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Abstract 

Traffic flow management (TFM) in the U.S. is the 
process by which the Federal Aviation Administration 
(FAA), with the participation of airspace users, seeks to 
balance the capacity of airspace and airport resources 
with the demand for these resources.  This is a difficult 
process, complicated by the presence of severe weather 
or unusually high demand.  TFM in en-route airspace is 
concerned with managing airspace demand, specifically 
the number of flights handled by air traffic control 
(ATC) sectors; a sector is the volume of airspace 
managed by an air traffic controller or controller team.  
Therefore, effective decision-making requires accurate 
sector demand predictions.  While it is commonly 
accepted that the sector demand predictions used by 
current and proposed TFM decision support systems 
contain significant uncertainty, this uncertainty is 
typically not quantified or taken into account in any 
meaningful way.  The work described here is focused 
on measuring the uncertainty in sector demand 
predictions under current operational conditions, and on 
applying those measurements towards improving the 
performance and human factors of TFM decision 
support systems.   
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Background 

The Role of Demand Predictions in TFM 

Traffic managers have many options when trying to 
address excess demand on a resource.  For excess 
airport demand, a ground delay program is often used, 
in which arrival “slots” are rationed among airspace 
users, and flights are assigned delayed departure times 
such that available arrival capacity will be efficiently 
used.  En route sector congestion, resulting from 
unusually high demand or when available airspace is 
limited due to hazardous weather, can be controlled 
several ways.  Flights can be rerouted around hazardous 

weather and/or congested areas.  Access to airspace can 
be limited by imposing miles-in-trail (MIT) restrictions 
at the airspace boundary, by applying ground delay, or 
in extreme cases by halting departures to some 
destinations (ground stop). 

Decision support tools for TFM, therefore, must 
provide predictions of resource demand.  Ideally, 
predictions should be provided based both on the 
current traffic situation and on proposed traffic 
management strategies, so that candidate solutions can 
be developed and compared.  For example, the 
Enhanced Traffic Management System (ETMS)1 used 
in the U.S. National Airspace System (NAS) provides 
real-time resource demand estimates based on predicted 
aircraft trajectories.  In the near future, ETMS will be 
capable of predicting resource demand as it would be 
affected by proposed reroute strategies2, and research 
continues towards more sophisticated strategy impact 
assessment capabilities.3,4 

What is Airspace Demand? 

Airspace demand can be literally defined as the number 
and distribution of airspace users – aircraft – that seek 
to use a chunk of airspace (typically, a single ATC 
sector).    A slightly more detailed definition is required 
in the context of real-time TFM decision support.  The 
ideal demand estimate for traffic managers would 
provide the expected number of aircraft in a sector at a 
specific future time, and be based initially on best-
known aircraft intent in the form of flight plans or, 
failing that, flight schedules.  It would include the 
impact of TFM decisions that have already been made, 
but assume that no further actions will be taken and that 
sectors have infinite capacity.   In other words, the 
demand prediction should indicate what would happen 
in a sector if, from this moment forward, no TFM or 
ATC actions were taken to control capacity.  This 
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estimate provides the basis for choosing those actions 
required to keep sector loads within capacity. 

An important consequence of this definition is that it is 
difficult to determine the accuracy of demand 
predictions using recorded sector load data.  For 
example, it may be accurate to predict, one hour in 
advance, that a sector will contain 10 more aircraft than 
its capacity allows.  However, it is likely that, when the 
timeframe of interest arrives, the actual sector 
occupancy will be at or near the capacity value.  TFM 
or ATC actions will have been taken to maintain safe 
sector loading; in fact, they may have been taken as a 
direct result of the +10 demand prediction.  Therefore, 
it is incorrect to compare the one-hour demand 
prediction to the actual sector loading to determine 
“prediction error.”  In short, the quantity being 
predicted – sector demand – doesn’t actually occur, so 
there is no “truth” data against which to calculate 
prediction error.  Alternate methods must be employed; 
one such method was developed for this study. 

