
2

1
2 Equation 3.4.27-1

The Equation 3.4.27-1 adds the ORS current ARD to the distance from the segments beginning
point of closest approach point. Under this case, the closest approach point is the point of
intersection of a line from the given point and perpendicular to the flight segment line. For a
situation where the given point is on the line segment, the closest approach point is equivalent to
the given point’s coordinates (i.e. xx =xi and yy = yi), and the distance d is 0. This is illustrated in
the Figure 3.4.27-1.

 Figure 3.4.27-1: Diagram of closest approach point (xi, yi) which is on the flight segment

If the closest approach point is not on the line segment but somewhere on the line, the distance
from each end point (i.e. x1, y1 and x2, y2) is calculated to determine the minimum distance
between the given point and line. The following equations are calculated and the minimum dard
chosen:

 Minimum of:

 () ()()dard xx x yy y= − + −1
2

1
2 Equation 3.4.27-2

 () ()()dard xx x yy y= − + −2
2

2
2 Equation 3.4.27-3

For the equation of dard for the first end point, the function will calculate the ard as the
ors.accum_dist for that flight segment. For the dard for the second end point, the function
simply adds the length of the flight segment to the ors.accum_dist.

x1, y1

x2, y2

xx,yy

xi, yi

distance from
point to line

 156

Assessment Table

REF# Approximation/Assumption Assessment Impact
on APD
and TJM

R 3.4.27-1 For the second loop where the
GM_PTLINE found the closest approach
point not on the flight segment, the
distance calculation for the first end point
has an error. The second term for the y
dimension of the first end point in the
code is listed as y2 where it should be y1.

The result of this error could
return an incorrect ARD by
as much as one segment
length, since the minimum
and maximum ARD values
restricts the search.

Critical

3.4.28 Function: ST_IASALT (PL/I)
Iteratively searches for the altitude at which an aircraft, which is accelerating and either climbing or
descending, attains a desired IAS.

3.4.28.1 Description:
This function performs an iterative search to determine the altitude an aircraft will be when it attains a
desired IAS. The acceleration supplied to the function describes the TAS acceleration. This acceleration is
calculated from both the change in altitude and the aircraft’s speed change.

Since the function is attempting to capture a desired IAS, there is no closed form solution to solving the
motion equations as long as the acceleration is with respect to TAS. Instead, this function logically
searches for the desired IAS and altitude by trying to surround the solution with a narrowing time interval.

 157

Table of Variable Definitions

Function Variable Description Math Symbol

ACCEL The aircraft’s acceleration due to both a level
cruise acceleration and a TAS acceleration due
to the change in altitude. This is given in units
of (ft/s2)

a

EXTREME_TAS The maximum TAS possible with the given
target IAS. In this case, the corresponding
TAS associated with a target IAS at the
maximum altitude possible
(MAX_ALTITUDE = 60000ft)

Vt_extr

TMAX, TMIN Iterative time variables used to locate the time
the aircraft captures the target IAS

tmax, tmin

TT The test time which the function tries in
determining when the aircraft captures the
target IAS. This is calculated as the average
of tmax and tmin

t

TEST_IAS The resultant IAS that the function calculates
from the given iteration

Vi_test

TARGET_IAS The desired IAS Vi
TEST_HT The test altitude that the function tries in

determining where the aircraft captures the
target IAS

ht

TEST_TAS The test TAS that the function tries in
determining where the aircraft captures the
target IAS

Vt_test

IAS_EPSILON A small parameter value used to determine if
two IAS values are close (currently set to 1)

ε

CURRENT_Z The current altitude of the aircraft (ft) h
CURRENT_TAS The current TAS at the current altitude Vt
GRADIENT The altitude gradient . This value is the ratio

of the change in altitude over the change in
horizontal distance traveled. (ft/ft)

g

3.4.28.2 Mathematics:
The function begins by determining if the aircraft is accelerating, decelerating, or has a constant
true airspeed (TAS). If the aircraft is accelerating, it is known that the final TAS should be larger
than the current TAS. The function must ensure that the estimated time interval includes the
solution. Therefore, the function calculates the amount of time it would take for the aircraft to
accelerate from its current TAS to the largest TAS that could be obtained using the desired IAS at
the maximum allowable altitude (60000 ft). Conversely, if the aircraft were decelerating the
function would calculate the amount of time it would take for the aircraft to decelerate from its
current TAS to a minimal TAS value of 0. The above time is then assigned to the variable tmax and
the corresponding airspeed is referred to as the “extreme TAS”. The variables tmin and the initial
test IAS, Vi_test are both initialized to zero.

 t
V V

amax
t extr t=

−_ Equation 3.4.28-1

 158

t
V

min

i test

=
=
0

0_

As a result, the following initial time interval is created. Within this time interval exists the time
which it would take the aircraft to accelerate or decelerate to the target IAS.

As long as the difference between the target IAS and the test IAS is greater than a small epsilon
value (in this case 0.5) and the interval between tmax and tmin is greater than 1, the function will
continue to iteratively search for a solution within a logical loop.

While

()V Vi i test− >_
ε
2

 and ()t tmax min− > 1

 Process Loop

BEGIN LOOP
The first step in this loop takes the average (midpoint) of the current time interval [tmin, tmax].

 t
t tmax min=

+
2

 Equation 3.4.28-2

Next, the function extrapolates the altitude at which the aircraft would be after this amount of
time, t, has elapsed. The extrapolation uses the following equation in the function’s source code:

 h h V t at gt t= + +





1
2

2 Equation 3.4.28-3

Where the gradient, g, is the change in altitude over the change in the horizontal distance

 g h
x

=
∆
∆

 Equation 3.4.28-4

 and the change in horizontal distance is based on the basic Newtonian motion equation

 ∆x V t att= +
1
2

2 Equation 3.4.28-5

0

tmin tmax

The time when
target IAS is
reached

?
The time when
extreme TAS is
reached

 159

Therefore, Equation 3.4.28-3 can be expressed as

 h h x h
xt = + ∆

∆
∆

 Equation 3.4.28-6

 or simply,

 h h ht = + ∆ Equation 3.4.28-7

It is important to note here that Equation 3.4.28-5 assumes that true airspeed and acceleration exist
completely in the horizontal plane and have no component in the vertical dimension. This
assumption is probably made because the descent/ascent angles are usually small resulting in very
small vertical velocity and acceleration components. However, there are cases when the angle of
climb or descent is significant (i.e. as much as 25°). By ignoring the vertical component of true
airspeed and acceleration, Equation 3.4.28-3 could be in error by as much as 6%.

The solution to this anomaly is to address the vertical and horizontal components of true airspeed
separately. The angle of descent or ascent is simply a trigonometric function of the gradient.

 ()φ = arcsin g

 The horizontal and vertical components of true airspeed are expressed as

 vertical: ()Vt sin φ

 horizontal: ()Vt cos φ

This approach should also be used when the acceleration, a, is calculated. Acceleration could
then be expressed in both horizontal and vertical components, ah and av, respectively.
Subsequently, Equation 3.4.28-3 would be written as

 ()h h V t a t gt t h= + +





cos φ 1
2

2 (suggested Equation 3.4.28-3)

For the special case when the test altitude is above the maximum allowable altitude (parameter
ACP.MAX_ALTITUDE) or below an altitude of 0, the function solves Equation 3.4.28-3 for the
time when either ht = [MAX_ALTITUDE or 0]. Since Equation 3.4.28-3 is quadratic, the
function uses the quadratic formula to solve for the time roots.

Vt

φ

h

x

Vt cos(φ)

Vt sin(φ)

 160

Equation 3.4.28-3 is solved for 0

()1

2
02at V t

h h
gt

t+ +
−

= Equation 3.4.28-8

Where

AA a

BB V

CC
h h

g

t

t

=

=

=
−

1
2

AA, BB, and CC are then used in the GM_QUADRATIC function as the quadratic coefficients.
GM_QUADRATIC will return the number of real roots (either 1, 2 or 0). ST_IASALT will then
use the smallest, non-negative root as the test time, t. Note that there is no error condition
handler here if GM_QUADRATIC returns 0 real roots. This error could cause an infinite loop
since the variable TT would never change its value.

Next, the true airspeed at the altitude, ht, is calculated using the given acceleration, a, time, t, and
the current true airspeed.

 V V att test t_ = + Equation 3.4.28-9

Using Vt test_ and ht , the associated indicated airspeed, Vi test_ , is calculated using the

CNV_CNVSPD function.

 The function then makes the following logical assignments:

• Condition 1: If the aircraft has a positive acceleration, and the test IAS is less than the target
IAS, then the aircraft was not given enough time to accelerate to the target IAS; therefore
initialize the start of the new time interval with this time.

 Condition 1: a > 0 and V Vi test i_ <

 Result: tmin = t

Condition 1 example: Aircraft descending

Altitude vs. Time

Vi

Vi test_

h

ht

tmin = t tmax

 161

• Condition 2: If the aircraft has a positive acceleration, and the test IAS is greater than (or

equal to) the target IAS, then the aircraft may have been given too much time, and accelerated
to a speed faster than the target IAS; therefore initialize the end of the new time interval with
this time.

 Condition 2: a > 0 and V Vi test i_ ≥

 Result: tmax = t

Condition 2 example: Aircraft descending

Altitude vs. Time

• Condition 3: If the aircraft is decelerating (or has no acceleration), and the test IAS is greater
than the target IAS, then the aircraft was not given enough time to decelerate to the target
IAS; therefore initialize the start of the new time interval with this time.

 Condition 3: a < 0 and V Vi test i_ >

 Result: tmin = t

Condition 3 example: Aircraft ascending

Altitude vs. Time

 (Note: In this figure, Vi < Vi_test)

Vi

Vi

Vi test_

Vi test_

h

h

ht

ht

tmin

tmin = t

tmax = t

tmax

 162

• Condition 4: If the aircraft is decelerating (or has no acceleration), and the test IAS is less

than (or equal to) the target IAS, then the aircraft may have been given too much time, and
decelerated to a speed slower than the target IAS; therefore initialize the end of the new time
interval with this time.

 Condition 4: a ≤ 0 and V Vi test i_ ≤

 Result: tmax = t

Condition 4 example: Aircraft ascending

Altitude vs. Time

 (Note: In this figure, Vi ≥ Vi_test)

Conditions 1 and 3 include an error trapping routine which checks for impossible situations, such
as a climbing aircraft exceeding its maximum allowable altitude or a descending aircraft going
below an altitude of 0. If either of these conditions are true, it makes the determination that the
target IAS is unattainable with the given constraints and terminates the function. The last ht and t
that were calculated are then returned from this function.

It should be noted that this “unattainable condition” does not record an error code. Therefore it
is unknown how many times this situation takes place.

