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Motivation

•

 

Prediction of 4D aircraft trajectories is cornerstone of future 
international ATC/ATM concepts
–

 

U.S. NextGen: Trajectory Based Operations
–

 

European SESAR: Business Trajectory

•

 

Decision Support Tools (DSTs) using an aircraft trajectory 
predictor (TP) provide these trajectories 
=>

 

DST Validation required. Why independent TP validation?

•

 

Past: Independent TP Validation not performed
–

 

TP indirectly validated by validating TP-dependent DST functionality

•

 

Benefits of independent TP validation methodology
–

 

Supports development of Common TP capabilities
–

 

Improves DST validation by validating major component
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TP Validation Overview

•

 

Focuses on two exercises
–

 

Functional Verification
•

 

Confirms TP performs required functions under required conditions (functional requirements)
–

 

Performance Validation
•

 

Confirms TP performance is within acceptable limits (performance requirements)
•

 

Primary performance requirements:
–

 

Computational speed
–

 

Prediction accuracy (most challenging)

•

 

Two classes of TP requirements
–

 

Direct requirements
•

 

Define explicit requirements for TP functionality or performance
•

 

Example: Maximum predicted altitude error or response time
–

 

Indirect requirements
•

 

Define required overall system performance for TP-dependent functions
•

 

Example: Conflict probe false alarm/missed alert rate
–

 

Not uncommon to have a mixture of both classes
•

 

Very common today to have more indirect requirements
–

 

Validation for the different classes requires different approaches
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TP Validation Methodology

•

 

Goal:

 

Avoid costs from failures during single-stage, pass/fail validation

•

 

Recognizes:
–

 

Iteration likely required to achieve validation success
–

 

Collection of validation data (simulation, field test, operational) can be expensive 
•

 

Iteration can incur costs multiple times

•

 

Core techniques
–

 

Main approaches used within and to define various stages of validation process

•

 

Procedural framework
–

 

Overall process as applied to validation of TP
–

 

Not required steps, but validation options and guidance to create a complete validation effort

American Institute of Aeronautics and Astronautics: Guidance, Navigation, and Control  Conference: Toronto, Canada, August 4, 2010
Highlights from the Federal Aviation Administration’s Support of the National Airspace System 5 of 18

TP Revision

Functional
Verification

Test Bench
Computational

Performance Validation

Archived
Operational Data

Validation

High‐Fidelity
Simulation
Validation

Field Operations
Validation

Field Test
Validation

IterationIteration

Procedural
Framework

Core Techniques
• Use validation stages
• White box testing
• Test bench testing



TP Validation Methodology: 
Core Techniques

•

 

Use of validation stages
–

 

Perform validation as a series of (potentially iterative) validation efforts
•

 

Minimize costs if one or more requirements not met
•

 

Reduces overall effort in meeting all requirements
–

 

Applications:
•

 

Framework: Start with simpler, cheaper efforts that are necessary, but not sufficient
–

 

Iterate at earlier stages before most significant costs incurred
•

 

Validate requirements in sequence, not all at once
–

 

Start with requirements whose success improves chances of achieving other requirements
–

 

Example: direct requirements before indirect requirements

•

 

White box testing:
–

 

Use knowledge of internal TP processing to isolate error sources

 

during testing
•

 

Identify potential critical error sources when performing validation tests
•

 

If test fails, test results support identification of impact of the various error sources
–

 

Improves identification of required TP modifications during iteration
–

 

May only require collecting some additional data during planned tests
•

 

Identifiable from input data
•

 

No extra test cases added
–

 

Example: identifying which cases have or don’t have lateral routing errors
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TP Validation Methodology: 
Procedural Framework

•

 

Provides a series of validation stages
–

 

Increasing fidelity and, typically, cost

•

 

Represents options, not requirements, for overall validation effort
–

 

Not all stages need to be performed
–

 

Some may not be feasible

•

 

Iteration on TP capabilities at any stage
–

 

If fail or close to failing to meet requirements
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TP Validation Methodology: 
Procedural Framework

•

 

Functional Verification
–

 

