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Abstract

The Collaborative Routing Coordination Tools (CRCT) 
Concept Demonstration and Evaluation Prototype is a 
set of tools to help the Federal Aviation Administration 
(FAA) detect traffic flow problems in advance, generate 
reroute-based problem resolutions, and evaluate the 
resolution strategies.  CRCT does this by modeling 
four-dimensional aircraft trajectories and using them to 
predict demand for sector usage.  CRCT predictions are 
affected by various sources of uncertainty in the 
National Airspace System (NAS).  It is therefore useful 
to understand the contribution of this uncertainty to 
CRCT’s predictive error.  A methodology was 
developed to perform comparative prediction 
performance assessments of CRCT.  Several 
performance metrics were defined and tools were 
developed to calculate the metrics from prediction data 
and actual track data.  The metrics assess how closely 
predictions match the sector loads that actually occur.  
In earlier analyses the methodology was used to 
compare the predictive performance of CRCT under 
various software and data configurations.  More 
recently it was used to assess the impact of pre-
departure uncertainty on the prediction performance of 
CRCT.  This paper describes CRCT trajectory 
modeling and sector load prediction, presents the 
methodology used to assess CRCT’s prediction 
performance, and discusses the results of the pre-
departure uncertainty analysis.  This analysis is based 
on predictions made by CRCT for two Air Route 
Traffic Control Centers (ARTCCs).  CRCT runs were 
made against recordings of actual air traffic data on two 
good weather days and two bad weather days.

Introduction

The FAA performs traffic flow management (TFM) to 
ensure the safe and smooth flow of traffic in the NAS.  
In order to do this, the FAA must monitor air traffic 
flows and NAS conditions.  Flows are redirected as 
necessary to make them safe and smooth, that is, to 
balance capacity and demand while minimizing ground 
and airborne flight delays.  While automation tools such 
as the Enhanced Traffic Management System (ETMS)1

exist to support this function, additional capabilities 
could be used to further facilitate FAA provision of the 
TFM service.  As a result, MITRE/CAASD has 

developed CRCT, an evolving prototype of tools to 
support early recognition of traffic flow problems, 
generation of reroute-based problem resolutions, and 
evaluation of the resolution strategies.

The CRCT prototype has been installed at the Kansas 
City (ZKC) and Indianapolis (ZID) ARTCCs and in the 
Air Traffic Control System Command Center 
(ATCSCC) where it is being evaluated.  CRCT features 
that are deemed operationally mature are used to 
augment the capabilities of ETMS.  Determination of 
the CRCT features that are to be implemented in ETMS 
is based in part on the results of field evaluations, 
laboratory exercises, and on prediction performance 
assessments of CRCT.  Flow constrained area (FCA) 
and rerouting are examples of CRCT capabilities that 
have been approved for and are being implemented in 
ETMS2.

CRCT models four-dimensional trajectories that predict 
the future behavior of aircraft.  The trajectories and 
other data are used to predict and alert traffic 
management specialists when sector demand will 
exceed a preset threshold.  When a TFM decision
support tool (DST) such as CRCT predicts that demand 
for a sector will exceed its threshold, the specialist will 
typically act to prevent the overload.  As a result, the 
sector load that is actually realized will tend to be 
smaller than the predicted demand.  The difference 
between predicted demand and actual sector load is 
therefore not a measure of true predictive accuracy if 
any intervention is allowed between the prediction time 
and the time for which the prediction is made3.  In spite 
of this, such a measure is adequate when used to 
compare the relative performance of a TFM tool under 
various configurations.  Measures of this type have 
been used to identify CRCT capabilities that would 
improve the predictive accuracy of ETMS4.  Similar 
measures were again used to perform the pre-departure 
uncertainty analysis that is reported herein.

It is well known that there is uncertainty in the NAS 
and that some of it is reflected in errors in the data 
DSTs use to model aircraft trajectories5.  Since DST 
decisions are based on these trajectories, NAS 
uncertainty ultimately causes DST prediction errors.  
Using CRCT and established prediction performance 
metrics4, CAASD assessed the impact of pre-departure 
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uncertainty on CRCT sector load prediction error.  The 
contribution of en route uncertainty was also assessed.  
The analysis was performed to support investment 
decision-making.  Knowledge about the relative 
contribution of pre-departure and en route uncertainty 
to the prediction error can be used to make informed 
decisions about how to invest resources to improve 
predictive accuracy.