Sector Load Predictions in the NAS 

The ETMS provides demand predictions for most 
National Airspace System (NAS) sectors in 15-minute 
bins, for prediction look-ahead times (LAT) of several 
hours.  This information is available for particular 
sectors by user request, or (as of November 2002) in a 
collected form on a Sector Count Monitor (SCM) 
display as illustrated in .  Note that this 
screenshot was taken from the MITRE/FAA 

Collaborative Routing Coordination Tools (CRCT) 
prototype,3 which was used to develop this display prior 
to implementation in the ETMS. 

Each box in the SCM matrix represents a 15-minute 
period, and the number in the box represents the 
maximum predicted traffic count for any single minute 
within that 15-minute span.  This value is often referred 
to as maximum instantaneous aircraft count (IAC) or 
simply “peak count” for the interval. The horizontal 
axis indicates increasing LAT (corresponding to 2000 
to 2245 UTC, in this case).  Each row of the matrix 
represents predictions for single sector (e.g. ZNY09).  
Next to the sector name are two sector alert thresholds 
(e.g. “18/18”), although currently, only one is used.  
This threshold is called the Monitor/Alert Parameter 
(MAP) and is compared to the peak count to determine 
whether a sector should be alerted. 

When the peak count is predicted to exceed the MAP 
for a sector, the corresponding box is colored yellow or 
red.   Red alerts indicate that, of the aircraft involved in 
the peak count, enough are already airborne to exceed 
the MAP even if pre-departure flights are not counted.  
Otherwise, the alert will be yellow. 

As previously mentioned, the ETMS uses predicted 
aircraft trajectories to predict sector load.  Many data 
sources are used in the prediction of aircraft 
trajectories.  These include filed flight plans, flight 
schedules and historical routes (for flights which have 
not yet filed plans), wind forecasts, track reports, 
aircraft performance characteristics, and many others.   
All of these data sources, and the trajectory models 
themselves, are uncertain, and therefore the demand 
predictions are uncertain.    

Figure 1

 
Figure 1:  NAS Sector Load Predictions.  This 

example shows predicted traffic demand in the New 
York ARTCC (ZNY). 

Why Measure Demand Prediction Uncertainty? 

While it is widely accepted within the traffic 
management community that sector demand predictions 
are uncertain, the magnitude of that uncertainty is not 
well-understood.  ETMS sector load predictions include 
a crude estimate of uncertainty, in that alerts are 
differentiated into “red” and “yellow” based on whether 
or not all the aircraft involved are airborne.  This is 
based on the assumption that departure time uncertainty 
is the largest source of uncertainty in the predictions.  
However, there are other uncertainty factors, and the 
yellow/red distinction does not consider how many of 
the aircraft involved in the over-capacity prediction are 
currently airborne.  Finally, the yellow/red distinction is 
purely relative.  It does not indicate, in an absolute 
sense, how uncertain the demand prediction is.   
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This information is important in decision making.  
What does a particular alert actually mean?  Given the 
deterministic traffic count data provided by current 
tools, it is difficult to judge the importance of taking 
action.  Intuition suggests that a predicted peak count of 
3 over the sector threshold is likely to indicate an 
actionable problem.  However, some uncertainty 
measure would greatly aid in making the decision.  For 
example, does the +3 prediction mean that there is an 
80% probability that the demand exceeds capacity, or a 
20% probability?   

It is an open research question whether it is desirable to 
present probabilities such as these directly to traffic 
managers. ATC personnel do think in terms of 
probability; in a human-in-the-loop simulation study by 
Masalonis et. al.,5 controllers were presented with 
hypothetical traffic situations and asked to rate the 
probability that they would take action to resolve a 
conflict.  Some participants used a full range of 
probabilities, depending on the situation, while others 
tended to provide probabilities of either 0% or 100% in 
most situations.  There was evidence of correlation 
between probability ratings and conflict severity.   

