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Abstract 
Traffic flow management decision support 

tools such as the User Request Evaluation Tool 
(URET), developed by the MITRE Center for 
Advanced Aviation Systems Development, and the 
Center-TRACON Automation System (CTAS), 
developed by the National Aeronautics and Space 
Administration/Ames Research Center, use 
simulation as a tool for development, technical 
assessment, and field evaluation. Air traffic 
scenarios based on recorded live data are used to 
test these decision support tools. Frequently the 
scenarios need to be modified in order to create 
aircraft-to-aircraft encounters and conflicts that are 
not present in the live data. This paper presents an 
implementation of a genetic algorithm that is being 
used to time shift the flights within an air traffic 
scenario to create encounters with specific 
constrained characteristics. These constraints are 
the distributions of the horizontal and vertical 
closest points of approach, the encounter angle at 
the closest point of horizontal approach, and the 
vertical type of encounter. This paper describes how 
the genetic algorithm was implemented, including a 
description of the solution chromosome and of the 
fitness function used to measure the potential 
solutions. After describing the implementation a 
specific example of its use is presented. 

Introduction 
Both the User Request Evaluation Tool 

(URET), developed by the MITRE Center for 
Advanced Aviation Systems Development, and the 
Center-TRACON Automation System (CTAS), 
developed by the National Aeronautics and Space 
Administration/Ames Research Center, are decision 

support tools (DSTs) that support en route air traffic 
controllers. Each has a conflict probe function that 
predicts aircraft-to-aircraft and aircraft-to-airspace 
conflicts.  

In 1996 the Federal Aviation Administration's 
Traffic Flow Management Branch (ACT-250) 
established the Conflict Probe Assessment Team 
(CPAT) to evaluate the accuracy of the conflict 
probes in these DSTs. In 2002, CPAT became a 
part of the Simulation and Modeling Group (ACB-
330). Over the past six years CPAT has measured 
the conflict prediction accuracy of URET [1], 
measured the trajectory modeling accuracy of both 
URET and CTAS [2], and assisted in the accuracy 
testing of URET Current Capability Limited 
Deployment (CCLD) [3, 4], which is the 
operational implementation of URET. 

Air Traffic Scenarios 
For each of these tasks CPAT used air traffic 

scenarios, which are data files describing the flow 
of aircraft traffic over a period of time. The files 
contain time-stamped planning and advisory 
information and track data. The planning and 
advisory information describe the aircraft’s planned 
flight; which includes its flight plan and flight plan 
amendments, interim altitude clearances, and hold 
information. The track data represents the aircraft’s 
actual flight path. It consists of several fields 
including the flight's time-stamped horizontal 
coordinates and altitude. 

Encounters and Conflicts 
An aircraft-to-aircraft encounter is an instance 

when the relative spatial distance between two 
aircraft is less than some parametric value. This 
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distance is usually specified in two dimensions: its 
projection onto a horizontal plane and its projection 
onto a vertical axis. The values for defining an 
encounter in this paper are 25 nautical miles (nm) in 
the horizontal plane and 5000 feet vertically.  

An aircraft-to-aircraft conflict is an aircraft-to-
aircraft encounter for which these horizontal and 
vertical distances also violate published air traffic 
control standards. In en route airspace the 
horizontal separation standard is 5 nm and the 
vertical separation standard is either 2000 feet if 
both aircraft are above FL290 or 1000 feet if one or 
both aircraft are below FL290. Since encounters 
and conflicts, as defined in this paper, differ only 
with regards to distance parameters, the terms are 
used interchangeably. 

Time Shifting 
Two specific requirements for the URET 

CCLD accuracy testing were that the air traffic 
scenarios had to be based on recorded field data and 
that these scenarios had to contain a specified 
minimum number of encounters and conflicts [5].  

Recorded field data will contain aircraft-to-
aircraft encounters, but under normal operating 
conditions this data will not contain aircraft-to-
aircraft conflicts. In order to meet the URET CCLD 
accuracy test requirement, CPAT time shifted the 
flights in the recorded field data. 