NAS DST developers have studied prediction error to 
understand the extent to which it is impacted by NAS 
uncertainty and to devise ways to account for the 
uncertainty when presenting DST decisions to the user.  
The User Request Evaluation Tool (URET), the NAS 
en route conflict probe, uses conformance boxes to 
make trajectories more stable and subsequently uses a 
measure of trajectory stability to determine how soon to 
notify the controller of a future conflict6.  CRCT has 
been used to quantify uncertainty in TFM airspace 
demand predictions and to develop procedures that take 
this uncertainty into account when presenting 
information to the user3.  NASA’s Future ATC Concept 
Evaluation Tool (FACET) has been used to identify and 
rank error sources by their impact on sector demand 
prediction accuracy5.  The FACET study also estimated 
the contribution of pre-departure and en route 
uncertainty to sector count error.  In our analyses, we 
measure the contribution of both sources of uncertainty 
to two other metrics: sector entry error and hit rate.  We 
also investigated the impact of uncertainty on the error 
in the predicted departure time.

CRCT Trajectory Modeling and Sector Load Prediction

CRCT obtains the data required to model aircraft 
trajectories from various sources.  Flight plans and 
progress reports are received from ETMS.  Flight plans, 
track data, and sectorization messages are optionally 
received from the local ARTCC Host.  Wind forecast 
data is obtained from the National Weather Service 
(NWS) and adaptation data is obtained from ARTCC 
Adaptation Controlled Environment System (ACES) 
data, from National Flight Data Center (NFDC) data, 
from NAS facility letters of agreement (LOAs) and 
standard operating procedures (SOPs), and from aircraft 
manufacturer handbooks. The CRCT trajectory modeler 
builds the trajectory from planned departure time and 
route, current wind forecasts, departure airport delay 
statistics, aircraft performance characteristics, and 
known ATC procedures and restrictions.

CRCT trajectory modeling begins with the estimation 
of the flight departure time.  This is initially the filed 
departure time.  However, if the flight does not depart 
by this time, optional adaptive departure delay 
modeling can be used to update the departure time 
based on airport delay statistics.  Next, the CRCT 
trajectory modeler uses the flight plan to determine the 

aircraft’s lateral route of flight.  The entire filed route is 
converted to a list of latitude/longitude pairs.  No 
additional preferential routes are applied other than 
those already applied to the ETMS/Host flight plan.  
Turns in the route are modeled as being instantaneous.  
If track data exists for the flight and the track position is 
not on the cleared route, a set of rules is applied to 
determine how the aircraft will rejoin the route.  The 
converted lateral route forms the initial set of trajectory 
nodes.

Next, the trajectory modeler determines the vertical 
profile of the trajectory.  Altitude and speed are 
strongly coupled and both components of the trajectory 
are determined during this step.  Altitude and speed 
restrictions, due to ATC procedures, are applied to the 
lateral route to determine constraints.  CRCT then 
generates and inserts maneuver segments into the 
trajectory to satisfy these constraints.  Segments are 
modeled to have constant acceleration and gradient, 
with instantaneous changes allowed at the endpoints.

Finally, the CRCT trajectory modeler assigns 
conformance bounds to each trajectory segment.  
Conformance bounds, which are used to support 
conformance monitoring, are specified in the lateral, 
longitudinal, and vertical dimensions.  These bounds 
are smaller for level segments and larger for less 
predictable segments, such as those around turns and 
during vertical transition.  The conformance monitoring 
function ensures that the trajectory is maintained within 
acceptable conformance bounds.  When an aircraft’s 
track is updated, the track position is compared to the 
conformance bounds around the current trajectory 
segment.  If the track position is outside the 
conformance bounds, the trajectory is updated to reflect 
observed aircraft behavior (short-term position and 
heading, speed, and climb or descent rate).