 END LOOP

The following example shows the iteration steps ST_IASALT uses to find a solution

 Numerical Example:

 Aircraft: B737
 Current Altitude = 31000ft Current TAS = 643 ft/s
 Target IAS = 280 nm/h Gradient = -0.07 ft/ft
 Acceleration = 1.227 ft/s/s

 Initial steps:

Extreme TAS = Target IAS at 60000 ft = 1279 ft/s
Tmax = (1279-643)/1.227 = 517.9 s

Vi
Vi test_

h

ht

tmin tmax = t

 163

Values at Each Iteration

Iteration # Tmax Tmin TT Test HT Test TAS (ft/s) Test IAS (nm/h)

1 517.9 0 258.9 16454.9 961.3 460.4
2 258.9 0 129.5 24445.3 802.5 336.1
3 129.5 0 64.8 27902.7 723.1 283.7
4 64.8 0 32.4 29496.4 683.4 259.8
5 64.8 32.4 48.6 28710.9 703.2 271.6
6 48.6 32.4 40.5 29106.3 693.3 265.7
7 48.6 40.5 44.5 28909.1 698.3 268.66
8 48.6 44.52 46.5 28810.2 700.7 270.1

Time Interval at Each Iteration

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8

Interation

Ti
m

e
(s

ec
on

ds
)

Tmax

Tmin

TT

 164

Test Altitude at Each Iteration

15000

18000

21000

24000

27000

30000

1 2 3 4 5 6 7 8

Iteration

A
lti

tu
de

 (f
t)

Test IAS at Each Iteration

200

220

240

260

280

300

320

340

360

380

400

420

440

460

480

1 2 3 4 5 6 7 8

Iteration

IA
S

(n
m

/h
)

 165

Assessment Table

REF# Approximation/Assumption Assessment Impact
on TJM

R 3.4.28-1 Equation 3.4.28-5assumes true
airspeed and acceleration exist
only in the horizontal plane

During steep ascent or descents this
assumption could cause estimation error. A
simple solution is provided in the analysis

Critical

R 3.4.28-2 For the special case when
GM_QUADRATIC is called to
solve for the time roots
(Equation 3.4.28-8), there is no
condition handler for the case
when there are zero real roots
returned.

This could cause an infinite loop error.
A test could be made where

()
V a

h h
gt

t2 2<
−

(A slow, decelerating aircraft climbing
several thousand feet)

Critical

R 3.4.28-3 The function will not model
aircraft trajectories above
60,000 ft or below 0 ft.

It is possible for aircraft to exceed these
constraints, however unlikely. Aircraft
exceeding these altitude constraints would
not be probed anyway.

Minor

R 3.4.28-4 There are no monitors to
determine the number of
“unattainable conditions” that
occur when altitude constraints
are exceeded

Extreme altitude conditions may be poorly
modeled. URET has no way to record this
problem.

Important

3.4.29 Function: ST_MACHALT (PL/I)
Iteratively searches for the altitude at which an aircraft, which is accelerating and either climbing or
descending, attains a desired mach airspeed.

3.4.29.1 Description:
This function performs an iterative search to determine the altitude an aircraft will be when it attains a
desired mach airspeed . The acceleration supplied to the function describes the true airspeed (TAS)
acceleration. This acceleration is calculated from both the change in altitude and the aircraft’s speed
change.

Since the function is attempting to capture a desired mach, there is no closed form solution to solving the
motion equations as long as the acceleration is with respect to TAS. Instead, this function logically
searches for the desired mach and altitude by trying to surround the solution with a narrowing time
interval.

 166

Table of Variable Definitions

Function Variable Description Math Symbol

ACCEL The aircraft’s acceleration due to both a level
cruise acceleration and a TAS acceleration due
to the change in altitude. This is given in units
of (ft/s2)

a

EXTREME_TAS The maximum TAS possible with the given
target mach. In this case, the corresponding
TAS associated with a target mach at the
maximum altitude possible
(MAX_ALTITUDE = 60000ft)

Vt_extr

TMAX, TMIN Iterative time variables used to locate the time
the aircraft captures the target mach

tmax, tmin

TT The test time which the function tries in
determining when the aircraft captures the
target mach. This is calculated as the average
of tmax and tmin

t

TEST_MACH The resultant mach that the function calculates
from the given iteration

Vm_test

TARGET_MACH The desired mach Vm
TEST_HT The test altitude that the function tries in

determining where the aircraft captures the
target mach

ht

TEST_TAS The test TAS that the function tries in
determining where the aircraft captures the
target mach

Vt_test

MACH_EPSILON A small parameter value used to determine if
two mach values are close (currently set to
0.0001)

ε

CURRENT_Z The current altitude of the aircraft (ft) h
CURRENT_TAS The current TAS at the current altitude Vt
GRADIENT The altitude gradient . This value is the ratio

of the change in altitude over the change in
horizontal distance traveled. (ft/ft)

g

3.4.29.2 Mathematics:

The function begins by determining if the aircraft is accelerating, decelerating, or has a constant
TAS. If the aircraft is accelerating, it is known that the final TAS should be larger than the
current TAS. The function must ensure that the estimated time interval includes the solution.
Therefore, the function calculates the amount of time it would take for the aircraft to accelerate
from its current TAS to the largest TAS that could be obtained using the desired mach at sea level
(0 ft). Conversely, if the aircraft were decelerating the function would calculate the amount of
time it would take for the aircraft to decelerate from its current TAS to a minimal TAS value of 0.
The above time is then assigned to the variable tmax and the corresponding airspeed is referred to
as the “extreme TAS”. The variables tmin and the initial test mach, Vm_test are both initialized to
zero.

 167

 t
V V

amax
t extr t=

−_ Equation 3.4.29-1

t
V

min

m test

=
=
0

0_

As a result, the following initial time interval is created. Within this time interval exists the time
which it would take the aircraft to accelerate or decelerate to the target mach.

As long as the difference between the target mach and the test mach is greater than a small epsilon
value (in this case 0.0001) and the interval between tmax and tmin is greater than 1, the function will
continue to iteratively search for a solution within a logical loop.

While
()V Vm m test− >_ ε and ()t tmax min− > 1

 Process Loop

BEGIN LOOP
The first step in this loop takes the average (midpoint) of the current time interval [tmin, tmax].

 t
t tmax min=

+
2

 Equation 3.4.29-2

Next, the function extrapolates the altitude at which the aircraft would be after this amount of
time, t, has elapsed. The extrapolation uses the following equation in the function’s source code:

 h h V t at gt t= + +





1
2

2 Equation 3.4.29-3

Where the gradient, g, is the change in altitude over the change in the horizontal distance

 g h
x

=
∆
∆

 Equation 3.4.29-4

 and the change in horizontal distance is based on the basic Newtonian motion equation

 ∆x V t att= +
1
2

2 Equation 3.4.29-5

0

tmin tmax

The time when
target mach is
reached

?
The time when
extreme TAS is
reached

 168

Therefore, Equation 3.4.29-3 can be expressed as

 h h x h
xt = + ∆

∆
∆

 Equation 3.4.29-6

 or simply,

 h h ht = + ∆ Equation 3.4.29-7

It is important to note here that Equation 3.4.29-5 assumes that true airspeed and acceleration exist
completely in the horizontal plane and have no component in the vertical dimension. This
assumption is probably made because the descent/ascent angles are usually small resulting in very
small vertical velocity and acceleration components. However, there are cases when the angle of
climb or descent is significant (i.e. as much as 25°). By ignoring the vertical component of true
airspeed and acceleration, Equation 3.4.29-3 could be in error by as much as 6%.

The solution to this anomaly is to address the vertical and horizontal components of true airspeed
separately. The angle of descent or ascent is simply a trigonometric function of the gradient.

 ()φ = arcsin g

 The horizontal and vertical components of true airspeed are expressed as

 vertical: ()Vt sin φ

 horizontal: ()Vt cos φ

This approach should also be used when the acceleration, a, is calculated. Acceleration could
then be expressed in both horizontal and vertical components, ah and av, respectively.
Subsequently, Equation 3.4.29-3 would be written as

 ()h h V t a t gt t h= + +





cos φ 1
2

2 (suggested Equation 3.4.29-3)

For the special case when the test altitude is above the maximum allowable altitude (parameter
ACP.MAX_ALTITUDE) or below an altitude of 0, the function solves Equation 3.4.29-3 for the
time when either ht = [MAX_ALTITUDE or 0]. Since Equation 3.4.29-3 is quadratic, the
function uses the quadratic formula to solve for the time roots.

Vt

φ

h

x

Vt cos(φ)

Vt sin(φ)

 169

Equation 3.4.29-3 is solved for 0

()1

2
02at V t

h h
gt

t+ +
−

= Equation 3.4.29-8

Where

AA a

BB V

CC
h h

g

t

t

=

=

=
−

1
2

AA, BB, and CC are then used in the GM_QUADRATIC function as the quadratic coefficients.
GM_QUADRATIC will return the number of real roots (either 1, 2 or 0). ST_MACHALT will
then use the smallest, non-negative root as the test time, t. Note that there is no error condition
handler here if GM_QUADRATIC returns 0 real roots. This error could cause an infinite loop
since the variable TT would never change its value.

Next, the true airspeed at the altitude, ht, is calculated using the given acceleration, a, time, t, and
the current true airspeed.

 V V att test t_ = + Equation 3.4.29-9

Using Vt test_ and ht , the associated mach airspeed, Vm test_ , is calculated using the

CNV_CNVSPD function.

 The function then makes the following logical assignments:

• Condition 1: If the aircraft has a positive acceleration, and the test mach is less than the target
mach, then the aircraft was not given enough time to accelerate to the target mach; therefore
initialize the start of the new time interval with this time.

 Condition 1: a > 0 and V Vm test m_ <

 Result: tmin = t

Condition 1 example: Aircraft descending

Altitude vs. Time

Vm

Vm test_

h

ht

tmin = t tmax

 170

• Condition 2: If the aircraft has a positive acceleration, and the test mach is greater than (or

equal to) the target mach, then the aircraft may have been given too much time, and
accelerated to a speed faster than the target mach; therefore initialize the end of the new time
interval with this time.

 Condition 2: a > 0 and V Vm test m_ ≥

 Result: tmax = t

Condition 2 example: Aircraft descending

Altitude vs. Time

• Condition 3: If the aircraft is decelerating (or has no acceleration), and the test mach is greater
than the target mach, then the aircraft was not given enough time to decelerate to the target
mach; therefore initialize the start of the new time interval with this time.

 Condition 3: a < 0 and V Vm test m_ >

 Result: tmin = t

Condition 3 example: Aircraft ascending

Altitude vs. Time

 (Note: In this figure, Vm < Vm_test)

Vm

Vm test_

h

ht

tmin tmax = t

Vm
Vm test_

h

ht

tmin = t tmax

 171

• Condition 4: If the aircraft is decelerating (or has no acceleration), and the test mach is less

than (or equal to) the target mach, then the aircraft may have been given too much time, and
decelerated to a speed slower than the target mach; therefore initialize the end of the new time
interval with this time.

 Condition 4: a ≤ 0 and V Vm test m_ ≤
 Result: tmax = t

Condition 4 example: Aircraft ascending

Altitude vs. Time
 (Note: In this figure, Vm ≥ Vm_test)

Conditions 1 and 3 include an error trapping routine which checks for impossible situations, such
as a climbing aircraft exceeding its maximum allowable altitude or a descending aircraft going
below an altitude of 0. If either of these conditions are true, it makes the determination that the
target mach is unattainable with the given constraints and terminates the function. The last ht and
t that were calculated are then returned from this function.

It should be noted that this “unattainable condition” does not record an error code. Therefore it
is unknown how many times this situation takes place.

 END LOOP

The following example shows the iteration steps ST_MACHALT uses to find a solution

 For a numerical example, see Section 3.4.28, ST_IASALT.

Vm
Vm test_

h

ht

tmin tmax = t

 172

Assessment Table

REF# Approximation/Assumption Assessment Impact

on TJM

R 3.4.29-1 Equation 3.4.29-5 assumes true
airspeed and acceleration exist
only in the horizontal plane

During steep ascent or descents this
assumption could cause estimation error. A
simple solution is provided in the analysis

Critical

R 3.4.29-2 For the special case when
GM_QUADRATIC is called to
solve for the time roots
(Equation 3.4.29-8), there is no
condition handler for the case
when there are zero real roots
returned.