This time shifting consisted of determining a 
flight specific time increment that was added to all 
the events associated with the flight. This caused 
each flight to follow it’s recorded flight profile, but 
at a different time. This caused aircraft-to-aircraft 
encounters and conflicts to occur in the scenarios 
that did not exist in the field.  

For the URET CCLD accuracy scenarios CPAT 
developed software that calculated these time 
increments using time compression and random 
time adjustment. For time compression the time 
increment is derived by multiplying a constant 
times the difference between a flight's start time and 
a base time that precedes all the start times in the 
scenario. For random time adjustment the time 
increment is randomly selected. A more detailed 
description of these techniques and an overview of 
CPAT's scenario generation process are presented 
in Reference [6]. 

 This approach was satisfactory for the URET 
CCLD accuracy testing, but CPAT realized that the 
distribution of key encounter parameters (e.g., 
encounter angle) was not controlled by these 
techniques. In order to control these parameters 
CPAT investigated the feasibility of using a genetic 
algorithm to determine a set of delta times (i.e., 
flight specific time increments) that can be applied 
to the flights in a scenario so that the distribution of 
aircraft-to-aircraft encounters and conflicts meets 
user defined distribution constraints. The results of 
this investigation are documented in Reference [7]. 

The Genetic Algorithm 
The genetic algorithm (GA) was invented by 

John Holland at the University of Michigan in the 
1960s and 1970s. GAs are a specific case of a broad 
class of algorithms called Random Heuristic Search 
[8] algorithms and are considered the most 
prominent example of evolutionary programming. 
Comprehensive information regarding the history, 
study, application, and theory of GAs can be found 
in the literature. Most of CPAT’s implementation of 
a GA is based on material gleaned from References 
[9], [10], and [11]. 

GAs derive their behavior from a metaphor of 
the biological processes associated with evolution. 
There is no specific GA; instead a GA is an 
approach to solving a problem. But all GA 
approaches have the following traits in common: a 
population of chromosomes, selection according to 
fitness, crossover to create new offspring, and 
random mutation.  

CPAT implemented a GA in a program named 
Cat,1 which was developed using: 

• gcc Version 2.7.2.3,  the GNU C/C++ compiler 

• libg+ Version 2.7.2, the GNU C/C++ libraries 

• Pro*C/C++ Version 8.1.6, the Oracle 
preprocessor that provides a software interface 
to tables within an Oracle Version 8.1.6 
relational database 

                                                      
1 Cat was named for the character Cat on the British television 
series Red Dwarf. Cat is a humanized feline; the result of 
3,000,000 years of evolution on the space ship Red Dwarf after 
all but one of its crew were killed by a radiation leak. 
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The goal of Cat is to find a set of delta times 
that can be applied to the flights in a scenario so 
that the distribution of parameters characterizing 
aircraft-to-aircraft conflicts meets user defined 
distribution constraints. The parameters chosen for 
Cat are: the number of conflicts, the horizontal 
separation distance at closest approach, the vertical 
separation distance at closest approach, the 
encounter angle at closest approach, and the vertical 
type of encounter, which refers to whether the 
aircraft are in level flight or transitioning vertically. 
CPAT did not choose these bins arbitrarily. They 
were chosen based on the bins used for URET 
CCLD Accuracy Testing [5] and on conflict 
properties discussed in Reference [12]. 

The following subsections describe how each 
of the traits common to all GAs were implemented 
in Cat. 

Population of Chromosomes 
The first common trait found in all GAs is a 

population of chromosomes. In a GA, a 
chromosome is defined as an array of bits or 
characters that represent a potential solution to a 
problem. These bits or characters are defined as the 
chromosome's genes. The values these genes can 
assume are defined as alleles. A population of these 
chromosomes is a subset of all solutions to the 
problem. Usually the initial population is selected 
randomly. 