CRCT uses the modeled aircraft trajectories and 
airspace adaptation data to generate sector transits, 
which are in turn used to predict sector loads.  
Predictions are normally made each hour for 15-minute 
intervals at lookahead times that are up to six hours in 
the future.  The sector load prediction for an interval 
represents the maximum instantaneous aircraft count 
for that sector.  The prediction performance metrics, 
reported herein, reflect differences between predicted 
and actual sector transits.  Lower level trajectory 
accuracy metrics, not reported herein, are based on 
differences between predicted aircraft trajectories and 
their actual track.  Although not as sensitive to error as 
the trajectory accuracy metrics, the prediction 
performance metrics are used because they are more 
operationally meaningful.  Trajectory accuracy metrics 
are typically used to diagnose and correct flight 
trajectory problems.  The two types of metrics are 
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correlated however.  An improvement in trajectory 
accuracy will result in no observable change or in 
improved prediction performance, but will not result in 
degraded performance.

Prediction Performance Assessment

Prediction performance analysis of CRCT entails 
determining how closely CRCT predictions about 
aircraft behavior match the observed behavior of the 
aircraft, calculating operational metrics from these 
differences, and comparing the metrics for alternative 
CRCT data/software configurations.  The analysis is 
based on recorded air traffic data, also known as 
scenario data.  Since the scenario data includes 
controller interventions between prediction and event 
times, the analysis results tend to underestimate the true 
predictive accuracy of CRCT.  CRCT predictions are 
made from trajectories that are modeled from flight 
plans and amendments contained in the scenario.  

Actual aircraft behavior is determined from track 
reports, which are also contained in the scenario.

Figure 1 illustrates the process that is used to conduct 
prediction performance analysis of CRCT.  The process 
begins with a CRCT run against an air traffic scenario 
that consists of recorded ETMS data.  After the CRCT 
run is made, a data extraction and analysis tool (DEAT) 
is run against Host data from the ARTCC for which 
CRCT predictions were made.  During the CRCT run, 
predicted sector transit records are collected and during 
the DEAT run, actual sector transit records are 
collected.  Transit records are input to the transit record 
analyzer (TRA), which calculates error in CRCT’s 
predicted transits.  Finally, a data stratification and 
aggregation tool (DSAT) is used to stratify and 
aggregate TRA measures to produce operational 
performance metrics for predictions from multiple 
CRCT runs.  These results can then be compared to 
assess the relative performance of CRCT predictions in 
all runs.
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Figure 1.  Prediction Performance Assessment Process, Tools, and Data
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CRCT operational performance metrics characterize the 
accuracy of the CRCT predictions that are displayed or 
noticeable to the user.  These metrics consist of sector 
count error, sector entry error, sector dwell error, and 
hit rate.  Predicted and actual sector transit records are 
used to calculate these measures.  Sector transit records 
consist of the flight and sector IDs and the sector entry 
and exit times.  Attributes such as flight type, sector 
type, and lookahead time are used to stratify the 
metrics.  The lookahead time is the difference between 
the time at which the prediction is made and the time 
for which the prediction is made.  The mean and other 
available statistics are determined as an aggregation of 
the operational performance measures.

The computation of some metrics requires matching 
predicted and actual data for a given flight.  This 
becomes difficult when a flight is late and there are 
multiple flight legs between an origin-destination pair 
for which the same aircraft identification is used.  To 
avoid this problem, predicted and actual sector entry 
times are required to be within an hour of each other.  
This tends to limit the difference between predicted and
actual sector transit records from which the prediction 
performance metrics are determined.  The metrics are 
nevertheless useful in comparing the relative 
performance of CRCT under alternative data and 
software configurations.

Sector Count Error is the difference between the 
CRCT-predicted and the actual aircraft count for a 
sector during a one-minute time bin.  The mean 
absolute error is calculated for all CRCT-predicted 
sector counts.  Other statistics such as mean and 
variance are available.  The error is stratified by 
lookahead time and can be stratified by sector type 
(low, high, and super-high altitude).  It should be noted 
that a zero sector count error does not necessarily imply 
good prediction performance.  For example, CRCT 
could correctly predict the number of flights that will 
occupy a sector during a time interval, but the 
prediction could be based on the wrong flights.