Validation of functional requirements
•

 

Confirm TP functional response to specified inputs
–

 

Required if functional requirements exist
–

 

Performed prior to any performance validation tests

•

 

Test Bench Computational Performance Validation
–

 

Validation of direct

 

computational speed performance requirements
•

 

TP response time under specified conditions
–

 

Tests TP outside of client system (test bench)
–

 

Pro: 
•

 

May be less expensive to run than full system tests
•

 

Requires just representative TP input data
•

 

Can be used for extreme condition testing
–

 

Con: 
•

 

Necessary, but not sufficient for validation
–

 

TP performance typically impacted by system (e.g., shared processors)
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TP Validation Methodology: 
Procedural Framework

•

 

Archived Operational Data Validation
–

 

Validation of all performance requirements
–

 

Uses pre-recorded operational data (e.g., ETMS)
•

 

Input data for TP’s client system
•

 

Actual aircraft trajectory data (for prediction accuracy requirements)
–

 

Pro:
•

 

Inexpensive way to validate feasible performance requirements
–

 

Con:
•

 

Impact of controller actions may limit feasibility
–

 

Example: Not useful for conflict false alert rate requirement
•

 

Not feasible if TP client system changes current operations

•

 

High-Fidelity Simulation Validation
–

 

Validation of all performance requirements
–

 

Uses simulation of aircraft and/or operational environment
•

 

Too low fidelity impacts feasibility of validation tests

–

 

Pro:
•

 

Should be a feasible for most validation efforts
•

 

Enables statistically significant numbers of test cases to be run
–

 

Con:
•

 

Can be expensive
•

 

Knowledge and modeling of error sources required
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TP Validation Methodology: 
Procedural Framework

•

 

Field-Test Validation
–

 

Validation of all performance requirements
–

 

Near-operational conditions
•

 

In actual facility
•

 

Uses test procedures and/or test aircraft
–

 

Pro:
•

 

Can create future operational conditions with operational fidelity
•

 

Can test extreme or safety critical conditions
–

 

Con:
•

 

Often expensive
•

 

Limited number of test scenarios

•

 

Field-Operations Validation
–

 

Validation of all performance requirements
–

 

Actual operational conditions
•

 

In actual facility
•

 

Uses actual procedures and aircraft
–

 

Pro:
•

 

Actual deployment environment, ultimate fidelity
–

 

Con:
•

 

Expensive
•

 

No control of environment, rare cases may not occur during testing
•

 

Difficult to capture large amounts of data for statistical significance
•

 

May limit to TP client systems that don’t significantly alter current operations
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ERAM Case Study: 
FAA ERAM Validation Results

•

 

FAA En Route Automation Modernization (ERAM) Factory Acceptance Test 
(FAT) in September 2007

–

 

Used pre-recorded data from Host Computer System and primary radars
•

 

Archived Operational Data and High-Fidelity Simulation (time-shifted archived data) 
Validation

–

 

6 of 8 TP-related requirements not met
•

 

Two

 

(level and non-level flight) altitude prediction accuracy requirements (direct) –

 

not 
met

•

 

Two

 

conflict probe warning time requirements (indirect) –

 

met
•

 

Four

 

conflict probe false alarm/missed alert rate requirements (indirect) –

 

not met

•

 

FAA initiated effort to correct ERAM deficiencies
–

 

Iterative modifications and re-evaluation performed
–

 

November 2008, ERAM passed all requirements

•

 

Lesson Learned
–

 

Years of costly iteration (starting before FAT) required to ultimately meet requirements
•

 

Ad Hoc iterative procedures used
–

 

Approaches need improvement

•

 

New methodology techniques could have helped!
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ERAM Case Study: 
Examples

•
 

Paper presents several proposed techniques for 
improving ERAM validation approach
–

 

Analyses performed to determine, retrospectively, whether 
techniques would have helped

–

 

Used actual data from FAA FAT

•
 

Two examples illustrate benefits of:
–

 

Iterating to achieve the level-flight altitude (LFA) accuracy 
requirement before validating other requirements

•

 

Technique: using validation stages
–

 