In Cat a chromosome is defined to be a 
sequence of delta times. A chromosome may be 
represented by the tuple 

<∆t1, ∆t2, … ∆tn> 

where a delta time is associated with each flight and 
the number of genes is equal to the number of 
flights in the scenario. These delta times represent 
the flight specific time shift increment. The 
granularity of the delta times is 10's of seconds 
because the track data used by Cat has been 
preprocessed and interpolated to 10-second 
intervals. For example, the chromosome  

<0, -75, 9, …> 

means to start the first flight at its original time, to 
start the second flight 750 seconds earlier than its 
original start time, to start the third flight 90 
seconds later, etc. Since a scenario may contain 

thousands of flights, each chromosome may contain 
thousands of delta times. 

The number of chromosomes contained in the 
population maintained by Cat is an input parameter. 
The initial population consists of chromosomes in 
which the delta times are selected randomly either 
from a uniform distribution with a user specified 
upper and lower range or from a normal distribution 
with a mean of zero and a user specified standard 
deviation.  

Selection According to Fitness 
The second common trait found in all GAs is 

selection according to fitness. This requires that the 
implementer must define a fitness function. The 
fitness function in a GA produces a score for each 
chromosome, which is a measure of how well the 
chromosome solves the problem. The fitness of a 
population may be defined either as the average of 
all of the fitness scores of the population's 
chromosomes or as the fitness score of the best 
individual chromosome in the population. The goal 
of the GA is to evolve its population until its fitness 
reaches some desired value.  

The fitness of a chromosome in Cat is based 
on how well the distribution of encounters found in 
a scenario generated with the time shifted flights 
specified in the chromosome meets the user defined 
distributions. For Cat these distributions are 
specified in terms of a number of constraint bins. 

 
Constraint Bins 
Table 1 identifies the 20 constraint bins used 

by Cat. These bins specify the total number of 
encounters the user desires and the distribution of 
those encounters. Note that Cat can be run in either 
of two modes. In the conflict mode the bin sizes 
represent conflict separation criteria. In the 
encounter mode the bin sizes are larger. 

• Number of conflicts. One constraint bin 
specifies the number of desired conflicts or 
encounters (denoted ). This 
constraint bin is specified by a minimum and a 
maximum bound. For example in a large 
scenario the user may specify the following 
range: 

ersNbrEncount

o 247 ≤  ≤ 302 ersNbrEncount
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Table 1. Constraint Bins 

Constraint Bins Conflict Mode Encounter Mode 
1 bin for number of conflicts 1 bin specified by a minimum and maximum bound 
5 bins for horizontal separation 1 nm increments from 0 to 5 nm 5 nm increments from 0 to 25 nm 
5 bins for vertical separation 400 ft increments from 0 to 2000 ft 1000 ft increments from 0 to 5000 ft 
6 bins for encounter angle 30 degree increments from 0 to 180º 
3 bins for vertical type of encounter Level-level 

Level-transitioning 
Transitioning-transitioning 

 

• Horizontal constraint bins. There are five 
horizontal constraint bins, which specify the 
distribution of the horizontal separation 
parameter. This parameter refers to the distance 
measured in the horizontal plane at the closest 
approach in the horizontal plane (denoted 

). The bin size differs for 
encounters and for conflicts. For encounters 
these bins are in 5 nm increments for 0 nm to 
25 nm. For conflicts these are in 1 nm 
increments from 1 nm to 5 nm. For example in 
a large scenario the user might specify the 
following distribution: 

MinSepHorz

o 60 to 74 conflicts where the  
is less than 1 nm. 

MinSepHorz

o 51 to 63 conflicts where the  
is greater than or equal 1 nm and less than 2 
nm. 

MinSepHorz

o 50 to 61 conflicts where the  
is greater than or equal 2 nm and less than 3 
nm. 

MinSepHorz

o 55 to 67 conflicts where the  
is greater than or equal 3 nm and less than 4 
nm. 