Sector Entry Error is the difference between the CRCT-
predicted time and the actual time that an aircraft enters 
a sector.  Predicted and actual transit records are first 
matched.  The mean sector entry error is calculated for 
all sector entry times predicted by CRCT.  While this 
statistic is used because it allows easy identification of 
bias, others are available.  The error is stratified by 
lookahead time and can be stratified by flight type 
(active and proposed).

Sector Dwell Error is the difference between the 
CRCT-predicted and the actual time that an aircraft 
spends in a sector.  Predicted and actual transit records 
are again matched.  The mean absolute error is 
calculated for all CRCT-predicted sector dwell times.  

Again, other statistics are available.  The error is 
stratified by lookahead time and can be stratified by 
flight type.

There are two types of Hit Rate.  Matching predicted 
and actual transit records are used to calculate both 
types.  Predictive hit rate is the fraction of flights 
predicted to enter a sector that actually do enter the 
sector.  Actual hit rate is the fraction of flights that enter 
a sector that were predicted to enter the sector.  The 
complement of the actual hit rate is the missed 
prediction rate and the complement of the predictive hit 
rate is the false prediction rate.  The mean hit rate is 
calculated for all CRCT-predicted and for all actual 
sector transits.  Hit rate is stratified by lookahead time 
and can be stratified by flight type.

Since CRCT prediction performance assessment 
methodology is scenario based, assessment results may 
vary depending on the scenario day used.  The 
methodology also does not address sampling questions, 
such as the size of a statistically significant sample or 
the correlation between sample points.  Assessment 
results and conclusions drawn from them should be 
interpreted in this context.  Additional analyses (non-
prediction performance and prediction performance 
using more scenarios) should be performed to validate 
the conclusions reached from prediction performance 
assessments.

Pre-Departure Uncertainty Analysis

The pre-departure uncertainty analysis was based on 
CRCT predictions of ZID and ZKC sector loads for 
four days.  ZID and ZKC CRCT runs were made for 
each day using the day’s ETMS, wind forcast, and 
adaptation data as input.  No ARTCC Host data was 
used for the CRCT runs.  Actual sector loads, to which 
the predicted loads were compared, were obtained from 
ARTCC Host data.  The following sections describe the 
scenario days, discuss the analyses that were 
performed, and present the results.

Scenarios

The scenario days used for the analysis are 24 and 27 
January 2003, two good weather days, and 13 and 
20 March 2003, two bad weather days.  Figure 2 
illustrates weather radar images for one hour on each of 
the four days.  On the good weather days, the few 
pockets of convective weather that existed were fairly 
light and outside of ZID and ZKC, and consequently 
were not expected to affect flows to the ARTCCs.  On 
24 January, due mainly to equipment failure, there were 
short ground stops at a few airports in the Eastern U.S.  
On 27 January, because of winds there was a lengthy
ground delay program at LaGuardia Airport (LGA).
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Figure 2.  Weather Radar Images for Good and Bad Weather Days

There was no playbook reroute* on either good weather 
day.

On 13 March, the first bad weather day, a diagonal 
band of convective weather moved east across the U.S., 
passing through ZID and ZKC on its way.  There were 
ground delays, ground stops, and cancellations at one 
west coast airport and seven in the eastern and 
midwestern U.S.  Four playbook reroutes were in effect 
at Dallas Fort Worth (DFW) and Houston (IAH) 
International Airports.  These flow management 
initiatives affected the flow of flights to ZID and ZKC.  
On 20 March, there were large clusters of convective 
weather in the East and Midwest.  There were ground 
delays, ground stops, and cancellations at six major 
airports in this region.  There was no playbook reroute.  
The schedule disruptions affected flights to ZID and 
ZKC.

Table 1 presents the counts of the significant ETMS 
message types processed by CRCT on the four scenario 

* The FAA’s National Playbook is a collection of pre-
defined reroutes that can be quickly coordinated and 
implemented to route traffic away from areas impacted 
by severe weather.

days.  Air carriers send airline flight messages to ETMS 
to inform the automation of schedule changes.  These 
changes are needed by ETMS and CRCT as they 
obviously impact predictions at longer lookahead times.  
NAS flight plans and amendments are used to model
trajectories, which are the basis of ETMS and CRCT 
predictions.  Flight control messages are used to 
implement or modify ground delay and ground stop 
programs and consequently impact flight departure 
times.  Flight plan cancel messages include airline and
NAS messages to cancel flights.  Arrival and departure 
messages are used by TFM automation tools to update 
flight status.  Position updates are also used to update 
flight status, but are additionally used for trajectory 
conformance monitoring.