Identifying flights without lateral intent errors during false 
alarm rate testing

•

 

Technique: white box testing
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ERAM Case Study: 
LFA Accuracy Requirement Example

•
 

Validation Metric
–

 

If maximum prediction error >500 ft, level segment is 
unacceptable

–

 

Level flight accuracy metric: 

•
 

FAT results 
–

 

Requirement: LFM ≤

 

0.0016
–

 

Initial ERAM result: LFM = 0.0088 (unmet)

•
 

Proposed Technique: Iterate to achieve LFA accuracy 
requirement before validating against other requirements
–

 

Analyze if would have improved meeting other requirements
•

 

Non-level flight (direct) accuracy (NLFA) requirement (unmet)
•

 

False Alarm Conflict probe (indirect) requirement (unmet)
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ERAM Case Study: 
LFA Accuracy Iteration Impact on NLFA Accuracy

•

 

FAA post-FAT analysis 
identified:

–

 

Improperly modeled level-

 

off restrictions
–

 

Impacted many flights in 
descent

•

 

Impacts both LFA and 
NLFA accuracy

•

 

Easier to identify in LFA 
accuracy analysis

•

 

Iterating to meet LFA 
accuracy requirement 
would likely have 
improved NLFA 
accuracy performance
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ERAM Case Study: 
LFA Accuracy Iteration Impact on False Alarms

•

 

36 flights had unacceptable LFA 
segments during FAT
–

 

Majority needed improvement to 
achieve post-FAT validation 

•

 

FAT results for these 36 flights
–

 

Flights with false alarms = 20
–

 

Number of false alarms = 36

•

 

Post-FAT results for these 36 flights
–

 

Flights with false alarms = 12
–

 

Number of false alarms = 22

•

 

Iterating to meet the LFA requirement 
would likely have improved false 
alarm performance
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ERAM Case Study: 
Identifying Flights without Lateral Intent Errors Example

•

 

Proposed Technique: Identify flights with and without lateral intent 
(routing) errors during false alarm testing

–

 

Analyze flights without

 

lateral intent errors 
•

 

Sufficient along-track lateral errors to require TP modification post-FAT?
•

 

Modifying TP for these flights had a positive impact on false alarm performance?
–

 

If so, approach would have
•

 

Identified along-track error impact on false alarms
•

 

Could have eliminated common error sources with lateral route error flights
–

 

Easier to resolve without lateral routing error impact

•

 

Used lateral route adherence to identify flights without lateral

 

intent 
errors

–

 

For each actual state (surveillance report), in adherence if:
•

 

Position within 1 nmi  and heading within 30 degrees of flight plan route
–

 

Only required analyzing actual state and route data
•

 

No additional testing required
–

 

Effectively identified flights with primarily along-track lateral errors
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ERAM Case Study: 
Identifying Flights without Lateral Intent Errors Example

•

 

Analyzed 158 in-adherence flights
–

 

Top 10% largest along-track errors

•

 

Majority of 158 flights were 
improved post-FAT to achieve 
validation

•

 

Along track error reduced

•

 

Flights without lateral intent errors 
needed

 

ERAM TP modifications to 
achieve validation

•

 

Analyzed impact of these flights on 
false alarm performance

–

 

False alarms during FAT = 84
–

 

False alarms post-FAT = 58

•

 

Iteration on these flights likely 
would have improved false 
alarm performance
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Concluding Remarks

•

 

New TP validation methodology proposed
–

 

Core techniques and multi-staged approach
–

 

Designed to:
•

 

Reduce effort in identifying and resolving validation failures
•

 

Avoid costs associated with single-stage, pass/fail approaches

•

 

ERAM case study analyzed
–

 

Illustrated new techniques could have benefitted

 

ERAM validation by:
•

 

Ordering requirements to reduce overall effort
•

 

Identifying error sources during testing to provide TP iteration

 

support 

•

 

Validation techniques could also support new TP R&D
–

 

New TP development 
•

 

Rarely have direct TP requirements
•

 

Iteration typically required
–

 

New methodology adds structure to approaching these development 
issues
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