Even if probability is not directly presented, the 
automation's knowledge of the probability of an event 
of interest (for en route TFM, exceeding the MAP) can 
be used to modify alerting thresholds and symbology to 
better convey the uncertainty of predictions, as is done 
by color-coding in the ETMS.  This strategy is also 
used in the User Request Evaluation Tool (URET), a 
conflict detection capability for en route ATC.6  
Another approach is performance metric alerting 
(PMA), developed by Yang and Kuchar.7  In the PMA 
approach, the probabilities of missed alert and of false 
detection are calculated in real time, and used to 
determine whether or not to issue an alert. 

Related Traffic Prediction Work 

This work builds on a great deal of recent research in 
the general area of traffic prediction for TFM and ATC 
applications.  Work has been done to identify, rank, and 
quantify sources of sector demand uncertainty.8,9 
Aircraft trajectory prediction accuracy under 
operational conditions has also been studied in 
detail.10,11,12,13  These studies provide a basis for 
identifying and understanding the mechanisms that 
produce demand prediction uncertainty. 

Sector count predictions have also been directly studied 
by comparing predictions to actually-experienced sector 
aircraft counts.14,15  This approach provides a useful 

starting point, but is subject to the limitations discussed 
earlier.  Most recently, techniques have been developed 
for probabilistic prediction of sector demand,16,17 based 
on knowledge of the uncertainty in the individual 
aircraft trajectory predictions which make up the sector 
load prediction. 

Approach 

Simulating aircraft trajectories, as done by Mueller, et. 
al.17, is a powerful and flexible approach to quantifying 
demand uncertainty.  By explicitly modeling the 
various component uncertainties in trajectory 
prediction, Monte-Carlo simulation techniques can be 
applied to model arbitrary traffic and airspace 
situations.  This approach avoids the previously-
described difficulty with using actual traffic.  Since the 
uncertainties in modeling are individually modeled, 
simulation can be used to identify the effect of 
individual uncertainty components on the overall 
demand uncertainty.  Furthermore, the distributions of 
the components can be controlled to simulate possible 
future changes in the operating environment (e.g. better 
data sources) and thereby evaluate the potential benefits 
of reducing the component uncertainties.   

These benefits come at a price.  It is feasible and 
instructive to use this approach for specific examples, 
such as in Ref. 17 where it is applied to a single sector, 
for a single aircraft type on a single route.  However, it 
is difficult and expensive to develop general purpose 
simulation models that work under a wide range of 
conditions.  There are many aircraft types, which 
exhibit different degrees of performance modeling 
uncertainty.  There are many types of uncertainty 
components, some of which are quite difficult to model 
(for example, in-flight route amendments) and some of 
which may interact in unknown ways.  Different 
airspace types have different route and altitude patterns, 
producing different levels of uncertainty.   

The work discussed here requires uncertainty estimates 
for present-day demand predictions, under a variety of 
traffic conditions and for a variety of airspace types.  
While the simulation method provides the best and 
most flexible option for studying demand uncertainty, it 
was deemed too difficult for the initial phase of this 
work.  A different approach was chosen, based on 
empirical measurements of sector load uncertainty.   

As noted, in the general case, actual traffic cannot be 
used directly to evaluate demand predictions.  
However, there are specific cases in which no 
significant TFM actions are taken, and in these cases, 

3 
American Institute of Aeronautics and Astronautics 



 
 

the measured traffic could be used to evaluate demand 
predictions.  It was hypothesized that these cases would 
be those in which predicted sector peak counts were 
significantly less than the MAP, thereby not requiring 
TFM actions to control congestion. 

This hypothesis has some weaknesses.  For example, a 
weather-related reroute may place traffic into a sector 
that was not predicted to have high traffic loads.  Or, a 
sector with light demand may be adjacent to another 
with heavy demand, and a miles-in-trail restriction 
applied to control the heavy-demand sector could affect 
the light-demand sector as well.  It was assumed that, 
with a sufficient quantity of data, these effects should 
not have a major impact on the analysis. 