Table 2 presents the counts of commercial, general 
aviation (GA), military, and other flights that entered 
ZID or ZKC airspace in the four scenarios.  Flights in 
the ‘other’ category consist of Canadian GA, air taxi, 
and lifeguard flights.  The flights that are counted in 
Table 2 are the subset of the ETMS flights whose 
observed sector transits are the truth to which CRCT’s 
predicted transits are compared.
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Table 1.  ETMS Message Counts on Scenario Days

ETMS Message 24 January 27 January 13 March 20 March

Airline Flight 118288 119358 133221 124246

NAS Flight Plan/Amendment 408546 376498 431127 429553

Flight Control 1079 5629 7683 25601

Flight Plan Cancel 8113 6909 7763 9764

Arrival 48779 42552 48716 47304

Departure 56905 50389 57060 55774

Position Update 5014126 4557046 5030773 4909287

Oceanic Position Update 4822 4666 4808 4569

Table 2.  ZID/ZKC Flight Counts on Scenario Days

Aircraft Type 24 January 27 January 13 March 20 March

Commercial 8189 7175 8523 8412

General Aviation 1517 1418 1829 1855

Military 344 303 281 280

Other 54 57 69 83

Total 10104 8953 10702 10630

Scheduled and Filed Flight Plans

The prediction performance of CRCT was compared 
when predictions were based on scheduled flight plans 
and when they were based on filed flight plans.  
Performance metrics were calculated for matching last 
scheduled and first filed flight plans.  Scheduled flight 
plans are derived from historical data for flights listed 
in the Official Airline Guide (OAG).  Since this data is 
available for commercial flights only, the prediction 
performance comparison for scheduled and filed flight 
plans is limited to airline data.

Figure 3 illustrates CRCT mean absolute sector entry 
error for scheduled and filed flight plans on good and 
bad weather days.  The error is presented as a function 
of time to departure.  Sector entry error is comparable 
for scheduled and filed flight plans, suggesting that, in 
terms of this metric, filed flight plans do not provide 
better prediction performance than scheduled plans.  
Departure time error, which is the major factor that 
impacts sector entry error, is shown in Figure 4.  Not 
surprisingly, departure time error is comparable for last 
scheduled and first filed flight plans.

Figure 5 presents CRCT predictive hit rate for last 
scheduled and first filed flight plans on good and bad 
weather days.  Unlike sector entry error and departure 
time error, there is a noticeable difference between hit 
rate for scheduled and filed flight plans.  Hit rate is 
higher for filed flight plans meaning that more flights 
actually enter the sectors they are predicted to enter 
when the predictions are based on filed plans than when 
they are based on scheduled ones.  Since estimated 
departure times are similar for scheduled and filed 
flight plans (Figure 4) the vertical profiles for the 
corresponding (scheduled and filed plan) trajectories 
are expected to be similar.  This suggests that the 
observed difference in the hit rate is due to differences 
in the lateral route specified for corresponding 
scheduled and filed flight plans.

Figure 6 illustrates the distribution of the pre-departure 
time at which flight plans are filed (for commercial 
aircraft) at both (ZID and ZKC) ARTCCs.  
Approximately half of all flight plans are filed by 
90 minutes to departure.  When this occurs, the routes 
for the flights are known more accurately, however the 
flying time to sectors is no more accurate.
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CRCT Absolute Sector Entry Error for Last Scheduled and 
First Filed Flight Plans During Good and Bad Weather
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Figure 3.  CRCT Sector Entry Error for Scheduled 
and Filed Flight Plans

CRCT Absolute Estimated Departure Time Error for Last 
Scheduled and First Filed Flight Plans During Good and 
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Figure 4.  CRCT Departure Time Error for 
Scheduled and Filed Flight Plans

CRCT Hit Rate for Last Scheduled and First Filed Flight 
Plans During Good and Bad Weather

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240

Time to Departure (min)