MinSepHorz

o 31 to 37 conflicts where the  
is greater than or equal 4 nm and less than 
or equal 5 nm 

MinSepHorz

• Vertical constraint bins. There are five vertical 
constraint bins, which specify the distribution 
of the vertical separation parameter. This 
parameter refers to the altitude difference 
between two aircraft as measured at the closest 
approach in the horizontal plane (denoted 

). Again, the bin size differs for 

encounters and for conflicts. For encounters 
these are 1000 foot increments from 0 feet to 
5000 feet. For conflicts these are 400 foot 
increments from 0 feet to 2000 feet. For 
example in a large scenario the user might 
specify the following distribution: 

MinSepVert

o 204 to 250 conflicts where the 
 is less than 400 feet. MinSepVert

o 16 to 20 conflicts where the  
is greater than or equal 400 feet and less 
than 800 feet. 

MinSepVert

o 15 to 19 conflicts where the  
is greater than or equal 800 feet and less 
than 1200 feet. 

MinSepVert

o 9 to 11 conflicts where the  is 
greater than or equal 1200 feet and less than 
1600 feet. 

MinSepVert

o 2 to 2 conflicts where the  is 
greater than or equal 1600 feet and less than 
or equal 2000 feet. 

MinSepVert

 Note in this example that this distribution can 
be satisfied with as few as 246 conflicts yet the 
number of conflicts bin specifies a minimum 
requirement of 247 conflicts. This shows that 
these bins are defined independently, but must 
both be satisfied to meet the constraints. 

 Note also that the lower and upper bounds for a 
constraint bin can be the same. This example 
shows that the user wants exactly two conflicts 
in the fifth constraint bin. 

• Encounter angle constraint bins. There are six 
encounter angle constraint bins, which specify 
the distribution of the encounter angle 
parameter. This parameter refers to the angle in 

 4 



Presented at the Digital Avionics Systems Conference (DASC), October 28-31, 2002, Irvine CA. 

the horizontal plane measured at the closest 
approach in the horizontal plane (denoted 

). This angle is 0º for 
head-on encounters and 180º for in-trail 
encounters. For either encounters or conflicts 
these are 30º increments from 0º to 180º. For 
example in a large scenario the user might 
specify the following distribution: 

stApproachangleClose

o 73 to 90 conflicts where the 
 is less than 30º. stApproachangleClose

o 31 to 39 conflicts where 
the angleClose  is greater than 
or equal 30º and less than 60º. 

stApproach

o 31 to 39 conflicts where the 
 is greater than or 

equal 60º and less than 90º. 
stApproachangleClose

o 26 to 33 conflicts where the 
 is greater than or 

equal 90º and less than 120º. 
stApproachangleClose

o 42 to 53 conflicts where the 
 is greater than or 

equal 120º and less than 150º. 
stApproachangleClose

o 44 to 48 conflicts where the 
 is greater than or 

equal 150º and less than or equal 180º. 
stApproachangleClose

• Vertical type of encounter constraint bins. 
There are three vertical type of encounter 
constraint bins, which specify the distribution 
of the vertical type of encounter parameter. 
This parameter refers to whether the flights are 
in level flight or if they are either climbing or 
descending. For either encounters or conflicts 
these are level-level, level-transitioning, and 
transitioning-transitioning, where level refers to 
a flight in level flight and transitioning refers to 
a flight that is either climbing or descending. 
For example in a large scenario the user might 
specify the following distribution: 

o 90 to 110 conflicts where both aircraft are 
level. 

o 97 to 119 conflicts where one aircraft is 
level and the other aircraft is transitioning. 

o 59 to 73 conflicts where both aircraft are 
transitioning. 

The ranges for these constraint bins are input to 
Cat as 20 pairs of constraint bounds – a low bound 
and a high bound for each of the constraint bins. 
These bounds are denoted lobound and  
for 

i ihibound
20,1=i , and are used in Equations (4), (5), and 

(6). 