By measuring the uncertainty directly – assuming that 
the light-demand hypothesis holds – then all significant 
components of uncertainty will be included in the 
estimate.  This eliminates the modeling work required 
for trajectory simulation.  The obvious disadvantage is 
that none of the trajectory uncertainty components are 
individually modeled, so only the overall demand 
uncertainty in the present-day environment can be 
usefully studied.   Also, vast quantities of data are 
required to span the traffic conditions of interest.   

Data Collection 

Fortunately, as part of other MITRE research, 
approximately a full year of sector demand predictions 
for the entire NAS have been recorded.  This is enough 
data to get statistically-interesting samples for most 
traffic conditions of interest.  These predictions were 
made by the CRCT prototype, which uses traffic 
prediction algorithms similar to those used by the 
ETMS.  Details of these algorithms are available in 
Holly, et. al.18 

The predictions are in the form represented in Figure 1, 
namely peak counts in 15-minute intervals.  Every 15 
minutes, predictions with time horizons (LAT) of 0 to 6 
hours ahead are recorded.  In other words, for each 
NAS sector and each 15 minute period spanned by the 
data, predictions are available from 6 hours down to 
zero time in advance, at 15-minute LAT intervals.  The 
data spans 286 days, from 23 Jan 2002 to 20 Sep 2002, 
includes predictions for the 754 NAS sectors with 
established MAP values, and includes over 400 million 
total demand predictions. 

One complication is that the actual number of aircraft 
that were present in the sector at any given time was not 
available, since radar surveillance data was not 
recorded for all of the predictions.  Therefore, the zero 

LAT predictions (made at the beginning of the 15-
minute period of interest) were used as a proxy for the 
actual peak aircraft count.  Analysis of a limited set of 
data for which radar surveillance data was available 
indicated that this assumption is sufficiently accurate 
for this study, with the possible exception of predictions 
for sectors which handle predominantly departure 
flows.  This will be discussed in detail later. 

Defining Light Demand 

Specific criteria are required to apply the light-demand 
hypothesis.  In particular, how light is light enough?  
Insight was gained through exploratory data analysis.  
Traffic predictions at varying LAT were compared with 
the zero-LAT predictions, and the mean difference was 
calculated.  This was done for several LAT values, and 
plotted against the predicted peak count relative to the 
MAP in Fi .  A prediction of 15 for a sector with a 
MAP of 12 is classified as “+3”, in the same bin as a 
prediction of 18 for a sector with a MAP of 15.  Note 
that the mean difference measures the bias in the 
predictions, not the uncertainty of the predictions or the 
shape of the prediction error distribution. 

gure 2

The results show two interesting trends that have 
reasonable operational explanations.  At low sector 
loads, the peak count estimate is approximately 
unbiased for short LAT.  As LAT increases, the peak 
count estimates develop an increasingly lower bias.  In 
other words, the peaks are under-predicted on the 
average.  This is due to an input data feature.  At short 
LAT, most or all flights that may enter the sector have 
filed flight plans.  At longer times, some percentage of 
these flights (primarily General Aviation) have not filed 
flight plans, and have no regular operation schedule, 
and so are unknown to the prediction algorithms. 

The second obvious trend is the increasing over-
prediction bias as the predicted sector load increases.  
This is likely to be the effect of TFM actions.  For 
example, for predictions of 5 aircraft over MAP, the 
mean difference is 4.  In this case, the average actual 
peak was 1 aircraft over MAP rather than 5 over, 
presumably because actions were taken to manage the 
congestion before it occurred.  Note also that the curves 
for different LAT are quite close together at high sector 
loads relative to MAP.  This is consistent with the 
hypothesis, since the effect of sector congestion 
management would be to force traffic counts down to 
the MAP, suppressing other sources of prediction 
uncertainty such as the previously-noted missing flight 
plans. 
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Figure 2:  Bias Trends in Demand Predictions by Prediction Look-Ahead Time (LAT) in Minutes 

Another interesting feature is that the 15-minute LAT 
curve does not climb as steeply as the longer LAT 
curves as predicted counts increase above MAP.  The 
most likely explanation is that, at 15 minutes before the 
event, there is not enough time to take actions that 
would bring the peak count back down to the MAP. 