This could cause an infinite loop error.
A test could be made where

()
V a

h h
gt

t2 2<
−

(A slow, decelerating aircraft climbing
several thousand feet)

Critical

R 3.4.29-3 The function will not model
aircraft trajectories above
60,000 ft or below 0 ft.

It is possible for aircraft to exceed these
constraints, however unlikely. Aircraft
exceeding these altitude constraints would
not be probed anyway.

Minor

R 3.4.29-4 There are no monitors to
determine the number of
“unattainable conditions” that
occur when altitude constraints
are exceeded

Extreme altitude conditions may be poorly
modeled. URET has no way to record this
problem.

Important

3.4.30 Function: ST_MAXTAS (PL/I)
Finds the maximum TAS for an aircraft at a given altitude.

3.4.30.1 Description:
This function simply searches the ACC table for the maximum True Airspeed which corresponds to the
given altitude and the aircraft type. The processing begins by finding the tables which are associated with
the given aircraft engine type. Then it searches the Max_TAS_in_Alt_Layer table for the range of altitude
layers which include the given altitude. If the input values fall between two table values, then the function
uses linear interpolation to calculate maximum TAS value from the two closest table values.

The maximum TAS values are based on the aircraft manufacturers’ tables.

3.4.31 Function: ST_MINTAS (PL/1)
Finds the minimum TAS for an aircraft at a given altitude.

3.4.31.1 Description:
This function simply searches the ACC table for the minimum True Airspeed which corresponds to the
given altitude and the aircraft type. The processing begins by finding the tables which are associated with
the given aircraft engine type. Then it searches the Min_TAS_in_Alt_Layer table for the range of altitude
layers which include the given altitude. If the input values fall between two table values, then the function
uses linear interpolation to calculate minimum TAS value from the two closest table values.

The minimum TAS values are based on the aircraft manufacturers’ tables.

 173

3.4.32 Function: ST_TIME_SSGDATA (PL/I)
Finds various SSG values (ARD, x, y, altitude, ground speed, true airspeed, pointer to the SSG) for a given
time.

3.4.32.1 Description:
Given a time, this function will return the ARD, position data (x, y), altitude, ground speed, and true
airspeed from the appropriate SSG which encompasses the given input time. If the time is between the
start and end time of the SSG, but not actually coincident with the start or end time, this function will
interpolate the output values over the segment interval. If the aircraft is determined to be in a hold at this
time, the modeled hold values are assigned and ground and true airspeeds are taken from the state segment
either before or after the hold state segment.

Table of Variable Definitions

Function Variable Description Math Symbol
X, Y Coordinates of the aircraft at the given time

(ft)
x, y

SSG.X(1), SSG.Y(1),
SSG.X(2), SSG.Y(2)

Coordinates of the start and end points of the
state segment (ft)

x1, y1
x2, y2

SSG_BOX.XPOS,
SSG_BOX.YPOS

Coordinates of the assumed aircraft position
during a hold (ft)

xh, yh

ALT Altitude of the aircraft at the given time (ft) z
SSG.Z(1), SSG.Z(2) Altitude of the aircraft at the start and end

points of the state segment (ft)
z1, z2

SSG_BOX.ZPOS(1) The assumed aircraft altitude at the beginning
of a hold (ft). Since altitude is not modeled
during holds, the altitude at the start and end
of the hold are assumed to be equal

zh

A Ground Speed acceleration (ft/s/s) ag
SSG.ACC Aircraft true airspeed acceleration parameter

(ft/s/s)
at

GSPD Ground speed of the aircraft at the given time
(ft/s/s)

Vg

SSG.GSPD(1), SSG.GSPD(2) Ground speed of the aircraft at the start and
end points of the state segment (ft/s/s)

Vg1, Vg2

TSPD True airspeed of the aircraft at the given time
(ft/s/s)

Vt

SSG.TSPD(1), SSG.TSPD(2) True airspeed of the aircraft at the start and
end points of the state segment (ft/s/s)

Vt1, Vt2

XTIME Given time at which to find the resultant
output values (seconds)

t

SSG.TIME(1), SSG.TIME(2) Time associated with the start and end points
of the state segment (seconds)

t1, t2

SSG.SEG_LNG The length of the state segment (ft) l
SSG.ARD Along Route Distance (ft) ard
SSG.TOTDIST ARD at the beginning of the SSG (ft) ard1
SSG_BOX.TOTDIST ARD at the beginning of the hold SSG (ft) ardh

 174

3.4.32.2 Mathematics:
The function performs the following simple calculations and logic.

First it determines which SSGs start and end time interval includes the given input time.

The function also checks if the SSG is in a hold or not. If the SSG is not in a hold, the following
process takes place.

Not in a Hold

The ground speed acceleration over that SSG is calculated by the following equation:

 a
V V

t tg
g g=

−

−
2 1

2 1

 Equation 3.4.32-1

 Then the time interval, from the start of the SSG to given time, is calculated

 ∆t t t= − 1 Equation 3.4.32-2

The above two values are then used in the simple kinematic equation for constant acceleration to
get the ground distance traveled over the above time interval

 ()d Vg t ag t= +1
1
2

2∆ ∆ Equation 3.4.32-3

and added to the total distance traveled by the aircraft at the beginning of the SSG to get the ARD

 ard ard d= +1 Equation 3.4.32-4

This distance is then used in calculating a ratio of the distance traveled over the total length of the
state segment.

 r d
=

l
 Equation 3.4.32-5

Note: There is no check made here to ensure that the total length of the state segment is not zero
(as in the ST_ARD_SSGDATA module). This is a software issue that could cause errors under the
right conditions.

This ratio is then used as a multiplier in calculating the new coordinates of the aircraft position,
along the state segment, at the given time.

 ()x x r x x= + −1 2 1

 ()y y r y y= + −1 2 1 Equation 3.4.32-6

 175

The new altitude can also be calculated with this multiplier, since the trajectory modeler models
the change in altitude based on a gradient. This gradient is defined as the change in vertical
distance over the change in horizontal distance traveled. This gradient is constant over the entire
segment, therefore the change in altitude up to the given time can be calculated with the same
ratio multiplier (which is based on horizontal movement, in units of feet). Therefore, the
following equation can be used to calculate the new altitude at the given time.

 ()z z r z z= + −1 2 1 Equation 3.4.32-7

Next the function performs the following logic:

 If the True Airspeed acceleration is equal to zero

 If

 at = 0 , Equation 3.4.32-8

Then assign the ground speed and true airspeed at the first cusp of the state segment
equal to the ground speed and true airspeed at the given time.

 Then

 V Vg g= 1 Equation 3.4.32-9

 V Vt t= 1 Equation 3.4.32-10

Note: This appears to be an incorrect assumption. If the true airspeed acceleration is zero, the
ground speed could still change over the segment because of changes in wind. The ground speed
should be calculated with the ground speed acceleration calculated earlier in the code (i.e.
Equation 3.4.32-1). A more accurate, however more processing intensive, method would be to
use the same true airspeed along with the DB_AIR_AT_POINT, GM_BRNG, and CNV_GRDSPD
functions to calculate the exact ground speed at the given time with the known wind conditions.

Otherwise, the function will use the calculated accelerations for ground speed and true
airspeed to determine the new ground speed and true airspeed at the given time

 Else

 V V a tg g g= +1 ∆ Equation 3.4.32-11

 V V
V V

t t
tt t

t t= +
−
−









1

2 1

2 1
∆ Equation 3.4.32-12

 176

If the SSG is in a hold, the following process takes place.

In a Hold

The position, altitude and ARD are all assigned the assumed aircraft positions during the hold.

 ard ardh=
 x xh=
 y yh=

 z zh= Equation 3.4.32-13

The ground speed and the true airspeed are simply assigned either the values of the true airspeed
and ground speed of the previous SSG (previous to the hold SSG) if it exists, or the next SSG
(after the hold) if it exists.

Finally, the function returns the values for position (x, y), altitude (z), along route distance (ard),
ground speed (Vg), true airspeed (Vt), and a pointer the state segment which contained the given
input time.

Note: In the beginning comments of this module, under outputs, the description for FOUND
states “Indicates whether the ARD exists on Route” This should say “Indicates whether the
XTIME exists during the route”.

Assessment Table

REF# Approximation/Assumption Assessment Impact
on TJM

R 3.4.32-1 Equation 3.4.32-9 assumes
ground speed remains
constant if true airspeed
remains constant

This assumption appears to be incorrect if
wind values were to change over the length of
the state segment.

Important
.

R 3.4.32-2 Equation 3.4.32-5 does not
protect against division by a
zero segment length

This is a software (robustness) issue which
could cause processing errors under the proper
conditions. There are other areas in this
module which also do not protect against
dividing by zero (i.e. Equation 3.4.32-1 and
Equation 3.4.32-12)

Important

3.4.33 Function: ST_TRANSLATE_ARD (PL/I)
This function translates a full route ARD to an ORS ARD and vice versa.

3.4.33.1 Description:
This function will either translate a full route ARD (defined by the RTE_ORS data structure) to the current
ORS ARD (defined by the ORS data structure) or vice versa, depending on the value of an input variable
(TRAN_TYPE). The supplied ARD need not be at the end point of either the RTE_ORS or ORS segment.
The RTE_ORS data structure is defined by the initial trajectory which was built based on the flight plan (or
amendment) route string. The ORS data structure could be different from the RTE_ORS because of a later
reconformance. This function will take the difference between the full route ARD (defined by the
RTE_ORS data structure) and the ORS ARD (defined by the ORS data structure) and either add or subtract
this difference to the given ARD (supplied as an input), depending on the TRAN_TYPE value.

 177

Table of Variable Definitions

Function Variable Description Math Symbol
IN_ARD The ARD given as the input ardin
OUT_ARD The ARD supplied as the output ardout
ORS_END_ARD ARD at the end of the given ORS segment ardoe
RTE_ORS_END_ARD ARD at the end of the full route, RTE_ORS,

segment
ardre

ORS.ACCUM_DIST ARD at the beginning of the given ORS
segment

ardos

RTE_ORS.ACCUM_DIST ARD at the beginning of the full route,
RTE_ORS, segment

ardrs

ORS.LNGTH The length of the ORS segment lo
RTE_ORS.LNGTH The length of the RTE_ORS segment lr

3.4.33.2 Mathematics:
For instance, if TRAN_TYPE = 1 the function will translate a full route ARD to a ORS ARD, if
TRAN_TYPE = 2 the function will translate a ORS ARD to a full route ARD.

For TRAN_TYPE = 1, the function first finds the ARD at the end point of both the ORS and
RTE_ORS segments by adding the length of the segment to the ARD at the beginning of the
segment.

 ard ard loe os o= + Equation 3.4.33-1

 ard ard lre rs r= + Equation 3.4.33-2

 The function then takes the difference of these two values

 d ard ardre oe= − Equation 3.4.33-3

 and subtracts this difference from the given ARD

 ard ard dout in= − Equation 3.4.33-4

The function will then check to ensure ardout is not less than zero or greater than ardoe . If it is the
value of zero or the ardoe would be assigned, respectively, in its place.

In the case when TRAN_TYPE = 2, all the above steps are about the same except that the function
adds the difference to the given ARD

 ard ard dout in= + Equation 3.4.33-5

 and checks are made with respect to the RTE_ORS endpoints.

 178

There are no assumptions or approximations made in this module which would have significant impact on
the algorithms.