Fitness Function 
Two fitness functions are available in Cat: a 

linear fitness function and an exponential fitness 
function. Each of these functions reward both 
individual and multiple instances where the tallied 
counts, denoted  for i , fall within 
these constraint bounds. At the same time the 
functions penalize instances in which the measured 
value is below the low bound or above the high 
bound. 

icount 20,1=

The linear fitness function is defined as: 

20
XF =  (1)

The exponential fitness function is defined as: 

202
2 X

F =  (2)

Where for both Equation (1) and Equation (2) 
X is defined as: 

∑
=

=
20

1i
ixX  (3)

The variable xi represents the individual 
contribution that bin i provides to the fitness score. 
The calculation for xi depends on three conditions.  

1. If the tallied count for a bin lies below the 
lower bound (i.e., if counti < loboundi) then 

2











=

i

i
i lobound

count
x

 

(4)

 

2. If the tallied count for a bin falls within the 
lower and upper bounds (i.e., if loboundi ≤ 
counti < hiboundi) then  

1=ix  
 

 (5)
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3. If the tallied count falls above the upper bound 
(i.e., if hiboundi < counti) then 

2









=

i

i
i count

hibound
x  (6)

For each of these equations, loboundi refers to 
constraint bin i’s low bound, hiboundi refers to its 
high bound, and counti refers to the number of 
encounters tallied to be in the constraint bin. 

The value of xi provides a value of 1.0 if the 
tallied count in its bin is between the low and high 
bounds and decreases to 0.0 as the count gets 
further away from either of the bounds. This is seen 
in Figure 1, which is a plot showing the individual 
contribution for a constraint bin as a function of 
tallied count (counti). In this figure the two vertical 
dashed lines represent the bin's low bound and 
upper bound. 

Once the individual values of xi are computed 
for each of the 20 constraint bins, X is computed as 
their floating-point sum as defined in Equation (3). 
This results in X being a weighted sum representing 
the number of bins in which the constraints have 
been satisfied. 

The fitness (F) is then calculated as defined in 
either Equation (1) or Equation (2), depending on 
user input. Figures 2 and 3 are plots of how fitness 
(F) varies as a function of the sum of the individual 
contributions (X) when using Equation (1) and 
Equation (2), respectively. Note in both of these 
plots the sum of the individual contributions ranges 
from 0 to 20, where 20 is the maximum value for X 
which is achieved when all constraints have been 
met. 

Selection Technique 
The first step a GA takes in evolving a new 

generation of chromosomes is to select parent 
chromosomes from the current population. In all 
GAs the chance of a chromosome being selected to 
be a parent is based on the chromosome's fitness.  
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Figure 1. Constraint Bin Contribution to Fitness 
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In Cat the number of parent chromosomes 
selected is the same as the number of chromosomes 
in the population and the specific selection 
technique used by the GA is a user option. The 
following selection techniques are available in Cat: 

• Fitness Proportionate Selection. This is the 
original selection technique developed by 
Holland. In this technique the chance of a 
chromosome being selected is directly 
proportional to the chromosome's contribution 
to the total fitness of the population. 

• Sigma Scaled Selection. This technique favors 
chromosomes with a fitness value close to the 
average fitness of the population. 

• Boltzmann Selection. This technique uses the 
Boltzmann distribution so that the selection 
criteria vary with time. When using this 
selection technique a GA is similar to simulated 
annealing. 

• Rank Selection. In this technique the 
chromosomes are ranked according to their 
fitness. Then the chance of a chromosome 
being selected depends on the rank order of the 
chromosome. This technique keeps a GA from 
converging too quickly. 

• Tournament Selection. In this technique pairs of 
chromosomes are randomly chosen and the 
chromosome with the higher fitness value is 
selected. 

During any of these selection processes it is 
statistically possible that none of the most fit 
chromosomes will get selected. Because of this 
possibility Cat uses an algorithm called stochastic 
universal sampling with the Fitness Proportionate 
Selection, Sigma Scaled Selection, and Boltzmann 
Selection techniques, since each of these techniques 
select chromosomes based on each chromosome's 
expected representation in the selected population. 
The stochastic universal sampling algorithm 
ensures that fit chromosomes are not statistically 
lost in the selection process. 