One can conclude from this plot that peak traffic load 
predictions relative to MAP of -7 or less indicate 
situations with little or no TFM action.  Therefore, for 
the analyses presented below, the data set was reduced 
to include only cases satisfying that criterion.  This 
reduced the total data set by approximately one-eighth, 
to around 350 million observations. 

The converse of this conclusion is that comparing 
predicted peaks to actual peaks at MAP-relative loads 
of -6 or greater is not an effective way to evaluate 
demand prediction accuracy, since the sector load data 
has been affected by significant TFM actions.  It may 
work for comparing relative performance between 
conditions (e.g. different prediction approaches, or 
differences in input data sources such as wind 
forecasts), but is not effective for measuring demand 
prediction accuracy in absolute terms. 

Factors Affecting Demand Predictions 

The reduced data used to measure and classify the 
demand prediction uncertainty as a function of several 

factors.   summarizes the factors chosen for 
initial consideration, though not all have been studied at 
the time of this writing.  These factors are not all 
independent, nor are they equally important.  For 
example, the number of scheduled airline flights 
changes according to the day of the week.  However, 
this effect is primarily seen as an overall change in 
traffic levels, and may be adequately captured by 
conditioning the prediction uncertainty on the predicted 
value.   Also, even seemingly independent factors may 
have interaction effects. 

Table 1

Table 1:  Factors Affecting Demand Predictions 

Category Class Values 
Airspace Sector Individual Sector (754 total) 

Altitude Class (Low, High, Super High) 
Primary Traffic Type (Departures, 

Arrivals, En Route, Mixed) 
 ARTCC Individually (21 total) 
Time Day Day of week 
 Time-of-Day Hour of day, local time 
 Time-of-Year Season 
Prediction LAT 15 minute intervals, 0 to 6 hours 
 Value Absolute number or relative to MAP 
Weather Severe WX Location (in sector, near sector, none) 
 Jet Stream Location, direction, strength 

After exploratory analysis, three variables were 
identified as having strong effects on uncertainty 
distributions and were therefore chosen for initial study.  
These are highlighted in Table 1, and include (1) LAT, 
(2) predicted peak count, and (3) sector traffic type.   
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This third classification requires some explanation.  
Sectors were assigned to one of four traffic categories – 
(A) arrival, (D) departure, (E) en route, and (M) mixed 
– based on the predominant type of traffic passing 
through the sector on a representative traffic day.  A 24-
hour CRCT simulation was run on archived ETMS data 
from 16 August 2002.  At each hour of the simulation, a 
list of flights predicted to enter each sector over the 
subsequent six hours was generated from modeled 
flight trajectories and FAA-provided sector geometries.  
Sectors were categorized by whether flights typically 
entered the sector at the beginning, at the end, or in the 
middle of their routes.  In order to ensure that analyzed 
trajectories extended completely from origin to 
destination, only flights departing and arriving within 
the USA were considered. 

Prediction Error Distribution 

One simple way to study a distribution is via 
percentiles.19 Figure 3 is a “box-and-whisker” plot of 
the percentiles of prediction error distribution for mixed 
sectors, tabulated for four LAT values.  The lower and 
upper bounds of each box represent the 25th and 75th 
percentiles of the distribution, respectively, and the 
horizontal line within the box indicates the median (50th 
percentile).  In other words, 25% of the prediction error 
values fall below the box and 25% fall above the box.  
The lower and upper whiskers (horizontal lines 
connected to the boxes by dashed vertical lines) show 
the 10th and 90th percentiles, respectively. 

It is clear that predictions are much better at short LAT, 
where the middle 50% of the distribution falls between 
-1 and +1, than at long LAT.  Also, there is a systematic 
and asymmetric bias toward under-prediction at longer 
LAT, as indicated by the decreasing median and 25th 
percentile values.  It is also interesting that the upper 
whisker is 2 for all four LAT values plotted, while the 
lower whisker drops to –6 at 300 minute LAT, 
indicating that a significant percentage of the 
predictions are very low with respect to the demand. 