3.4.34 Function: ST_XYTOTIME (PL/I)
Finds the time of a given (x, y) from an SSG.

3.4.34.1 Description:
This function will take a pointer to a particular state segment and a set of x, y coordinates and returns the
time it would take for the aircraft to travel along its route to the given coordinates. This function calculates
this time by representing the motion of the aircraft with a simple kinematic equation. If ground speed
acceleration is close to zero, the function simply calculates an increment of time to be added to the start of
the state segment by using a distance ratio. If there is an acceleration, the kinematic equation becomes a
quadratic, and the roots of the quadratic are then solved (using the quadratic formula). Any meaningful
roots are used as a solution. If there are no meaningful roots (i.e. both roots fall outside the state segment
time interval), then the time associated with state segment end-point that is closest to one of the roots is
used.

This function is based on classic physics and mathematics. It assumes a constant ground speed
acceleration over the entire length of the segment.

Table of Variable Definitions

Function Variable Description Math Symbol
XX, YY Coordinates of the aircraft position supplied as

inputs to the function (nm)
x, y

SSG.X(1), SSG.Y(1),
SSG.X(2), SSG.Y(2)

Coordinates of the start and end points of the
given SSG, respectively (nm)

x1 , y1
x2 , y2

SSG.SEG_LNG The horizontal length of the SSG l
SSG.GSPD(1), SSG.GSPD(2) The ground speed of the aircraft at the start

and end points of the given SSG, respectively
(ft/s/s)

Vg1 , Vg2

3.4.34.2 Mathematics:
 This function solves a basic kinematic equation of motion in the form of a quadratic to determine

the time roots. The motion equation used is

 d V t atg= +1
1
2

2 Equation 3.4.34-1

or equivalently,

 1
2

2 0a t V t dg g+ − = Equation 3.4.34-2

where ag is the calculated ground speed acceleration over the course of the segment, and is

 179

calculated as (assumes constant acceleration)

 a V
t

V V
t tg
g g= =

−

−
∆
∆

2 1

2 1
 Equation 3.4.34-3

 and d is the horizontal distance traveled by the aircraft from the start of the SSG to the given x, y

position.

 () ()d x x y y= − + −1
2

1
2 Equation 3.4.34-4

The function attempts to solve the quadratic in Equation 3.4.34-2 by breaking it up into the
appropriate terms of the quadratic formula.

 A a= 1
2

 B Vg= 1
 C d= −
 solve for t in

 At Bt C2 0+ + = Equation 3.4.34-5

If A ≈ 0 the function assumes a constant ground speed and uses a simple ratio of distance over
segment length to interpolate a time increment.

 ()t t t
d
l= −2 1 Equation 3.4.34-6

 Otherwise, the function solves the two roots of the classic quadratic formula

 t B B AC
A

=
− ± −2 4

2
 Equation 3.4.34-7

 Upon solving this formula, there are several conditions that are handled that should be noted

• If the term inside the radical, B2-4AC, is less than 0, the function assigns a zero value to this
term and the quadratic simplifies to

 t B
A

=
−
2

• If the first root is between the SSG time interval, the function uses this real root.

 If ()0 1 2 1≤ ≤ −t t troot

• Else if the second root is between the SSG time interval, the function uses this real root.
• If neither root is within the SSG time interval, the function uses the time associated with the

SSG endpoint which is closest to one of the root solutions.

 180

Finally, the calculated time increment, t, is added to the time at the start of the SSG, to arrive at
the total time for the aircraft to reach the given coordinates along its route.

 t t ttotal = +1 Equation 3.4.34-8

Assessment Table

REF# Approximation/Assumption Assessment Impact

on TJM

R 3.4.34-1 Equation 3.4.34-3 assumes a
constant ground speed
acceleration

This assumption may be incorrect when
various winds could have inconsistent effects
on the ground speed over the length of a
segment. The proper modeling of this could
result in a considerable increase in
processing (i.e. a new segment at every
change in wind direction/speed)

Important

 181

4. Assessment Findings and Observations
This section provides a summary of the assessment findings and observations. The URET D1.1 limitations
and assumptions determined through the independent assessment effort are provided, as well as a summary
of the algorithmic assessment tables contained in Section 3. ACT-250’s suggested improvements to the
source code are also provided, as well as recommendations for future analysis.

4.1 URET D1.1 Limitations
The following limitations should be considered restricted or non-existing capabilities of the URET D1.1
conflict probe. This section lists these limitations to give the reader a clearer understanding of what URET
can and cannot do. It is not intended to imply that these limitations are right or wrong, but rather leaves
these issues open for future discussion. (Note: if it is known that the limitation is being addressed in
URET Delivery 2 (D2), this is so noted).

• URET D1.1 does not probe all aircraft in the AERA boundary (only categories A, B and inbound F)
• URET D1.1 does not monitor the conformance of, or reconform, all aircraft trajectories (only

categories A and sometimes B).
• URET D1.1 does not probe or reconform aircraft determined to be in vertical drift
• URET D1.1 does not probe the holding trajectories
• URET D1.1 performs an event driven conflict probe for a fixed distance into the future. It does not

continuously reprobe all aircraft pairs (URET D2 performs a periodic reprobe). The events that cause
a conflict probe of an aircraft are: entry into the ARTCC airspace where the trajectory is first created,
or a trajectory re-modeling. The probe does not examine the entire trajectory for aircraft-to-aircraft
conflicts. It examines only a window of time into the future, called the look ahead time. Therefore, if
an event does not take place over the length of the look ahead time window, any future conflicts will
not be detected. The consequence is a missed or delayed alert.

• In the lateral reconformance logic, there is no unique solution to reconform unreported holds or a track
which is offset parallel to the trajectory.

• The coordinate system used in D1.1 allows for the system to only function in one ARTCC airspace.
Significant changes must be made to enhance URET D1.1 to work in a multi-ARTCC environment

• URET D1.1 assumes that all SUAs are active. The system does not allow the user to disable conflict
detection for inactive sectors.

• URET D1.1 notifies the user about any detected conflicts, regardless of the likelihood of the conflict
(URET D2 incorporates new notification logic which considers conflict likelihood).

• The horizontal route conversions cannot account for Type 2 or 4 coded routes.
• The trajectory modeler can only model one interim altitude at a time per flight plan.
• URET D1.1 has problems with modeling climb interim altitudes since it assumes the aircraft will

remain at that altitude for the remainder of the flight.
• TKM documentation was minimal or outdated. TKM was continuously evolving through multiple

URET deliveries during the course of the assessment.
• The time and position of the minimum separation is not an option to be presented by the display.

4.2 URET D1.1 Assumptions
The following are some noteworthy assumptions made in URET D1.1.

Trajectory modeling assumptions:

• Aircraft weight is assumed to be constant throughout the entire flight.
• The value of 3.00 is used for the maximum descent factor for all aircraft types.
• The value of 1.67 is used for cruise acceleration and idle deceleration for all aircraft types.

 182

• The temperature determined at the beginning of the State Segment is assumed to be constant over the
length of the segment.

• Acceleration and altitude gradient are constant over the entire trajectory segment.
• Trajectories are built with a geometric altitude, while aircraft actually fly pressure altitudes above

18000 feet.
• The use of stereographic projection introduces small errors in aircraft position estimates because it is

approximating part of the surface of a sphere with a plane. The errors increase toward the edges of the
ARTCC airspace.

• Aircraft descent and climb characteristics (gradient, speeds) are dependent on temperature deltas from
standard atmosphere. If the temperature falls between two delta values, linear interpolation is done to
approximate these values.

• Turns are modeled as an instantaneous change in heading instead of modeling a turn radius. Aircraft
trajectories are approximated with a series of linear segments.

• The climb, descent, and speed profiles are based on the aircraft manufacturer’s recommended profiles
for that aircraft type.

• External data sources, such as wind and track positions, are assumed to be accurate. However,
inaccuracies in the external data will have significant impact on the accuracy of the trajectories
modeled.

Conflict Prediction Assumptions:

• The conflict probe assumes accurate trajectory and track data within conformance bounds.
• APD always assumes aircraft are within the rectangular uncertainty region (i.e. conformance bounds)

which is centered on the monitored trajectory of the aircraft.
• At any specific unit of time, URET assumes an aircraft is within a region of uncertainty. These

regions are represented by a series of conformance boxes along the predicted trajectory of the aircraft.
The conflicts predicted are based on whether the pair of aircraft conformance boxes are less than
separation distance, not whether the pair of trajectory centerlines are less than separation.

• URET assumes larger conformance regions around the trajectory centerline during a turn, climb, or
descent. These larger distances account for the increased uncertainty associated with the maneuver of
the aircraft.

 183

4.3 Summary of Algorithmic Assessment Tables
As described in Section 3, the actual source code was examined for assumptions and approximations.
These assumptions and approximations are presented in tables following each specific algorithm analyzed.
The following table consolidates and summarizes all these assessment tables. It is sorted first by impact
category, then module name, and finally function name. The reference number for each assessment item
refers to the section number where the item first appears in Section 3.

REF# Function Name Impact

Category
Module Brief Description

R 3.1.4-1 CFP_MIDDLE_HORIZ (C) Critical APD Acceleration is assumed minor
over the segment and only one of
the end point position vectors is
used to check the separation.

R 3.4.17-3 GM_REGN (PL/I) Critical APD Accuracy of algorithm directly
related to the GM_TSTPNT
function.

R 3.4.27-1 ST_FINDARD (PL/I) Critical APD,
TJM

Closest approach point not on the
flight segment has an error in the
distance calculation.

R 3.3.1-1 CNV_GRD_TO_TAS (PL/I) Critical TJM Assumes small inertial path angle.
R 3.4.3-1 CNV_GRDSPD (PL/I) Critical TJM Assumes small path angle.
R 3.4.9-3 CNV_XYLL (PL/I) Critical TJM Approximates angles using a

power series.
R 3.2.2-1 EGRAD (PL/I) Critical TJM A small flight path angle is

assumed.
R 3.2.2-3 EGRAD (PL/I) Critical TJM Approximation in gradient

calculation.
R 3.4.23-1 ST_CLIMB_DIST (PL/I) Critical TJM Assumes altitude layer climb

gradients.
R 3.4.23-2 ST_CLIMB_DIST (PL/I) Critical TJM Assumes the aircraft’s climb

gradient factor supplied by the
AMC table.

R 3.4.24-1 ST_CLIMB_GRADIENT
(PL/I)

Critical TJM Assumes altitude layer climb
gradients and the IAS (or Mach) in
the ACC table.

R 3.4.25-1 ST_DESCENT_DIST (PL/I) Critical TJM Assumes altitude layer descent
gradients and the idle deceleration
rate.

R 3.4.25-2 ST_DESCENT_DIST (PL/I) Critical TJM Assumes descent gradient factor
supplied by the AMC table.

R 3.4.26-1 ST_DESCENT_GRADIENT
(PL/I)

Critical TJM Assumes altitude layer descent
gradients and the IAS (or Mach) in
the ACC table.

R 3.4.28-1 ST_IASALT (PL/I) Critical TJM Assumes true airspeed and
acceleration exist only in the
horizontal plane.

R 3.4.28-2 ST_IASALT (PL/I) Critical TJM There is no condition handler for
the case when there are zero real
roots returned for the quadratic
equation calculation.

 184

REF# Function Name Impact
Category

Module Brief Description

R 3.4.29-1 ST_MACHALT (PL/I) Critical TJM Assumes true airspeed and
acceleration exist only in the
horizontal plane.

R 3.4.29-2 ST_MACHALT (PL/I) Critical TJM There is no condition handler for
the case when there are zero real
roots returned for the quadratic
equation calculation.

