
Presented at the Digital Avionics Systems Conference (DASC), October 28-31, 2002, Irvine CA.

GENERATION OF REALISTIC AIR TRAFFIC SCENARIOS

USING A GENETIC ALGORITHM

Robert D. Oaks, Signal Corporation

Mike Paglione, Federal Aviation Administration

William J. Hughes Technical Center, Atlantic City International Airport, NJ 08405

Abstract
Traffic flow management decision support

tools such as the User Request Evaluation Tool
(URET), developed by the MITRE Center for
Advanced Aviation Systems Development, and the
Center-TRACON Automation System (CTAS),
developed by the National Aeronautics and Space
Administration/Ames Research Center, use
simulation as a tool for development, technical
assessment, and field evaluation. Air traffic
scenarios based on recorded live data are used to
test these decision support tools. Frequently the
scenarios need to be modified in order to create
aircraft-to-aircraft encounters and conflicts that are
not present in the live data. This paper presents an
implementation of a genetic algorithm that is being
used to time shift the flights within an air traffic
scenario to create encounters with specific
constrained characteristics. These constraints are
the distributions of the horizontal and vertical
closest points of approach, the encounter angle at
the closest point of horizontal approach, and the
vertical type of encounter. This paper describes how
the genetic algorithm was implemented, including a
description of the solution chromosome and of the
fitness function used to measure the potential
solutions. After describing the implementation a
specific example of its use is presented.

Introduction
Both the User Request Evaluation Tool

(URET), developed by the MITRE Center for
Advanced Aviation Systems Development, and the
Center-TRACON Automation System (CTAS),
developed by the National Aeronautics and Space
Administration/Ames Research Center, are decision

support tools (DSTs) that support en route air traffic
controllers. Each has a conflict probe function that
predicts aircraft-to-aircraft and aircraft-to-airspace
conflicts.

In 1996 the Federal Aviation Administration's
Traffic Flow Management Branch (ACT-250)
established the Conflict Probe Assessment Team
(CPAT) to evaluate the accuracy of the conflict
probes in these DSTs. In 2002, CPAT became a
part of the Simulation and Modeling Group (ACB-
330). Over the past six years CPAT has measured
the conflict prediction accuracy of URET [1],
measured the trajectory modeling accuracy of both
URET and CTAS [2], and assisted in the accuracy
testing of URET Current Capability Limited
Deployment (CCLD) [3, 4], which is the
operational implementation of URET.

Air Traffic Scenarios
For each of these tasks CPAT used air traffic

scenarios, which are data files describing the flow
of aircraft traffic over a period of time. The files
contain time-stamped planning and advisory
information and track data. The planning and
advisory information describe the aircraft’s planned
flight; which includes its flight plan and flight plan
amendments, interim altitude clearances, and hold
information. The track data represents the aircraft’s
actual flight path. It consists of several fields
including the flight's time-stamped horizontal
coordinates and altitude.

Encounters and Conflicts
An aircraft-to-aircraft encounter is an instance

when the relative spatial distance between two
aircraft is less than some parametric value. This

 1

Presented at the Digital Avionics Systems Conference (DASC), October 28-31, 2002, Irvine CA.

distance is usually specified in two dimensions: its
projection onto a horizontal plane and its projection
onto a vertical axis. The values for defining an
encounter in this paper are 25 nautical miles (nm) in
the horizontal plane and 5000 feet vertically.

An aircraft-to-aircraft conflict is an aircraft-to-
aircraft encounter for which these horizontal and
vertical distances also violate published air traffic
control standards. In en route airspace the
horizontal separation standard is 5 nm and the
vertical separation standard is either 2000 feet if
both aircraft are above FL290 or 1000 feet if one or
both aircraft are below FL290. Since encounters
and conflicts, as defined in this paper, differ only
with regards to distance parameters, the terms are
used interchangeably.

Time Shifting
Two specific requirements for the URET

CCLD accuracy testing were that the air traffic
scenarios had to be based on recorded field data and
that these scenarios had to contain a specified
minimum number of encounters and conflicts [5].

Recorded field data will contain aircraft-to-
aircraft encounters, but under normal operating
conditions this data will not contain aircraft-to-
aircraft conflicts. In order to meet the URET CCLD
accuracy test requirement, CPAT time shifted the
flights in the recorded field data.

This time shifting consisted of determining a
flight specific time increment that was added to all
the events associated with the flight. This caused
each flight to follow it’s recorded flight profile, but
at a different time. This caused aircraft-to-aircraft
encounters and conflicts to occur in the scenarios
that did not exist in the field.

For the URET CCLD accuracy scenarios CPAT
developed software that calculated these time
increments using time compression and random
time adjustment. For time compression the time
increment is derived by multiplying a constant
times the difference between a flight's start time and
a base time that precedes all the start times in the
scenario. For random time adjustment the time
increment is randomly selected. A more detailed
description of these techniques and an overview of
CPAT's scenario generation process are presented
in Reference [6].