Crossover to Produce New Offspring 
The third common trait found in all GAs is 

crossover to produce new offspring. In this step the 
chromosomes in the selected parents are paired and 
some of their genes may be swapped. 

In Cat the selected parents are paired serially 
and the occurrence of crossover depends on an 
input parameter Pc, which is the probability of 
crossover. When crossover occurs, the genes 
between two parent chromosomes are swapped 
using either single-point or two-point crossover 
depending on user input. If crossover does not 
occur the selected parent's chromosomes become 
the offspring chromosomes. 

Single-Point Crossover 
In single-point crossover a single locus point is 

randomly selected and the genes beyond that point 
are swapped between the two parent chromosomes. 
For example given the two parent chromosomes  

<1, 2, 3, 4, 5, 6, 7, ...>  

<90, 80, 70, 60, 50, 40, 30, ...>  

if the randomly selected locus point is between the 
third and fourth genes, the resultant offspring 
chromosomes would be  

<1, 2, 3, 60, 50, 40, 30, ...> 

<90, 80, 70, 4, 5, 6, 7, ...>  

where the swapped genes are identified in the bold 
font. 

This is the simplest form of crossover, but has 
limitations including an end point effect that is the 
result of always including a chromosome's end 
genes in the swap. 

Two-Point Crossover 
In two-point crossover two loci points are 

randomly selected and the genes between those two 
points are swapped between the two parent 
chromosomes. This technique reduces the end point 
effect, which may occur when using single-point 
crossover. For example given the two parent 
chromosomes  

<1, 2, 3, 4, 5, 6, 7, ...>  

<90, 80, 70, 60, 50, 40, 30, ...>  

if the first randomly selected locus point is between 
the second and third genes and the second randomly 
selected locus point is between the sixth and 
seventh genes, the resultant offspring chromosomes 
would be  

<1, 2, 70, 60, 50, 40, 7, ...>  

<90, 80, 3, 4, 5, 6, 30, ...>  
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where the swapped genes are identified in the bold 
font. 

Random Mutation 
The fourth common trait found in all GAs is 

random mutation. This is the final step in evolving a 
new generation of chromosomes during which each 
of the genes in the chromosomes of the offspring 
population is considered for mutation.  

In Cat when mutation occurs the gene is 
randomly changed to another valid value (allele), 
which is a delta time selected randomly from either 
a uniform distribution in a user specified interval or 
a normal distribution with a zero mean and a user 
defined standard deviation. In Cat the occurrence of 
mutation depends on an input parameter Pm, which 
is the probability of mutation. For example given 
the following chromosome  

<1, 2, 3, 4, 5, 6, 7, ...>  

if the fourth gene were randomly selected to mutate, 
it may be changed to  

<1, 2, 3, 90, 5, 6, 7, ...>  

where the mutated gene is identified in the bold 
font. 

Additional Features 
Two additional features that CPAT 

implemented in Cat are elitism and a resume 
capability. 

Elitism 
Elitism is a technique that cheats the GA's 

metaphor. As implemented in Cat a user specified 
number of the highest ranking chromosomes are 
retained prior to the selection step. Then, after the 
selection-crossover-mutation steps, the worst 
chromosomes are replaced by these elite 
chromosomes. As a result Cat can be ensured that 
the best chromosomes in a given generation are 
present in the succeeding generation. Elitism has 
been proven to improve a GA's performance. 

Resume Capability 
When running Cat sufficient information is 

written to a file during each generation so that 
another run can be initiated starting with that 
generation. This capability has proved to be useful 
because it provides the ability to start up a run that 

may have terminated prematurely. It also provides 
the ability to restart a run with different constraint 
bin values. 

Pseudocode 
Figure 4 contains high-level pseudocode that 

describes Cat. 

 
1 Initialization 
2 do { 
3    evaluate the fitness of each chromosome 
4    save the elite 
5    select a parent population 
6    create offspring using crossover 
7    randomly mutate offspring chromosomes 
8    save the new population. 
9 } while (termination criteria not met) ; 

Figure 4. Genetic Algorithm Pseudocode 

 

• Line 1 represents Cat’s initialization. During 
initialization user input is processed and flight 
information is selected from tables within the 
Oracle database. This flight information is 
stored in memory so the program no longer 
needs to access the tables. 