R 3.3.12-4 TKM_GM_REGN(C) Critical TKM Accuracy of algorithm directly
related to the TKM_GM_TSTPNT
function.

R 3.3.13-2 TKM_GM_TSTPNT (C) Critical TKM Unprotected return case for an if
statement.

R 3.3.13-3 TKM_GM_TSTPNT (C) Critical TKM Potential division by zero problem
in code.

R 3.1.1-1 CFP_COARSE_HORIZ (C) Important APD Assumes aircraft in a hold are
stationary not flying a holding
pattern.

R 3.1.2-1 CFP_FINE (C) Important APD Approximates the velocity in the
relative velocity vector calculation
with average ground velocity.

R 3.1.2-2 CFP_FINE (C) Important APD Checks for the round off case
where the number of intersections
equals zero or the maximum ratio
is <=0.

R 3.1.2-3 CFP_FINE (C) Important APD The case where the P and Q
vectors are outside the octagon
and the GM_INSECS finds one
intersection is assumed round off
error.

R 3.1.4-2 CFP_MIDDLE_HORIZ (C) Important APD Assumes constant acceleration to
approximate the velocity in the
relative velocity vector calculation
with average ground velocity.

R 3.1.4-3 CFP_MIDDLE_HORIZ (C) Important APD Checks in place for floating point
rounding errors in CFP_POSIT,
which may cause failure of
algorithm.

R 3.1.5-1 CFP_MIDDLE_VERT (C) Important APD Round off problems have caused
errors due to single precision
accuracy as expressed in the
comments.

R 3.1.5-2 CFP_MIDDLE_VERT (C) Important APD Potential for incorrect number of
roots for particular geometric
situation returned by CFP_V_INT
(a sub-function call by the middle
filter).

R 3.1.5-3 CFP_MIDDLE_VERT (C) Important APD Assumes prior filter check for
equal adjusted interval cusp times.

REF# Function Name Impact

Category
Module Brief Description

 185

R 3.1.9-1 CFP_POSIT (C) Important APD Assumes constant acceleration
over the interval.

R 3.1.6-1 CFP_RELVEC (C) Important APD Assumes constant acceleration for
the segment.

R 3.1.8-1 CFP_V_INT (C) Important APD Algorithm uses an ε value to
define a time cutoff value of a
conflict.

R 3.1.8-2 CFP_V_INT (C) Important APD Both the aircraft altitude changes
and boundaries are assumed linear.

R 3.4.17-2 GM_REGN (PL/I) Important APD The choice of the cut off value for
the number of algorithm iterations
(nrpt=8).

R 3.4.18-1 GM_TSTPNT (PL/I) Important APD Difference in ε and pntsep
variable distances between C and
PL/I version.

R 3.4.18-2 GM_TSTPNT (PL/I) Important APD Difference in the TKM C version
of the algorithm and the PL/I
version, pntsep value was not
used in C version.

R 3.4.22-1 ST_CHK_VP (PL/I) Important APD Linear interpolation is used to
estimate the specific coordinates
of each intersection point.

R 3.4.22-2 ST_CHK_VP (PL/I) Important APD Small parameter distances are used
to assume intersection points are
alike.

R 3.4.3-2 CNV_GRDSPD (PL/I) Important TJM Uses large cross wind
approximation.

R 3.4.6-2 CNV_SPEED (C) Important TJM Models subsonic airspeeds only.
R 3.2.2-2 EGRAD (PL/I) Important TJM Approximation in ground speed

calculation.
R 3.4.21-1 ST_ARD_SSGDATA (PL/I) Important TJM Assumes a constant acceleration

over the entire length of the
segment.

R 3.4.28-4 ST_IASALT (PL/I) Important TJM There are no monitors to
determine the number of
“unattainable conditions” that
occur when altitude constraints are
exceeded.

R 3.4.29-4 ST_MACHALT (PL/I) Important TJM There are no monitors to
determine the number of
“unattainable conditions” that
occur when altitude constraints are
exceeded.

R 3.4.32-1 ST_TIME_SSGDATA (PL/I) Important TJM Assumes ground speed remains
constant if true airspeed remains
constant.

R 3.4.32-2 ST_TIME_SSGDATA (PL/I) Important TJM Does not protect against division
by a zero segment length.

R 3.4.34-1 ST_XYTOTIME (PL/I) Important TJM Assumes a constant ground speed
acceleration.

REF# Function Name Impact

Category
Module Brief Description

 186

R 3.3.12-1 TKM_GM_REGN(C) Important TKM Algorithm efficiency difference
between TKM version and general
utility version

R 3.3.12-3 TKM_GM_REGN(C) Important TKM The choice of the cut off value for
the number of algorithm iterations
(nrpt=8).

R 3.3.13-1 TKM_GM_TSTPNT (C) Important TKM Difference in ε variable
distances between C and PL/I
version.

R 3.3.13-4 TKM_GM_TSTPNT (C) Important TKM Difference in the TKM C version
of the algorithm and the PL/I
version, pntsep value was not
used in C version.

R 3.3.15-1 TKM_TK_HDG (C) Important TKM The function does not protect
against a β1 value equal to zero in
a denominator.

R 3.3.15-2 TKM_TK_HDG (C) Important TKM Assumes all headings are with
respect to true North.

R 3.1.1-2 CFP_COARSE_HORIZ (C) Minor APD Since aircraft is assumed at a point
in a holding pattern, the strip
distance is calculated using a
slightly different perpendicular
line than the other cases.

R 3.1.1-3 CFP_COARSE_HORIZ (C) Minor APD Approximation of minimum
segment length to determine if
aircraft is in a hold.

R 3.1.1-4 CFP_COARSE_HORIZ (C) Minor APD Misleading comments for the
description of perpendicular
distances.

R 3.1.3-1 CFP_INTERSECT_TIME
(C)

Minor APD Assumes no acceleration is present
since only called for relative
velocity calculation.

R 3.1.4-4 CFP_MIDDLE_HORIZ (C) Minor APD The dot product of V is not the
normal of the velocity vector. It is
the squared magnitude of the
relative velocity vector. Comment
needs adjustment.

R 3.1.6-2 CFP_RELVEC (C) Minor APD Assumes current relative velocity
vector if no acceleration is present.

R 3.1.7-1 CFP_TRIM (C) Minor APD Assumes all aircraft segments that
enter algorithm have overlapping
time intervals.

R 3.1.7-2 CFP_TRIM (C) Minor APD All accuracy and calculation
specifically carried in CFP_POSIT
algorithm.

R 3.1.8-3 CFP_V_INT (C) Minor APD The variable names, zll, zl1, zul,
and zu1, are very difficult to
distinguish between when
reviewing the code.

REF# Function Name Impact

Category
Module Brief Description

R 3.4.14-1 GM_CONVEX (C) Minor APD Comment is incorrect and needs

 187

correction.
R 3.4.15-1 GM_INSEC (C) Minor APD Assumes the coordinates are only

positive.
R 3.4.15-2 GM_INSEC (C) Minor APD Floating point adjustments need

documentation for the function.
R 3.4.17-1 GM_REGN (PL/I) Minor APD The ε value provides the ratio of

the segment distance which
considers a random point is on the
polygon.

R 3.4.22-3 ST_CHK_VP (PL/I) Minor APD A consistent global variable
should be used as the small
parameter distance

R 3.4.3-3 CNV_GRDSPD (PL/I) Minor TJM Approximation in derivation of
ground speed.

R 3.4.4-1 CNV_LLXY (PL/I) Minor TJM The point being converted is
sufficiently near the point of
tangency.

R 3.4.4-2 CNV_LLXY (PL/I) Minor TJM The function unnecessarily
calculates the cosφ0g and cosφg .

R 3.4.4-3 CNV_LLXY (PL/I) Minor TJM The check for bounds on the
cosine function is unnecessary.

R 3.4.4-4 CNV_LLXY (PL/I) Minor TJM The conformal latitude of the point
of tangency can be a stored value.

R 3.4.6-1 CNV_SPEED (C) Minor TJM Assumes no instrument error.
R 3.4.6-3 CNV_SPEED (C) Minor TJM Air flow is isentropic and

compressible.
R 3.4.7-1 CNV_STD_ATMOS (PL/I) Minor TJM Approximates the gravitational

acceleration as a constant,
independent of altitude.

R 3.4.7-2 CNV_STD_ATMOS (PL/I) Minor TJM Assumes that the geopotential
altitude will not exceed 82021 ft.

R 3.4.9-1 CNV_XYLL (PL/I) Minor TJM The conformal latitude and
colatitude of can be calculated
only once and stored.

R 3.4.9-2 CNV_XYLL (PL/I) Minor TJM The variable names ALPHA and
DLATC are used for multiple
variables.

R 3.4.9-4 CNV_XYLL (PL/I) Minor TJM It is assumed that neither the point
being converted nor the point of
tangency are at the north pole.

R 3.4.16-1 GM_PTLINE (PL/I) Minor TJM Assumes larger line segment for x.

 188

REF# Function Name Impact

Category
Module Brief Description

R 3.4.28-3 ST_IASALT (PL/I) Minor TJM The function will not model
aircraft trajectories above 60,000
ft or below 0 ft.

R 3.4.29-3 ST_MACHALT (PL/I) Minor TJM The function will not model
aircraft trajectories above 60,000
ft or below 0 ft.

R 3.3.12-2 TKM_GM_REGN(C) Minor TKM The ε value provides the ratio of
the segment distance which
considers a random point is on the
polygon.

4.4 Suggested Improvements
It is expected that with prototype code there will be areas of dead code, lack of proper error trapping,
inconsistent variable definitions, inaccurate source code comments and even some low impact logic errors.
While reviewing the source code of the URET D1.1 algorithms, several anomalies were observed and
recorded. This section lists the name of the source code modules where anomalies were observed, a brief
description of the anomaly, and recommended solutions (if any) to the problem. If the problem was also
described in the assessment table of the module, the reference number used in the assessment table is
included.

This section provides the developer an easy way to identify and trace any coding issues raised in this
report. It assumes that the reader has some knowledge of the concepts in these functions and its code
structure. For a more detailed description of each of the referenced source code modules, refer to Section
3.

4.4.1 CFP_COARSE_HORIZ
There are misleading comments and documentation description of Case 2 and 3 perpendicular distance.
The numerators: Z3, Z4, H3, and H4 are not equivalent to Case 1 perpendicular, but defined as the adjacent
side of the right triangle (i.e. A1 to P to B1). The code needs more descriptive comments and
documentation for the use of the adjacent side distance. This comment addresses the code’s clarity and
readability not it’s performance. (See R 3.1.1-4)

4.4.2 CFP_MIDDLE_HORIZ
As suggested in the code’s comments, the Q dot Q should be checked and if either are less than m, the
function should result in a detected conflict. The comments suggest that only one vector check is
sufficient, however if round off problems are present both vectors should be checked against m. The
comments also state that the check is for the “norm” equal to zero, however the V dot V (vdotv variable) is
equivalent to the magnitude of the relative velocity squared not the normal vector. If this magnitude is
equal to zero, the position vectors P and Q should be equivalent, since there is no relative movement for
the time interval of the flight segment (the aircraft would be trailing or parallel). (See R 3.1.4-4).