H
it

 R
at

e

Sched-Bad Wx Sched-Good Wx Filed-Bad Wx Filed-Good Wx

Figure 5.  CRCT Hit Rate for Scheduled and Filed 
Flight Plans

Distribution of Initial Flight Plan Filing by ARTCC
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Figure 6.  Distribution of Flight Plan Filing Time

Controlled Flights

CRCT prediction performance metrics were compared 
for commercial flights with filed flight plans and flights 
with controlled departure times.  Flights with controlled 
times had an estimated departure clearance time 
(EDCT) at the time of the prediction, though the EDCT 
may have been subsequently cancelled.  EDCTs are 
assigned as part of ground delay programs which are 
usually implemented during bad weather.  For this 
reason, the comparison is performed using the bad 
weather scenarios only.

Flights typically depart at or after their planned times.  
CRCT departure time estimates, sometimes based on 
adaptive delay logic, like the planned times, are usually 
earlier than the actual departure times.  During bad
weather, departure time uncertainty is greatest for 
controlled flights and Figure 7 shows that the absolute 
error in estimated departure time is largest for these 
flights.  As Figure 8 shows, sector entry error is also 
greatest for controlled flights.  This is expected because 
pre-departure error is the dominant component of sector 
entry error.  While estimated departure time error and 
sector entry error metrics are worse for flights with 
controlled departure times, Figure 9 shows that hit rate 
is best for these flights up to approximately two and one 
half hours prior to departure and best for flights with 
filed plans beyond that pre-departure time.  This 
suggests that some of the flights with controlled 
departure times had their routes amended.
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CRCT Absolute Estimated Departure Time Error for 
Controlled and Filed Flight Plans During Bad Weather
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Figure 7.  Departure Time Error for Controlled 
Flights

CRCT Absolute Sector Entry Error for Controlled and Filed 
Flight Plans During Bad Weather
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Figure 8.  Sector Entry Error for Controlled Flights

CRCT Hit Rate for Controlled and Filed Flight Plans
During Bad Weather
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Figure 9.  CRCT Hit Rate for Controlled Flights

Ground delay programs are sometimes cancelled 
allowing controlled flights to depart before their 
EDCTs.  This can impact the prediction performance of 
CRCT.  CRCT departure time error, sector entry error, 
and hit rate were compared for controlled flights that 

did and did not have an EDCT at wheels up time.  Since 
more flights are expected to have EDCTs during bad 
weather than during good weather, the comparisons 
were performed using the bad weather scenarios only.

As with a general set of flights, CRCT generally 
predicts that controlled flights depart earlier than they 
actually do.  Figure 10 shows that CRCT departure time 
estimates are more accurate for controlled flights that 
still had an EDCT at wheels up.  This is also the case 
for sector entry error, as Figure 11 demonstrates.  Mean 
absolute sector entry error is greater for flights with no 
EDCT at wheels up than for flights with EDCT at 
wheels up.  CRCT typically predicts that flights enter 
sectors earlier than they actually do.  This is the case for 
controlled flights with EDCTs at wheels up.  However, 
Figure 11 shows that for controlled flights with no 
EDCT at wheels up CRCT tends to predict that the 
flights enter sectors later than they actually do in 
predictions made up to two and one half hours before 
departure.  Figure 12 shows that, like departure time 
error and sector entry error, CRCT hit rates exhibits the 
best performance for controlled flights with EDCTs at 
wheels up.  The routes for controlled flights whose 
EDCTs were still active at wheels up are a more 
accurate representation of intent than for those with no 
EDCT at wheels up.

CRCT Absolute Estimated Departure Time Error for 
Controlled Flights With and Without EDCT at Wheels Up
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Figure 10.  Departure Time Error for Flights With 
and Without EDCTs
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CRCT Sector Entry Error for Controlled Flights With and 
Without EDCT at Wheels Up
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Figure 11.  Sector Entry Error for Flights With and 
Without EDCTs

CRCT Hit Rate for Controlled Flights With and Without 
EDCT at Wheels Up
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Figure 12.  CRCT Hit Rate for Flights With and 
Without EDCTs

Pre-Departure Component of Prediction Error

Sector entry error was determined for proposed 
commercial flights at various times before departure 
and for newly active flights for various flight times to 
sector.  The difference between sector entry error for 
proposed and active flights is used to estimate the pre-
departure component of the prediction error while 
sector entry error for active flights is used to estimate 
the en route component.  We make the simplifying 
assumption that the sum of the absolute pre-departure 
and en route errors is equivalent to the total sector entry 
prediction error.  Pre-departure and en route errors were 
aggregated by weather day and the relative contribution 
to the total was determined.