Because the set of pre-departure flights predicted to 
pass through a sector in the near future tends to over-
sample departures relative to arrivals, only flights 
predicted to pass through the sector between five-and 
six hours after the prediction time were included.  
Sectors which were the first or last sector entered by at 
least 70% of those flights entering the sector were 
considered departure and arrival sectors respectively.  
Sectors for which at least 70% of those flights entering 
the sector did so as neither the first nor last sector on 
the route were considered en route sectors.  All 
remaining sectors were considered mixed traffic 
sectors.  Of 754 sectors categorized, 47 were found to 
be arrival sectors, 49 were departure sectors, 406 were 
en route sectors, and 252 were mixed traffic sectors.*   
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Results 

The reduced data set was analyzed in terms of demand 
prediction error, defined as the predicted peak value 
minus the zero-LAT peak value.  Thus, positive error 
values indicate over-prediction, and negative values 
indicate under-prediction.  Prediction error was 
analyzed as a function of LAT, prediction value, and 
sector traffic type, and was visualized several ways.  
Also, the resulting distributions were used to draw 
conclusions about the characteristics of current 
strategies for sector load alerting. 

Figure 3:  Percentiles of Prediction Error 
Distribution for Mixed Sectors 

Because the predictions take discrete values, the 
percentiles are of limited use for comparing uncertainty 
among many conditions.   shows the mean and 
standard deviation of the prediction error for mixed 
sectors, as a function of both the predicted value and of 
LAT.  This provides a more sensitive way to compare 
several prediction curves. 

Figure 4

                                                           
* This categorization is only for the purposes of this study.  
From an FAA procedural perspective, there are more than 47 
sectors which designed to primarily handle arrivals, and more 
than 49 which are designed as departure sectors.  The 70% 
criterion used here for primary traffic type may be too 
restrictive, and may be reevaluated. 
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The mean value (upper plot) shows increasing under-
prediction with increasing LAT, as seen previously in 

.  However, since the error is plotted as a 
function of predicted absolute count (not relative to 
MAP) the curves are not as flat as in .  For 
predicted values near zero flights, under-prediction is 
less likely, so means are higher.  From predicted values 
of 4 upward, the mean prediction error steadily 
increases with increasing predicted value.   

Figure 2

Figure 2

Standard deviations (lower plot) are a measure of the 
“spread” of the prediction error distribution, and larger 
standard deviations indicate higher uncertainty.  As 
expected, standard deviations increase steadily with 
increasing LAT.  This increase is substantial.  For a 
prediction of 8 aircraft, the standard deviation increases 
from 2 at 15 minute LAT to almost 4 at 5 hour LAT. 

Figure 5
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Figure 5:  Mean and Standard Deviation of 

Prediction Errors for 60 min LAT by Sector Type.  
A = arrival, D = departure, E = en route, M = mixed. 

 also shows mean and standard deviation, for a 
single value of LAT (60 minutes), but parameterized by 
sector type.  It is apparent that departure sectors have 
different prediction characteristics from other sectors.  
The primary feature of departure sectors is that 
predictions for them involve a much greater proportion 
of pre-departure flights than for other sector types.  
Therefore, it is expected that predictions for departure 
sectors should be more uncertain, since departure time 
predictions are highly uncertain.8,9  In this analysis, this 
is shown by the much higher standard deviation in 

departure sectors.  Similarly, predictions are most 
accurate for arrival sectors, since a higher proportion of 
involved flights are airborne 60 minutes from the period 
being predicted. 
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Figure 4:  Mean and Standard Deviation of 

Prediction Errors for Mixed Sectors by LAT (min) 

However, it must be noted that the analysis technique 
used here relies on the assumption that zero-LAT peak 
predictions are an accurate proxy for the actual peak 
aircraft count.  This assumption is weakest for 
departure sectors in that, even at the beginning of a 15-
minute interval of interest, some flights involved in the 
peak prediction for that interval will not yet have 
departed.  If delays at the airports involved are 
unusually high, the prediction algorithms may model an 
inordinately large number of flights as leaving within 
the next 15 minutes, since according to those flights’ 
filed plans and typical ground movement times, they 
should have already departed.   