4.4.3 CFP_V_INT
The variables should be renamed for better readability. For the definition of zll, zl1, zul, and zu1, the
variable names chosen are very difficult to distinguish between. For traceability and clarity changing the
names or using capitol letters would be much more appropriate. (See R 3.1.8-3)

 189

4.4.4 CNV_LLXY
(1) The points that can be stereographically projected from a sphere are limited to the hemisphere centered

on the point of tangency. The coordinate point being converted by the function must be within 90
degrees of the point of tangency. For robustness, the function should do this bounds check before
proceeding with the calculation of X and Y. (See R 3.4.4-2)

(2) The function unnecessarily calculates the cosine of the geodetic latitude of the point of tangency and

the cosine of the geodetic latitude of the point being converted. This code should be deleted. (See R
3.4.4-3)

(3) The bounds check on the cosine function is unnecessary because the bounds check has already been

run on the sine calculation. (See R 3.4.4-4)

4.4.5 CNV_SPEED
The code which determines the geopotential altitude in the beginning of this module is never used and
should be eliminated.

4.4.6 CNV_XYLL
(1) The calculation of the conformal latitude of the point of tangency of the stereographic plane by

CNV_LLXY and CNV_XYLL should be done only once for a given ARTCC and the results saved for
future use. (See R 3.4.9-2)

(2) Distinct variables should have distinct variable names. (See R 3.4.9-3)

(3) Neither the point of tangency of the stereographic plane nor a coordinate point being converted may be

at the north pole. The function should check its input data for these two cases.
 (See R 3.4.9-5)

4.4.7 GM_CONVEX
The method description listed in the comment section of the function states that the test point is inside the
polygon if the Q determinant is less than or equal to zero; the code does exactly the opposite. (See R
3.4.14-1)

4.4.8 GM_INSEC
(1) The function determines if the line equations for two lines are equivalent and thus collinear when the

sum of the x coordinates is equal to zero.

xs = x1 + x2 + x3 + x4 = 0

 For the x values to sum to zero, they either all must be zero or the variables must have both positive

and negative values. Unless there are other assumptions relating to the source of the x coordinates, the
sum and the equivalent slopes do not ensure that the lines are collinear. This check may only be an
error trap for all zero values for the x coordinates and used for single precision arithmetic, but this
assumes all the x coordinates are positive (in the first quadrant). Therefore, there is no reason for
keeping this portion of the source code at this time.

 This is probably a minor impact in APD since the consequence may produce either a parallel or

collinear line which results in the same outcome in only one APD function call, the CFP_FINE
function. However, the impact of GM_INSEC’s assumptions on other module’s functions is yet to be
determined. (See R 3.4.15-1)

 190

(2) In GM_PTLINE, another approach was used to calculate the intersection point to a line. In summary,
GM_PTLINE uses the point slope equation of the line to find the intersection point. A ratio was not
used in this algorithm to determine if the intersection took place inside the line segment, but a simple
check in the x coordinates was utilized. Since both approaches accomplish the same results, the
simpler, more efficient approach should be the only method used (probably the GM_PTLINE
approach).

(3) The check for the intersection of the lines, the check for parallel/collinear line pairs, and the final

determination of the intersection point all incorporate adjustments to minimize the effect of floating
point arithmetic error in single precision. The problem is that these adjustments are undocumented in
the code. This function needs more documentation or comments explaining these adjustments. (See R
3.4.15-2).

4.4.9 GM_PTLNE
The source code which accounts for the case when the line segment is determined to be neither vertical or
horizontal, checks if the intersecting x value falls within

() ()

() ()

x x x

x x x

1 2

2 1

1 1

1 1

− ≤ ≤ +

− ≤ ≤ +

int

int

or

This assumes a larger line segment in the x dimension than what actually exists. This was done to correct
for the inaccuracy of the single precision assignments. Future revisions of this module should use only
double precision and eliminate the extensions the x dimensions. (See R 3.4.16-1).

4.4.10 ST_CHK_VP
The small parameter value 1000 feet / 10 seconds should be defined by a global (or shared) variable to be
consistent with other algorithms and improve the readability of the code. (See R 3.4.22-3).

4.4.11 ST_FIND_ARD
An incorrect statement was found in the code. For the second loop where the GM_PTLINE found the
closest approach point not on the flight segment, the distance calculation for the first end point has an error.
The second term for the y dimension of the first end point in the code is listed as y2 where it should be y1.
The result of this error could return an incorrect ARD by as much as one segment length, since the
minimum and maximum ARD values restricts the search. This may not cause a current problem in APD
and TJM since all calls are from ST_CHK_VP which never result in a calculation in the second loop. (See
R 3.4.27-1).

4.4.12 ST_IASALT
(1) This function assumes that true airspeed and acceleration exist completely in the horizontal plane and

have no component in the vertical dimension. This assumption is probably made because the
descent/ascent angles are usually small resulting in very small vertical velocity and acceleration
components. However, there are cases when the angle of climb or descent is significant (i.e. as much
as 25°). By ignoring the vertical component of true airspeed and acceleration, these values could be in
error by as much as 6%.

The solution to this anomaly is to address the vertical and horizontal components of true airspeed
separately. The angle of descent or ascent is simply a trigonometric function of the gradient.

 ()φ = arcsin g

 191

The horizontal and vertical components of true airspeed are then expressed as

 vertical: ()Vt sin φ

 horizontal: ()Vt cos φ

This approach should also be used when the acceleration, a, is calculated. Acceleration could then be
expressed in both horizontal and vertical components, ah and av, respectively. Subsequently, the
equation which determines the test altitude would be written as

 ()h h V t a t gt t h= + +





cos φ 1
2

2

 (See R 3.4.28-1).

(2) This function calls the GM_QUADRATIC function to determine quadratic coefficients.

GM_QUADRATIC returns the number of real roots (either 1, 2 or 0) and the corresponding values.
ST_IASALT will then use the smallest, non-negative root as the test time, t, however there is no error
condition handler here if GM_QUADRATIC returns 0 real roots. This error could cause an infinite
loop since the variable TT would never change its value. It may be feasible for this condition to exist
for a slow, decelerating aircraft climbing several thousand feet (i.e. practicing stalls), where

()

V a
h h

gt
t2 2<

−

 (See R 3.4.28-2)

(3) The function contains error trapping routines that check for impossible situations, such as a climbing

aircraft exceeding its maximum allowable altitude or a descending aircraft going below an altitude of
0. If either of these conditions are true, it makes the determination that the target IAS is unattainable
with the given constraints and terminates the function. The last ht and t that were calculated are then
returned from this function. It should be noted that this “unattainable condition” does not record an
error code. Therefore it is unknown how many times this situation takes place. (See R 3.4.28-4)

4.4.13 ST_TIME_SSGDATA
(1) In the beginning comments of this module, under outputs, the description for FOUND states “Indicates

whether the ARD exists on Route”. This should say “Indicates whether the XTIME exists during the
route”.

(2) There are areas in this module which do not protect against dividing by zero. This is a software

(robustness) issue which could cause processing errors under the proper conditions. (See R 3.4.32-2)

(3) If the True Airspeed acceleration is equal to zero

Vt

φ

h

x

Vt cos(φ)

Vt sin(φ)

 192

 If at = 0 ,

Then assign the ground speed and true airspeed at the first cusp of the state segment equal to the
ground speed and true airspeed at the given time.

 Then

 V Vg g= 1

 V Vt t= 1

This appears to be an incorrect assumption. If the true airspeed acceleration is zero, the ground speed
could still change over the segment because of changes in wind. The ground speed should be
calculated with the ground speed acceleration calculated earlier in the code (i.e. Equation 3.4.32-1).
A more accurate, however more processing intensive, method would be to use the same true airspeed
along with the DB_AIR_AT_POINT, GM_BRNG, and CNV_GRDSPD functions to calculate the
exact ground speed at the given time with the known wind conditions.

4.4.14 TKM_GM_REGN
The function converted from the earlier PL/I version is less efficient than the earlier code and may need
further investigation on how it was reprogrammed in C. The original PL/I version of this function was
written to only generate additional random points if an intersection was found too close to the end point.
This function always runs nrpt times n iterations, while the PL/I version runs a maximum of nrpt times n
iterations. This delta between the two versions will not effect the accuracy of the code, since only one
random point sufficiently outside the polygon can be utilized to determine if the test point is inside the
polygon. If all nrpt random points are generated, the result is the same, however, the code efficiency
would be improved if only one were used. (See R 3.3.12-1)

4.4.15 TKM_GM_TSTPNT
The following items highlight some of the deficiencies when the code was converted from PL/I to C.

(1) If the test point is less than a distance pntsep from the given line, the point is evaluated to be between

the end points of the given line segment. However, the line is extended by ε for the TKM version of
GM_TSTPNT in C, but for the PL/I version the line segment is extended only by pntsep. The pntsep
value is 1 foot and the ε value is 100 feet. The transfer from C to PL/I will provide different results
not because of coding in a different language, but because different comparison values are used. An
investigation into the potential reasons for the change are necessary. (See R 3.3.13-1).

(2) For each check (includes three in this function), the “else return(false);” should be added to protect

against an undetermined return from the function. For example, the last case where the distance
equation returned a value of zero because the test point is collinear with the line, the result will end the
function without specifically assigning the value FALSE. The specific compiler by default may or
may not assign a zero value (which will return the correct value) or the return value may be
reinitialized before the call to this function, but this is not sufficient for portable ANSI C code.
(NOTE: The original PL/I version was written differently to protect under this case.)

 (See R 3.3.13-2)

(3) As a result of the unprotected return in the function for the horizontal line case, a horizontal line

checked against a point outside the endpoints of the line segment but on the line will return a division
by zero (s1 = 0.0 while s2 will be in error…). The corresponding problem is present for the vertical
case as well. The original PL/I version had goto statements to protect under this case. This is not
necessary, but a simple “else statement” with a return of false would protect against the problem. (See
R 3.3.13-3).

 193

(4) The check carried out to determine if a point is between the end points of the line segment when the

line segment is either vertical or horizontal uses the pntsep value to extend the lines under the PL/I
version but not for the C version here. It is actually more accurate not to use the pntsep value, but this
may cause errors due to round off during floating point arithmetic. Therefore, an investigation is
required to determine why this was not used in this function. (See R 3.3.13-4).

4.4.16 TKM_TK_HDG
The function does not protect against a β1 value equal to zero in the denominator of the inverse tangent
function. This code could cause a floating point error while processing. (See R 3.3.15-1).

4.4.17 TKM_GET_RTE_ORS
The function never uses the ORS_OFFSET value which is supplied as an input.

4.4.18 UTL_XY_ARD_BY_RTE
The source code comments and name of this function are misleading. The function does not calculate the
ARD at the x, y position. It only computes the minimum distance from the given point to any point along
the original route (RTE_ORS).

4.5 Conclusions
This document reports the results of an assessment of the core algorithms found within the URET D1.1
source code. The source code of the algorithms that were assessed was found to be based on sound
engineering principles. The assumptions and approximations made by MITRE/CAASD are reasonable for
the current prototype software requirements.

Since the scope of this assessment was scaled back to an analytic assessment of the algorithmic source
code modules, there is no empirical data derived from simulations or live data to validate the algorithms12.
Therefore, the assumptions and approximations should still be independently validated with a stringent set
of simulations and live data tests to ensure the robustness and accuracy of the algorithms (e.g., Many
assumptions have been made in the design of the URET trajectory prediction algorithms. These
assumptions need to be validated by comparing the URET-predicted aircraft trajectories with the actual
aircraft tracks reported by the HCS under a variety of scenarios).

The information provided by this report is valuable information to both the developer of the URET
prototype and a production contractor. Section 3 bridges the documentation gap between the source code
and existing software design and algorithmic definition documents. While the high level algorithmic
functions were adequately documented by MITRE/CAASD, there are many algorithmic details not covered
in the prototype documentation that cannot be easily derived by reading the source code. ACT-250’s
assessment approach of reviewing, analyzing, and often re-deriving the algorithm’s mathematics revealed
many of these undocumented assumptions and approximations; these details are now documented in this
report. Sections 4.1 and 4.2 outline URET D1.1 limitations and assumptions, and Section 4.4 identifies
suggested improvements to specific source code modules.