Figure 13 presents the total CRCT sector prediction 
error, aggregated for ZID and ZKC, as a function of 
time to departure during good weather and bad.  
Figures 14 and 15 illustrate the contribution of pre-
departure and en route errors to total predictive error, 

on good and bad weather days, respectively.  Each 
curve in the figures represents a given flight time to 
sector and presents pre-departure contribution to total 
error by time to departure.  Flight time to sector is 
expressed in 15-minute quantiles, with the 0 quantile 
representing flight times up to 14 minutes.  The pre-
departure component dominates the sector prediction 
error on good and bad weather days.  As to be expected, 
pre-departure portion of the error decreases as flight 
time to sector increases.  On bad weather days, the 
relative contribution of pre-departure uncertainty to the 
total prediction error is slightly more than on good 
weather days.

Sector Entry Prediction Error During Good
and Bad Weather
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Figure 13.  Sector Entry Prediction Error During 
Good and Bad Weather

Contribution of Pre-Departure Uncertainty to Sector Entry 
Error on Good Weather Days
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Figure 14.  Pre-Departure Component of Sector 
Entry Error for Good Weather
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Contribution of Pre-Departure Uncertainty to Sector Entry 
Error on Bad Weather Days
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Figure 15.  Pre-Departure Component of Sector 
Entry Error for Bad Weather

Commercial, General Aviation, and Military 
Flights

Pre- and post-departure prediction accuracy was 
investigated for commercial, general aviation (GA) and 
military flights.  Sector entry error, predictive hit rate, 
entry error, and error in estimated departure time were 
determined for proposed flights of each type as a 
function of time to departure.  The same metrics were 
also determined for active flights of each type as a 
function of flight time to sector.

Commercial aircraft are driven by financial incentives 
to meet their schedules while GA and military aircraft 
are not.  It is to be expected that departure times are 
more easily estimated for commercial flights and 
consequently sector entry error would be lowest for 
these flights.  This is indeed the case as Figures 16 and 
17 illustrate.  Figure 16 shows that on both good and 
bad weather days CRCT estimated departure time error 
for commercial flights is less than for GA and military 
aircraft.  Estimated departure time error is less on good 
weather days than on bad weather days for commercial 
and military aircraft.  Surprisingly, the opposite is the 
case for GA aircraft.  This warrants further 
investigation.  There are more GA flights on the bad 
weather days (Table 2) but the nature of the flights 
might differ on good and bad weather days.  For 
example, there are probably a smaller percentage of 
recreational GA flights (possibly with greater flight 
plan data uncertainty) on bad weather days.

CRCT Absolute Estimated Departure Time Error
by Aircraft Type
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Figure 16.  CRCT Departure Time Error by 
Aircraft Type

CRCT Absolute Sector Entry Error by Aircraft Type
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Figure 17.  CRCT Sector Entry Error by Aircraft 
Type

Figure 17 illustrates that, since estimated departure time 
error is smallest for commercial flights, sector entry 
error is also smallest for these flights.  For commercial 
aircraft, sector entry error is less on the good weather 
days than on the bad weather days.  For GA and 
military aircraft, sector entry error is comparable on 
good and bad weather days for pre-departure times up 
to approximately two hours.  Beyond that time, sector 
entry error for GA aircraft is less on the good weather 
days.  For pre-departure times of two hours and beyond, 
sector entry error for military aircraft is less on the bad 
weather days, a counterintuitive result.  This again is a 
candidate for further study.  The sample of military 
flights is relatively small (Table 2) making prediction 
performance metrics for those flights more susceptible 
to outlier influences.