• Lines 2 through 9 represent the processing loop. 
Each iteration represents the evolution of a 
single generation. 

• Line 3 represents the evaluation of the fitness 
score for each chromosome in the population. 
The fitness calculation requires that each track 
point for every flight must be compared with 
each track point for every other flight. Even 
though gross filter techniques are used this  
function is ( )2nO . To achieve a reasonable run 
time Cat calculates the fitness of each 
chromosome in a child process that returns its 
result via interprocess communication.  

• Line 4 represents the elitism implementation. 
The chromosomes are first rank ordered, and 
then a user specified number of the best 
chromosomes are saved. In each successive 
generation these saved chromosomes replace 
the worst chromosomes in the population. 

• Lines 5, 6, and 7 represents the selection, 
crossover, and mutation processes.  
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• Line 8 represents when data associated with the 
current generation is output to a file. This 
provides the resume capability. Additional files 
are also created that can be viewed by the user 
to monitor Cat’s progress. 

• Line 9 represents the end of the processing 
loop. The loop terminates if a user specified 
maximum number of generations is achieved or 
if the value of one of the chromosomes reaches 
a user specified value.  

Example 
The following example is based on field data 

recorded at the Atlanta Air Route Traffic Control 
Center. The non-time shifted scenario covers a time 
period of approximately four hours and contains 
1545 distinct flights. As expected this field data 
contains no aircraft-to-aircraft conflicts. 

Cat was given the data in the columns labeled 
Low and High in Table 2 as the low and high 
constraint bounds. This represents an increase from 
no conflicts to a significant number of conflicts 
(viz. between 247 and 302) with user specified 
distributions for the horizontal distance at closest 
approach, vertical distance at closest approach, 
encounter angle, and transition mix. (The column 
labeled Count represents the solution count and will 
be discussed later.) 

Additional user input to Cat specified the 
following:  

• The population size was 20. 

• Fitness was calculated using the exponential 
fitness function defined in Equation (2). 

• The Sigma Scaled selection technique was 
used. 

• The Probability of Crossover was set to 0.75. 

• Two-point crossover was used. 

• The Probability of Mutation was set to 0.01 

• A normal distribution with a mean of 0.0 and a 
standard deviation of 300 seconds was used for 
establishing the initial population and for 
random mutation. 

• Four elite chromosomes were retained for each 
successive generation. 

Cat was launched with this input on a Sun 
Ultra 60 workstation with dual 450 MHz processors 
under the Solaris 8 operating system interfacing 
with an Oracle 8.1.6 relational database.  

After 126 generations the population had 
found a solution (i.e., one of the chromosomes had 
a fitness score of 1.0) and the average fitness score 
of population was 0.94003. The column labeled 
Count in Table 2 presents the actual conflict count 
for each of the constraint bins in the solution. In all 
cases the conflict distribution lies within the user 
requested bounds. This took approximately 7 hours 
and 45 minutes. 

Table 2. Example Constraint Bins 

Constraint Low Count High 
Number of Conflicts 247 269 302 

Horiz: 0 to 1 nm 60 62 74 
Horiz: 1 to 2 nm 51 54 63 
Horiz: 2 to 3 nm 50 59 61 
Horiz: 3 to 4 nm 55 60 67 
Horiz: 4 to 5 nm 31 34 37 
Vert: 0 to 400’ 204 220 250 

Vert: 400 to 800’ 16 19 20 
Vert: 800 to 1200’ 15 17 19 

Vert: 1200 to 1600’ 9 11 11 
Vert: 1600 to 2000’ 2 2 2 

Angle: 0 to 30° 73 90 90 
Angle: 30 to 60° 31 32 39 
Angle: 60 to 90° 31 35 39 
Angle: 90 to 120° 26 26 33 