This report should be used as a source for any future independent assessments of the URET algorithms;
particularly for sensitivity or algorithmic accuracy assessments. The assessment of the design and

12 However in some cases during the assessment, several algorithms were rewritten in the C language.
Limited unit testing was performed to validate the following functions: CNV_LLXY, CNV_XYLL,
ST_MACHALT, ST_IASALT, CFP_POSIT, CFP_V_INT, CNV_SPEED, GM_REGN, GM_TSTPNT,
ST_FINDARD, GM_CONVEX, GM_INSEC.

 194

implementation of the algorithms should be completed for the current version of the URET prototype and
this version of the software should be rigorously tested.

 195

Appendix A: Simulation Experimentation

A.1 Simulation Environment
The URET system installed in the TATCA/AERA laboratory is depicted in Figure A.1-1. This system is
functionally equivalent to the URET system installed at ZID, except that the TATCA/AERA laboratory
URET system is a “scaled down version” of the fielded URET system. Specifically, the printer and
interface to the National Weather Service depicted in Figure A.1-1 are not included, and only a subset of
the full complement of workstations installed at ZID are contained in the laboratory (a system control
position, a system supervisor position, and two sector controller positions (there are up to eight of these
positions at ZID)). The URET system is interfaced to the Host Computer System (HCS) at the Technical
Center via the same interface being used at ZID: the General Purpose Output (GPO) Interface Unit
(GPOIU) with the associated HCS software patch.

A.2 Simulation Approach
A rigorous and efficient method of examining the effect of certain independent variables on one or more
dependent variables can be accomplished by a well designed experiment. The designed experiment is
achieved by manipulating the independent variables and studying the effect on the dependent variables. In
ACT-250’s planned simulation experiment, the independent variables were the major factors associated
with the assumptions and approximations which were identified as Critical to the algorithms during the
algorithmic analysis (summarized in Section 4.3). The dependent variables are expressed by the
performance measure under consideration. A test matrix (see Table A.2-1) was developed based upon
these independent variables and would be used to design simulation scenarios to either verify or contradict
these assumptions and approximations (see Section A.2.1.2). For example, to study the performance of the
trajectory model algorithm (TJM) the difference between the trajectory predicted position of the aircraft
and the actual track reporting point (defined as the track-to-trajectory deviation) is a measure of the
performance. The smaller the value of the track-to-trajectory deviation, the better the performance of
URET TJM.

Special types of designed experiments, called factorial experiments, are very useful in the analysis of a
system’s performance. One of these is the factorial design with two response levels for each factor, usually
at the extreme high and low levels of the factor. The factorial design would be used to determine the
statistically significant factors on response variables and to estimate the average quantitative effects of
these factors in terms of the performance variable. To minimize the amount of simulation runs and
maximize the information gained by these runs, various factorial designed experiments would be applied to
examine identified factors relating to several performance variables (refer to Section A.2.1.2).

Based on the test matrix (Table A.2-1), ACT-250 planned to design a set of test flight tracks to demonstrate
the functions of the URET algorithms and to determine the robustness of the algorithms if the
approximations and assumptions were tested using the extremes of the expected tolerances. A simulation
capability would create the simulated aircraft tracks which would then be provided from the Technical
Center HCS to the URET system in the TATCA/AERA laboratory via the GPOIU. The HCS would be run
using the ZID system build in use with URET D1.1. The simulation-generated tracks would be the
baseline “truth” during the simulations. All URET generated trajectories, reconformances, problem
detections, etc. would be recorded and compared to the baseline simulation-generated tracks.

 196

Figure A.1-1: TATCA/AERA Laboratory URET Configuration

 197

REF# Impact

Category
Affected
Algorithm

Relevant
Factor:

 Description of Misc.

 Gradient Inertial
Path
Angle

Accel Speed

Altitude
Range

Flight
State

Misc

R 3.1.4-1 Critical APD x

R 3.3.1-1 Critical TJM x x

R 3.4.3-1 Critical TJM x x

R 3.4.9-3 Critical TJM x approximation of angles

R 3.2.2-1 Critical TJM x x

R 3.2.2-3 Critical TJM x x

R 3.4.17-3 Critical APD x approximations associated to lower
level algorithms (i.e. whether point
is on a line)

R 3.4.23-1 Critical TJM x

R 3.4.23-2 Critical TJM x

R 3.4.24-1 Critical TJM x

R 3.4.25-1 Critical TJM x

R 3.4.25-2 Critical TJM x

R 3.4.26-1 Critical TJM x

R 3.4.27-1 Critical APD,
TJM

 x along route distance calculation

R 3.4.28-1 Critical TJM x x

R 3.4.28-2 Critical TJM x zero routes in quadratic equation

R 3.4.29-1 Critical TJM x x

R 3.4.29-2 Critical TJM x zero routes in quadratic equation

R 3.3.12-4 Critical TKM x approximations associated to lower
level algorithms (i.e. whether point
is on a line)

R 3.3.13-2 Critical TKM x unprotected return case

R 3.3.13-3 Critical TKM x potential division by zero

NOTE: This matrix contains only the assessment items considered as critical under their impact category. This is presented as an
example only. If both the important and minor items were presented, they would have provided additional relevant factors (e.g. flight
state, altitude range, etc.).

Table A.2-1 Assessment Matrix

 198

A.2.1 Simulation Design and Scenarios Development Example
The following provides an example of the structured simulation scenarios which could be designed to
exercise various aspects of the URET algorithms. There were two approaches planned for this assessment:
Section A.2.1.1 presents an example of specific scenarios planned to validate and/or contradict referenced
assessments considered to be Critical and the method by which the algorithms’ performance was to be
measured. Section A.2.1.2 describes a classical 2 level factorial experiment that could be conducted to
measure the system responses to variations in global independent variables.

The basis for modeling these simulations is depicted in Table A.2-1, which is a collection of all of the
critical items from the assessment tables defined in Section 3 and lists the important factors associated with
the system.

A.2.1.1 Test Design Example for the HRB Function*

A.2.1.1.1 Definition
The Trajectory Modeler (TJM) routine Horizontal Route Analysis Step B (HRB) builds the remaining
horizontal route segments from the current position of the aircraft. This routine is called when an aircraft
is laterally reconformed and a new trajectory must be calculated or a request for direct routing is submitted
in the form of a trial plan.

In the case of a lateral reconformance, HRB will create a horizontal trajectory from the current position of
the aircraft to the next horizontal route segment which is at least a minimum “join” distance (50 nmi) from
the current position and a “rejoin” angle less than a maximum “join” angle (15 degrees). However, HRB
will not bypass a fix with a delay.

* Note: The following test design was based on URET Version D1.A of the HRB function. There are
significant changes to this function in D1.1, and the associated revisions are still being developed.

30 nmi

50 nmi

Track Report, out of
conformance

Trajectory

Conformance
Bounds

TKM finds the current track position “out-of-
conformance” along the associated horizontal
trajectory segment.

30 nmi

50 nmi

Track Report

Previous
Trajectory

New
Trajectory

HRB rebuilds a new trajectory originating
from the current position and joins with the
previous trajectory at least 50 nmi away and
an angle less than 15 degrees.

Join angle less
than 15°

Cusp

 199

A.2.1.1.2 Example Development of Flight Track Scenarios

A.2.1.1.2.1 Validate the algorithm
A test flight track would be designed to validate that the algorithm functions as specified. A test would be
designed to demonstrate the lateral reconformance utility of the HRB function. A simulated flight route
would purposely deviate from its filed route and would head directly to the next down-route fix. (1)

A.2.1.1.2.2 Assumptions
 1) The out-of-conformance aircraft would head to the next down-route fix
 that is greater than 50 nmi from the current position and a join angle less
 than 15 degrees.

 Implications: a) The aircraft would not head directly to a fix less than
 50 nmi from the current position 50 nmi from the
 current position. (1a)
 b) The aircraft would not head directly to a down-
 route fix which is farther than the next down-route
 fix that is more than 50 nmi from the current
 position and a join angle less than 15 degrees. (1b)
 c) The aircraft would not join a route at a down-route
 fix if the join angle is greater than or equal to 15
 degrees. (1c)
 d) There is a down-route fix greater than 50 nmi
 from the current position (1d)
 e) There is a down-route fix with a join angle less
 than 15 degrees. (1e)
 f) There is a down-route fix greater than 50 nmi
 from the current position and a join angle less
 than 15 degrees. (1f)

A.2.1.1.2.2.1 Simulate Contradictions to the Assumptions
A separate simulated flight path would be created to contradict each of the implications derived from the
assumptions. These tests would determine if the algorithms were robust enough to recover if an
assumption is untrue.

A.2.1.1.3 Simulated Flight Tracks

Sim # Description Involves Alg.

Set
Tests

Assumption
Verifies or
Contradicts

Assumptions
S1 Sim. To verify the algorithm,

assumption 1
TJM, TKM 1 Verify

S1a Sim. To contradict assumption 1a TJM [HRB] 1a Contradict
S1b Sim. To contradict assumption 1b TJM [HRB] 1b Contradict
S1c Sim. To contradict assumption 1c TJM [HRB] 1c Contradict
S1d Sim. To contradict assumption 1d TJM [HRB] 1d Contradict
S1e Sim. To contradict assumption 1e TJM [HRB] 1e Contradict
S1f Sim. To contradict assumption 1f TJM [HRB] 1f Contradict

Table A.2-2: Simulation Tests for the Trajectory Modeler (TJM) Horizontal Route Analysis
Step B (HRB) function when it is invoked because of a Reconformance

S1. Simulation to validate the algorithm.

 200

Input to the HOST a flight plan with a filed route which traverses a known set of fixes (i.e.
..Fix1.Fix2.Fix3.Fix4..). Supply HCS simulation capability with the same flight plan but with an altered
route string (i.e. ..Fix1.Fix3.Fix4..). The filed flight plan in the HCS would be delivered to URET, and
TJM would create a trajectory using the flight plan information. However, the simulation capability would
supply the HCS with aircraft positions which correspond to the altered route string. Record when and
where URET determines the aircraft is out-of-conformance. Determine if URET creates a new trajectory
to the proper down-route fix . Figures AA.1-4 demonstrate this simulation.

S1 Route String
 ..Fix1.Fix3.Fix4..

S1a. Simulation to contradict assumption 1a. This would simulate an aircraft heading directly to a fix
(Fixa) which is less than 50 nmi from the current position. Fixa would be a fix only known to the
simulation capability.

S1a Route String
 ..Fix1.Fixa.Fix3.Fix4..

A.2.1.1.4 Measurements
Trajectory-to-track deviations would be calculated during every simulation as a performance measurement
of the Trajectory Modeler. Reconformances would also be recorded as a performance measurement of the
TKM.

Fix1 Fix2

Fix3

Fix4

Fig. AA.1. Filed Route and Trajectory

Fix1 Fix2

Fix3

Fix4

Fig. AA.2. Simulation Route

Fig.AA.3. Report is Out-of-Conformance

Fix1
Fix2

Fix3

Fix4

Conformance
Bounds

Simulation
Report

Fix1 Fix2

Fix3

Fix4
Simulation
Report

Fig. AA.4. New Trajectory

Figure AA.1 represents the filed route of the aircraft and the horizontal trajectory generated by URET
(the Baseline Flight Plan Route String). Figure AA.2 represents the simulated route which the
simulation capability will supply for the aircraft. Figure AA.3 shows an example of when the
simulation capability report will fall out-of-conformance. It is here that TKM should recognize the
deviation from the trajectory and ask HRB to regenerate a new trajectory. Figure AA.4 represents the
new trajectory HRB should generate for the aircraft.