Therefore, the meaning of the zero-LAT predictions for 
departure sectors is rather different than for other 
sectors.  It can be argued that the zero-LAT prediction 
is the best possible estimate for actual departure sector 
demand, since late flights normally want to depart as 
soon as possible, and hence it is still useful for this 
analysis.  Regardless, the uncertainty distributions for 
departure sectors shown here are clearly more affected 
by the zero-LAT assumption than predictions for the 
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other sector types, for which zero-LAT predictions are 
made up almost entirely of airborne aircraft, and are 
hence very accurate representations of the actually-
experienced peak sector count. 
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Figure 6:  CDF for Mixed Sectors by LAT 

Figure 6

Figure 6
Figure 6

A complete way to visualize the prediction uncertainty 
is to display the entire distribution.   shows the 
cumulative distribution function (CDF) for all 
predictions for mixed sectors, parameterized by LAT.  
Each point (y-axis value) on the CDF indicates the 
probability that the prediction error is equal to or less 
than the corresponding x-axis value.  This means that 
an unbiased prediction would have a CDF value of 0.5 
for a prediction error of zero, and that the steeper the 
slope of the CDF, the more precise the prediction.  As 
expected, the longer LAT curves in  are flatter 

than the 15 minute LAT curve, and show a higher 
probability of errors less than zero (under-prediction) 
than errors greater than zero. 

Figure 7
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Figure 7:  CDF for 60 min LAT by Sector Type 

 shows the CDF for 60 minute LAT, classified 
by sector type.  As in Figure 5, it is apparent that arrival 
sector predictions are most accurate, with the steepest 
distribution, while the departure sector predictions are 
the least accurate.  

One final method for observing the distributions is 
shown in .  Shown are contours of the 25th and 
75th percentiles of the distributions, varying by LAT 
and by prediction value relative to MAP.†  The distance 
between the 25% and 75% curves widens with 
increasing LAT, indicating increasing uncertainty.  
Also, the interval between the curves shifts downward, 
showing the increasing tendency towards under-
prediction at high LAT.  Finally, the distance between 
the 25% and 75% curves widens with increasing 
relative count (i.e. as the predicted count gets closer to 
the MAP).  This effect is more noticeable at the 25th 
percentile than at the 75th percentile error contour.  

Figure 8

Application to Sector Alerting 

Once the uncertainty distributions have been 
characterized, they can be used to evaluate sector alert 
probabilities under various conditions.  For example, if 
a particular value of MAP is assumed, then the meaning 
of a particular prediction can be evaluated in terms of 
the probability that the “actual” sector demand 
corresponding to that prediction will exceed the MAP. 

Figure 9

                                                          

 illustrates application of this technique to 
mixed sectors with a MAP of eight aircraft.  Using the 
distributions shown in , the probability of 
demand exceeding MAP was computed for different 
predicted peak values and for several LAT values.  As 
for the CDF, steeper curves indicate less uncertainty in 
the predictions, so it is apparent (and unsurprising) that 
there is less uncertainty in shorter LAT predictions.  A 
perfect prediction would have zero probability for 
predicted peaks of 8 or less, and a probability of 1 for 
predicted peaks of 9 or more. 

 

 
† This plot differs from Figure 3 in that the 25th and 75th 
percentile contours are calculated from the PDFs (as in Figure 
6) rather than selecting the 25th percentile value directly from 
the prediction data, which would produce only discrete 
values.  This allows a more sensitive comparison among the 
different distributions. 
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Figure 8:  Probability Contours for Demand Predictions, All Sectors, by LAT and Relative Prediction Value 

It is interesting to look at several predicted values, and 
compare the probability of actual demand exceeding the 
MAP among different LAT values.  Recall that, using 
the ETMS alerting rules, a predicted peak of 9 or more 
would trigger an alert.  