 This approach was satisfactory for the URET
CCLD accuracy testing, but CPAT realized that the
distribution of key encounter parameters (e.g.,
encounter angle) was not controlled by these
techniques. In order to control these parameters
CPAT investigated the feasibility of using a genetic
algorithm to determine a set of delta times (i.e.,
flight specific time increments) that can be applied
to the flights in a scenario so that the distribution of
aircraft-to-aircraft encounters and conflicts meets
user defined distribution constraints. The results of
this investigation are documented in Reference [7].

The Genetic Algorithm
The genetic algorithm (GA) was invented by

John Holland at the University of Michigan in the
1960s and 1970s. GAs are a specific case of a broad
class of algorithms called Random Heuristic Search
[8] algorithms and are considered the most
prominent example of evolutionary programming.
Comprehensive information regarding the history,
study, application, and theory of GAs can be found
in the literature. Most of CPAT’s implementation of
a GA is based on material gleaned from References
[9], [10], and [11].

GAs derive their behavior from a metaphor of
the biological processes associated with evolution.
There is no specific GA; instead a GA is an
approach to solving a problem. But all GA
approaches have the following traits in common: a
population of chromosomes, selection according to
fitness, crossover to create new offspring, and
random mutation.

CPAT implemented a GA in a program named
Cat,1 which was developed using:

• gcc Version 2.7.2.3, the GNU C/C++ compiler

• libg+ Version 2.7.2, the GNU C/C++ libraries

• Pro*C/C++ Version 8.1.6, the Oracle
preprocessor that provides a software interface
to tables within an Oracle Version 8.1.6
relational database

1 Cat was named for the character Cat on the British television
series Red Dwarf. Cat is a humanized feline; the result of
3,000,000 years of evolution on the space ship Red Dwarf after
all but one of its crew were killed by a radiation leak.

 2

Presented at the Digital Avionics Systems Conference (DASC), October 28-31, 2002, Irvine CA.

The goal of Cat is to find a set of delta times
that can be applied to the flights in a scenario so
that the distribution of parameters characterizing
aircraft-to-aircraft conflicts meets user defined
distribution constraints. The parameters chosen for
Cat are: the number of conflicts, the horizontal
separation distance at closest approach, the vertical
separation distance at closest approach, the
encounter angle at closest approach, and the vertical
type of encounter, which refers to whether the
aircraft are in level flight or transitioning vertically.
CPAT did not choose these bins arbitrarily. They
were chosen based on the bins used for URET
CCLD Accuracy Testing [5] and on conflict
properties discussed in Reference [12].

The following subsections describe how each
of the traits common to all GAs were implemented
in Cat.

Population of Chromosomes
The first common trait found in all GAs is a

population of chromosomes. In a GA, a
chromosome is defined as an array of bits or
characters that represent a potential solution to a
problem. These bits or characters are defined as the
chromosome's genes. The values these genes can
assume are defined as alleles. A population of these
chromosomes is a subset of all solutions to the
problem. Usually the initial population is selected
randomly.

In Cat a chromosome is defined to be a
sequence of delta times. A chromosome may be
represented by the tuple

<∆t1, ∆t2, … ∆tn>

where a delta time is associated with each flight and
the number of genes is equal to the number of
flights in the scenario. These delta times represent
the flight specific time shift increment. The
granularity of the delta times is 10's of seconds
because the track data used by Cat has been
preprocessed and interpolated to 10-second
intervals. For example, the chromosome

<0, -75, 9, …>

means to start the first flight at its original time, to
start the second flight 750 seconds earlier than its
original start time, to start the third flight 90
seconds later, etc. Since a scenario may contain

thousands of flights, each chromosome may contain
thousands of delta times.

The number of chromosomes contained in the
population maintained by Cat is an input parameter.
The initial population consists of chromosomes in
which the delta times are selected randomly either
from a uniform distribution with a user specified
upper and lower range or from a normal distribution
with a mean of zero and a user specified standard
deviation.

Selection According to Fitness
The second common trait found in all GAs is

selection according to fitness. This requires that the
implementer must define a fitness function. The
fitness function in a GA produces a score for each
chromosome, which is a measure of how well the
chromosome solves the problem. The fitness of a
population may be defined either as the average of
all of the fitness scores of the population's
chromosomes or as the fitness score of the best
individual chromosome in the population. The goal
of the GA is to evolve its population until its fitness
reaches some desired value.

The fitness of a chromosome in Cat is based
on how well the distribution of encounters found in
a scenario generated with the time shifted flights
specified in the chromosome meets the user defined
distributions. For Cat these distributions are
specified in terms of a number of constraint bins.

Constraint Bins
Table 1 identifies the 20 constraint bins used

by Cat. These bins specify the total number of
encounters the user desires and the distribution of
those encounters. Note that Cat can be run in either
of two modes. In the conflict mode the bin sizes
represent conflict separation criteria. In the
encounter mode the bin sizes are larger.

• Number of conflicts. One constraint bin
specifies the number of desired conflicts or
encounters (denoted). This
constraint bin is specified by a minimum and a
maximum bound. For example in a large
scenario the user may specify the following
range:

ersNbrEncount

o 247 ≤ ≤ 302 ersNbrEncount

 3

Presented at the Digital Avionics Systems Conference (DASC), October 28-31, 2002, Irvine CA.