 201

A.2.1.2 The Designed Experiment Approach
From the algorithm analysis described in Section 3, several factors were determined that may effect the
performance of the trajectory. For the initial simulation experiment, these factors would include the
acceleration of the aircraft, the gradient of the aircraft, the state of flight of the aircraft (i.e., turn in
horizontal, climb in vertical), and the altitude range of the trajectory. The factorial experimental design
described in Section A.2 should be applied (see Table A.2-3).

Factor Description Assessment References
(examples)

High Level Low Level

aircraft acceleration R 3.1.4-1, R 3.4.28-1,
R 34.29-1

maximum
acceleration for a/c

nominal acceleration
for a/c

aircraft gradient R 3.3.1-1, R 3.4.3-1,
R 3.2.2-1, R 3.2.2-3

maximum gradient nominal gradient

altitude range R 3.4.7-2, R 3.4.28-3,
R 3.4.29-3, R 3.4.29-4

> 50 FL < 50 FL

aircraft flight state general maneuver (i.e. turn,
climb, etc.)

level cruise

Table A.2-3: Definition of Factors and Levels

The experimental unit defines the measurement of the performance variable. The smallest experimental
unit is the measure of track-to-trajectory deviation during the transition state of the aircraft (i.e., turn,
climb, etc.). Since there may be multiple changes from one transition state to another during the flight,
several measures could be made on one aircraft trajectory. For the initial TJM experiment, replications of
each treatment combination could be achieved by utilizing information from several specific aircraft
trajectories.

The factorial design can be used to determine the statistically significant factors on the response variable
and to estimate the average quantitative effects of these factors in terms of the performance variable. This
experiment intended to use track-to-trajectory deviation for the primary response variable, but other
response variables were to be collected simultaneously, including:

• the number of false alerts and missed alerts for the APD algorithm
• the difference in absolute track data separation distances to the minimum trajectory-based aircraft

separation distance reported by APD
• the number of reconformances per dimension

The APD statistics could provide additional information without running more treatments (or flights in
URET). The actual experimental unit could be changed to include the entire trajectory, which would
change the number of degrees of freedom of the experiment, but this would not require additional
simulation runs.

The factors evaluated to be statistically significant could also be examined by estimating the average effect
on the response variable. The average effect by the acceleration factor could be estimated by using a
maximum acceleration rate compared to the nominal acceleration rate in all the treatment combinations.
The cause for these effects are related to the assumption and approximation associated to the particular
factor as determined in the algorithm analysis listed in Table A.2-1.

The specific mathematics involved with this factorial designed experiment are based on the model of the
randomized block design at two levels. Table A.2-4 defines the specific variables. The formula that

 202

follows is the mathematical model for a factorial experiment. This formula expresses the effects of the four
factors and interactions as 16 treatment combinations (24).

No. Factor Description Factor Variable Run Variable (at

high level)
1 aircraft acceleration A a
2 aircraft gradient B b
3 altitude range C c
4 state of flight D d

Table A.2-4: Factor/Level Key

Y A B C D AB AC AD BC BD CD ABC
ABD ACD BCD ABCD

ijkl j k l ij ik il jk jl kl ijk

ijl ikl jkl ijkl ijkl

i= + + + + + + + + + + + +

+ + + +

µ
ε

The 16 treatment combinations represent the specific combination of factors and levels that should be
performed in running the complete designed experiment. The treatment combinations, as well as the
coefficients for the effects, are listed in Table A.2-5. The coefficients are used to calculate the sum of the
squares for each contrast of the experiment13 (the contrast is a measure of the difference of a factor or
combination of factors from the high and low levels). The effect of a factor or interaction of several factors
is directly proportional to the contrast statistic. To calculate the contrast for the factor A, the results of the
16 treatment combinations were summed using the coefficients in the A column from Table A.2-5. The
sum of the squares are calculated by squaring the contrast and dividing it by the product of the number of
replications of each treatment by the number of treatments (2f, where f is the number of factors). As
illustrated in the ANOVA table (refer to Table A.2-6), the F statistic is calculated and compared to the
Cumulative F Distribution.

13 Using Yates Method, the computation for the contrast and effects is described in detail in Hicks,
Fundamental Concepts in the Design of Experiments, 1993.

 203

 Effect

Treatment
Combination

A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD

(1) -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1
a 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1
b -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1
ab 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
c -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1
ac 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1
bc -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1
abc 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
d -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1
ad 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1
bd -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1
abd 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
cd -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1
acd 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
bcd -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
abcd 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table A.2-5: Treatment Combinations Versus Effects

Source Degrees of

Freedom (dof)
Sum of
Squares

MS F

A 1 (contrast)2/2n4 SS/(dof) MS/error
B 1
AB 1
C 1
AC 1
BC 1
ABC 1
D 1
AD 1
BD 1
ABD 1
CD 1
ACD 1
BCD 1
ABCD 1
Error (n-1)(24)

Table A.2-6: ANOVA Table for a 4 Factor Factorial Designed Experiment

The simulation would provide the data for each treatment combination (Table A.2-6). The designed
experiment would provide the analysis tool to determine which factors and interactions significantly effect
the response variable. The example presented illustrates the application of a factorial designed experiment
to the assessment of the URET algorithms.

 204

Appendix B: LIST OF ACRONYMS

ACC Aircraft Control Characteristics
ACD Automated Conflict Detection/Aircraft Characteristics Directory
ACES Adaptation Controlled Environment System
ACT Active List
AERA Automated En Route Air Traffic Control
AMC Aircraft Modeling Characteristics
APD Automated Problem Detection
APDIA APD Inhibited Area
ARD Along Route Distance
ARTCC Air Route Traffic Control Center
ATC Air Traffic Control
ATM Air Traffic Management
AUD Aircraft Unique Data
BAS Blocked Airspace
CAASD Center for Advanced Aviation System Development
CD Clearance Directive
CFP Conflict Probe
CTS Central Track Store
ECB Environmental Conflict Box
ECP Environmental Conflict Probe
GPO General Purpose Output
GPOIU General Purpose Output Interface Unit
HCS Host Computer System
HDO Handoff
HRA Horizontal Route Analysis
HRB Horizontal Route Analysis Step B
IAS Indicated Airspeed
IFR Instrument Flight Rules
IPT Integrated Product Team
JRC Joint Resources Council
kts Nautical miles/hour
MDL Modeler
nm Nautical Miles
NPB Nominal Profile Builder
ORS Onboard Route Segment
PA Planned Action
PAR Preferred Arrival Route
PDAR Preferred Departure Arrival Route
PDR Preferred Departure Route
RPM Replan Manager
SSG State Segment
SUA Special Use Airspace
TAS True Airspeed
TATCA Terminal Air Traffic Control Automation
TJM Trajectory Modeler
TK Track
TKM Track Management
UPR User Preferred Routing
URET User Request Evaluation Tool
ZID Indianapolis ARTCC

 205

REFERENCES

MITRE/CAASD Documentation

AERA Algorithmic Specifications: Flight Plan Conflict Probe, Volume 3, Rationale and Mathematical

Derivations of Algorithmic Enhancements (MTR83W152-03), Frolow & Hannet, 1/85

AERA Algorithmic Specifications: Trajectory Estimation (MTR83W152), J. A. Kingsbury, 9/83

AERA Automated Problem Detection (APD) Algorithmic Definition (draft), M. Ricker, 6/95

AERA Smoothing and Prediction (F042-M-003), D. Brudnicki, 1/95

AERA Track Management Algorithmic Definition (draft), D. Brudnicki, 5/95

AERA Trajectory Modeling Algorithmic Definition (draft), P. S. Johnson, 5/95

AERA Trajectory Modeling Algorithmic Guidance Document (draft - F042-M-186), P. S. Johnson,

11/21/94

Algorithm Evaluation Capability (AEC) Evaluation Plan (F022-L-010), D. Brudnicki, 3/9/95

AEC Set 1 Report (F022-L-042), D. Brudnicki, 8/7/95

AEC Set 2 Report (F022-L-504), D. Brudnicki, 10/9/95

AEC Set 3 Report (F022-L-521), D. Brudnicki, 3/25/96

Description of AERA Trajectory Modeling (F042-M-124), P. S. Johnson, 8/15/94

Performance Analysis Results for the User Request Evaluation Tool (MTR96W0000066), W. C. Arthur et.

al., 8/96

Track Manager (TKM) Detailed Design (F042-M-017), M. Tucker, 2/3/95

URET Adaptation Data Definition (MTR96W0000078), J. T. Cochrane, Jr. et. al., 9/96

URET Automated Problem Detection Algorithmic Definition DRAFT (MTR96W0000038), Dr. M. Ricker,

9/96

URET Delivery Version 1A System Data Structures Overview (F022-M-551), D. E. Bellamy & W. Poteat,

12/22/95

URET Delivery 1 System Segment Specification (WN95W0000078), J. Celio & S. Schultheis, April 1995
 (and Change Packages - 7/10/95 & 9/18/95)

URET Delivery 1A Track Manager (TKM) Subsystem SW Design ((F022-M-575), C. V. Fong, 1/30/96

URET Delivery 1A Automated Problem Detection (APD) Subsystem SW Design (F022-M-576), C. V.

Fong, 1/30/96

 206

URET Delivery 1A Trajectory Modeler (TJM) Subsystem SW Design (F022-M-570), J. Summers, 1/23/96

URET Delivery 1A High Level Subsystem Description (F022-M-554), V. Fong, 12/27/95

URET Delivery 1A System Event Thread Charts (F022-M-556), E. L. Williams, 12/20/95

Environment Builder User’s Guide for URET Delivery 1 (F022-M-523), J. A. Summers, 11/13/95

URET Delivery 1A Replan Manager (RPM) Subsystem SW Design (F022-M-562), B. C. Giller, 12/20/95

URET Delivery 1A System Segment Specification (WN95W0000078-R), J.C. Celio et. al, 1/96

URET Delivery 1.1 System Testing: Test Report (WN96W0000066), R. Katkin, 7/96

URET Trajectory Modeling Algorithmic Definition Draft (MTR 96W-DRAFT), D. L. Bashioum & J. J.

Mayo III, 6/96

URET Trajectory Modeling Algorithmic Definition (MTR 96W0000072), D. L. Bashioum & J. J. Mayo III,

9/96

URET with DSR System Level Requirements Draft (MTR-96W-0000049), J. C. Celio et. al., 7/96

Other Documentation

NAS-MD-312, National Airspace System Configuration Management Document, Route Conversion and

Posting, U. S. Department of Transportation, Federal Aviation Administration.

NAS-MD-312, National Airspace System Configuration Management Document, Multiple Radar Data

Processing, U. S. Department of Transportation, Federal Aviation Administration.

Anderson, John D. Jr., Introduction to Flight, Third Edition, McGraw-Hill, 1989.

Draper, N. and Smith, H., Applied Regression Analysis, Second Edition, New York, NY.: John Wiley and

Sons, 1988, Chapter.

Hicks, Charles, R., Fundamental Concepts in the Design of Experiments, Fourth Edition, Saunders College

Publishing, 1993.

Montgomery, Douglas C., Introduction to Statistical Quality Control, Second Edition, John Wiley and

Sons, Inc., 1991.