Figure 17 presents total prediction error by aircraft type 
for good and bad weather days.  Figures 18 and 19 
illustrate the contribution of pre-departure and en route 
errors to the total for good and bad weather days, 
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respectively.  Each curve in the two figures presents 
pre-departure contribution to total predictive error for 
commercial, GA, or military aircraft and for 60 or 
120 minutes flight time to sector.  Except for military 
flights with two hour flight time to sector, the pre-
departure component dominates the predictive error on 
both good and bad weather days.

Figure 20 illustrates CRCT hit rate by aircraft type for 
good and bad weather days.  Hit rate is higher on good 
weather days for each aircraft type, suggesting, not 
surprisingly, that flight plan routes more accurately 
reflect the path aircraft take on good weather days.  Hit 
rates are best for commercial aircraft, except at pre-
departure times up to 90 minutes, at which times GA hit 
rate is comparable or slightly better.

Contribution of Pre-Departure Uncertainty to Sector Entry 
Error by Aircraft Type on Good Weather Days
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Figure 18.  Pre-Departure Component of Prediction 
Error During Good Weather

Contribution of Pre-Departure Uncertainty to Sector Entry 
Error by Aircraft Type on Bad Weather Days
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Figure 19.  Pre-Departure Component of Prediction 
Error During Bad Weather

CRCT Hit Rate by Aircraft Type
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Figure 20.  CRCT Hit Rate by Aircraft Type

Summary and Conclusion

A prediction performance analysis was done to assess 
the contribution of pre-departure uncertainty to CRCT’s 
sector prediction error.  The analysis was based on 
CRCT predictions for ZID and ZKC on two good 
weather days and two bad weather days.  The metrics, 
estimated departure time error, sector entry error, and 
hit rate, were calculated at various times before 
departure.

A comparison of CRCT’s prediction performance when 
scheduled and filed flight plans were used for 
commercial aircraft showed that estimated departure 
time error and sector entry error were comparable when 
based on the last scheduled or first filed flight plan.  
However, hit rate was better for first filed flight plans 
suggesting that the flight plan route was amended for 
some flights when their initial flight plans were filed.  
Approximately one half of initial flight plan filings are 
made by 90 minutes before departure.

CRCT prediction performance was compared for 
commercial flights with and without controlled 
departure times during bad weather.  As expected, 
estimated departure time error and sector entry error 
were greatest for flights with EDCTs.  However, hit 
rate was best for controlled flights at pre-departure 
times up to two and one half hours.  This probably 
means that some flight plan routes were amended after 
the flights were given controlled departure times.
Prediction performance was also compared for 
controlled flights that still had EDCTs at wheels up and 
that no longer had an EDCT at wheels up.  Estimated 
departure time error, sector entry error, and hit rate 
were all better when the EDCT was still in effect at 
wheels up.

The pre-departure component of the CRCT prediction 
error (sector entry error) was assessed for commercial 
flights as a function of time to departure and flight time 
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to sector.  As one might expect, the fraction of the 
prediction error due to pre-departure error decreases as 
flight time increases.  For a given flight time, the 
fraction is fairly constant at most pre-departure times, 
with noticeable increases at the earliest and latest times.

CRCT prediction performance was compared for 
commercial, GA, and military flights.  Estimated 
departure time error and consequently sector entry error 
was least for commercial flights.  This is 
understandable given the incentives that commercial 
flights have to be punctual.  Except for military flights 
with long flight times to sector, the pre-departure 
component dominates the predictive error.  Hit rate is 
best for commercial flights and is better on good 
weather days than on bad.

The prediction performance analyses have shown that 
pre-departure uncertainty is a greater contributor to 
CRCT’s sector prediction error than en route 
uncertainty.  Research is recommended to determine 
more accurate estimates of aircraft departure time.  
Airline submission and ETMS use of early intent 
messages should improve departure time accuracy.  
Historical data could be analyzed to estimate departure 
delay as function of several variables, including 
departure airport, type of weather, and type of flight.  
Use of this data should reduce estimated departure time 
error.  Airport surface automation is needed to monitor 
aircraft before take-off, update estimated departure 
times, and forward them to other NAS automation.  It 
should be noted however that, while these departure 
time estimates may be very accurate, the lookahead 
time at which they are available may be too short to 
make them useful to TFM tools.
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