For a predicted peak of 6 (MAP – 2) at 15-min LAT, 
there is only a 12% probability that the actual demand 
exceeds MAP, while for 60-min LAT, that probability 
is 28%, and for 120-min LAT, 41%.  This trend is due 
to the systematic under-prediction of demand at longer 
LAT, as observed earlier.   

These probabilities, for predictions less than or equal to 

the MAP, can be interpreted as the likelihood of missed 
alerts, and they increase steadily as LAT increases.  Of 
course, as time progresses and LAT decreases, alerts 
that were “missed” earlier may be detected.  A missed 
alert in this context, therefore, does not necessarily have 
serious consequences.  Also, peak IAC is a “noisy” 
metric‡, and the same prediction algorithms shown here 
may perform differently if different criteria for sector 
alerting are chosen.  This is a potential area for future 
research. 

For predicted peak count of 11 (MAP + 3), the 
percentage trend reverses.  At 15-minute LAT, a 
predicted peak of 11 indicates an 85% probability of 
exceeding MAP.  At 120-minute LAT, this prediction 
indicates an 80% probability of exceeding MAP.  Even 
at 240-minute LAT, this probability is 79%.  Therefore, 
a prediction of 11 indicates a high likelihood that the 
demand exceeds sector capacity, even when predicted 
several hours in advance.  Such a prediction can be 
considered reliable for traffic management applications. 
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Figure 9:  Probability of Demand Exceeding 8 for 

Mixed Sectors by LAT (minutes)  

At predicted peaks above the MAP, the percentage 
indicates the likelihood of correct alerting, with the 
balance (i.e. 100% - 85% = 15% for 15-minute LAT) 
being the likelihood of false alert.   
                                                           
‡ The peak IAC in an interval is sensitive to small changes. 
For example, a small change in airspeed for an aircraft which 
is projected to enter the sector may push it into or out of the 
peak minute.  As a consequence, the peak IAC fluctuates 
significantly as time passes and predictions are updated.  A 
metric incorporating some form of time-smoothing would 
probably be more predictable than peak IAC, but would need 
to be carefully chosen for operational relevance. 
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Application to Simulation This analysis can be repeated for different MAP values, 
sector types, weather conditions, or other variables of 
interest.  The results could be used to establish alerting 
heuristics that are sensitive to the prediction conditions, 
and thereby establish the desired balance between 
missed and false alerts.  They could also be used to 
develop alerting displays that are calibrated by the 
uncertainty in the prediction.  For example, yellow and 
red alerts in the ETMS could be driven by the 
probability of exceeding the MAP rather than by the 
presence or absence of pre-departure flights in the 
prediction.  This would provide more useful “alert 
reliability” information than the current ETMS 
technique.  Or, new displays which directly present 
probabilistic predictions to traffic managers could be 
developed.  Finally, knowing the validity of predictions 
under varying conditions and LAT may affect traffic 
management procedures.  For example, given a 
situation under which predictions are highly uncertain, 
it may be advisable to delay traffic management actions 
until the demand is more precisely known. 

One of the hardest tasks in the previously-described 
simulation approach to evaluating demand uncertainty 
is validating the simulation models.  The statistical data 
assembled here could be used to validate simulation 
models, by selecting an appropriate subset of the data 
representing a particular set of conditions in the 
simulation.   

Conclusions 

A technique has been developed for analyzing airspace 
demand predictions based on observed data from a 
prototype TFM decision support system.  This 
technique has been used to quantify the uncertainty in 
present-day NAS airspace demand predictions.  The 
resulting statistical distributions of prediction error can 
be used to evaluate the reliability of current sector load 
alerts, to develop new techniques to display and utilize 
sector demand predictions with known uncertainty, and 
to develop procedures that take this uncertainty into 
account when managing traffic in the NAS. Extension to Higher Traffic Loads 
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