Angle: 120 to 150° 42 42 53 
Angle: 150 to 180° 44 44 48 

Level-level 90 90 110 
Level-transitioning 97 113 119 

Transitioning-transitioning 59 66 73 
 

Since each of the chromosomes for this run 
contains 1545 genes, space prohibits presenting the 
individual chromosomes in this example. However, 
Table 3 presents the individual sorted fitness scores 
for the first three generations. As expected, the first 
generation (Gen #0) has low fitness scores since 
these 20 chromosomes contain random genes. The 
chromosome with the best fitness in generation #0 
had a fitness score of 0.0886440 and the average 
fitness of the population was 0.0235534. The 
successive generations show an overall 
improvement in the fitness scores with best fitness 
values of 0.0911046 and 0.1023070 and average 
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fitness scores of 0.0438816 and 0.0651789, 
respectively. Table 3 also shows how the elite 
chromosomes from a previous generation are 
retained; these elite chromosomes are represented 
by the bold font in the columns labeled Gen #1 and 
Gen #2 

Table 3. Fitness Scores for Initial Generations 

Gen #0 Gen #1 Gen #2 
0.0886440 0.0911046 0.1023070 
0.0488699 0.0886440 0.0953004 
0.0321908 0.0863275 0.0912814 
0.0313339 0.0712683 0.0911046 
0.0274708 0.0706393 0.0886440 
0.0264061 0.0547135 0.0884806 
0.0241474 0.0499142 0.0863275 
0.0241063 0.0488699 0.0846547 
0.0196521 0.0412677 0.0826284 
0.0194637 0.0321908 0.0803263 
0.0189504 0.0313339 0.0733514 
0.0182859 0.0312214 0.0712683 
0.0156847 0.0292689 0.0465129 
0.0144459 0.0288748 0.0415218 
0.0132846 0.0266635 0.0331802 
0.0110749 0.0264580 0.0323595 
0.0105811 0.0181483 0.0321876 
0.0100104 0.0177470 0.0305996 
0.0084683 0.0166889 0.0291958 
0.0079964 0.0162869 0.0223448 
 

All but 38 of the 1545 flights were time shifted 
by Cat. However, the amount of time shift was not 
excessive. The average time shift was only -7. 5 
seconds (earlier in time) with a standard deviation 
of 301.9 seconds. The most a flight was shifted 
earlier in time was 950 seconds. The most a flight 
was shifted later in time was 880 seconds. These 
results are consistent with the user input. Figure 5 
shows a histogram showing the frequency 
distribution of the time shifts for all of the flights. 
This means that Cat was able to derive data to 
generate a scenario with the desired number of 
conflicts and the desired distribution of conflict 
parameters by time shifting the flights no more than 
16 minutes from their original times. 

Figure 6 shows a plot of fitness versus 
generation. The thicker line represents the fitness 
value of the chromosome with the highest fitness 
for in a generation. The thinner line represents the 
average fitness value for the generation.  

0

50

100

150

200

250

f < -950

-950 < f <= -850

-850 < f <= -750

-750 < f <= -650

-650 < f <6:6= -550

-550 < f <= -450

-450 < f <= -350

-350 < f <= -250

-250 < f <= -150

-150 < f <= -50

-50 < f <= 50

50 < f <= 150

150 < f <= 250

250 < f <= 350

350 < f <= 450

450 < f <= 550

550 < f <= 650

650 < f <= 750

750 < f <= 850

850 < f <= 950

Time shift (seconds)

Figure 5. Frequency Distribution of Time Shift 

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 20 40 60 80 100 120
Generation

Fi
tn

es
s

Best fitness
Average fitness

Figure 6. Fitness vs. Generation 

Acronyms 
CCLD Core Capability Limited Deployment 

CPAT Conflict Probe Assessment Team 

CTAS Center TRACON Automation System 

DST Decision Support Tool 

FL Flight Level 

GA Genetic algorithm 

GNU GNU's Not Unix 

URET User Request Evaluation Tool 
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