Table 1. Constraint Bins

Constraint Bins Conflict Mode Encounter Mode
1 bin for number of conflicts 1 bin specified by a minimum and maximum bound
5 bins for horizontal separation 1 nm increments from 0 to 5 nm 5 nm increments from 0 to 25 nm
5 bins for vertical separation 400 ft increments from 0 to 2000 ft 1000 ft increments from 0 to 5000 ft
6 bins for encounter angle 30 degree increments from 0 to 180º
3 bins for vertical type of encounter Level-level

Level-transitioning
Transitioning-transitioning

• Horizontal constraint bins. There are five
horizontal constraint bins, which specify the
distribution of the horizontal separation
parameter. This parameter refers to the distance
measured in the horizontal plane at the closest
approach in the horizontal plane (denoted

). The bin size differs for
encounters and for conflicts. For encounters
these bins are in 5 nm increments for 0 nm to
25 nm. For conflicts these are in 1 nm
increments from 1 nm to 5 nm. For example in
a large scenario the user might specify the
following distribution:

MinSepHorz

o 60 to 74 conflicts where the
is less than 1 nm.

MinSepHorz

o 51 to 63 conflicts where the
is greater than or equal 1 nm and less than 2
nm.

MinSepHorz

o 50 to 61 conflicts where the
is greater than or equal 2 nm and less than 3
nm.

MinSepHorz

o 55 to 67 conflicts where the
is greater than or equal 3 nm and less than 4
nm.

MinSepHorz

o 31 to 37 conflicts where the
is greater than or equal 4 nm and less than
or equal 5 nm

MinSepHorz

• Vertical constraint bins. There are five vertical
constraint bins, which specify the distribution
of the vertical separation parameter. This
parameter refers to the altitude difference
between two aircraft as measured at the closest
approach in the horizontal plane (denoted

). Again, the bin size differs for

encounters and for conflicts. For encounters
these are 1000 foot increments from 0 feet to
5000 feet. For conflicts these are 400 foot
increments from 0 feet to 2000 feet. For
example in a large scenario the user might
specify the following distribution:

MinSepVert

o 204 to 250 conflicts where the
 is less than 400 feet. MinSepVert

o 16 to 20 conflicts where the
is greater than or equal 400 feet and less
than 800 feet.

MinSepVert

o 15 to 19 conflicts where the
is greater than or equal 800 feet and less
than 1200 feet.

MinSepVert

o 9 to 11 conflicts where the is
greater than or equal 1200 feet and less than
1600 feet.

MinSepVert

o 2 to 2 conflicts where the is
greater than or equal 1600 feet and less than
or equal 2000 feet.

MinSepVert

 Note in this example that this distribution can
be satisfied with as few as 246 conflicts yet the
number of conflicts bin specifies a minimum
requirement of 247 conflicts. This shows that
these bins are defined independently, but must
both be satisfied to meet the constraints.

 Note also that the lower and upper bounds for a
constraint bin can be the same. This example
shows that the user wants exactly two conflicts
in the fifth constraint bin.

• Encounter angle constraint bins. There are six
encounter angle constraint bins, which specify
the distribution of the encounter angle
parameter. This parameter refers to the angle in

 4

Presented at the Digital Avionics Systems Conference (DASC), October 28-31, 2002, Irvine CA.

the horizontal plane measured at the closest
approach in the horizontal plane (denoted

). This angle is 0º for
head-on encounters and 180º for in-trail
encounters. For either encounters or conflicts
these are 30º increments from 0º to 180º. For
example in a large scenario the user might
specify the following distribution:

stApproachangleClose

o 73 to 90 conflicts where the
 is less than 30º. stApproachangleClose

o 31 to 39 conflicts where
the angleClose is greater than
or equal 30º and less than 60º.

stApproach

o 31 to 39 conflicts where the
 is greater than or

equal 60º and less than 90º.
stApproachangleClose

o 26 to 33 conflicts where the
 is greater than or

equal 90º and less than 120º.
stApproachangleClose

o 42 to 53 conflicts where the
 is greater than or

equal 120º and less than 150º.
stApproachangleClose

o 44 to 48 conflicts where the
 is greater than or

equal 150º and less than or equal 180º.
stApproachangleClose

• Vertical type of encounter constraint bins.
There are three vertical type of encounter
constraint bins, which specify the distribution
of the vertical type of encounter parameter.
This parameter refers to whether the flights are
in level flight or if they are either climbing or
descending. For either encounters or conflicts
these are level-level, level-transitioning, and
transitioning-transitioning, where level refers to
a flight in level flight and transitioning refers to
a flight that is either climbing or descending.
For example in a large scenario the user might
specify the following distribution:

o 90 to 110 conflicts where both aircraft are
level.

o 97 to 119 conflicts where one aircraft is
level and the other aircraft is transitioning.

o 59 to 73 conflicts where both aircraft are
transitioning.

The ranges for these constraint bins are input to
Cat as 20 pairs of constraint bounds – a low bound
and a high bound for each of the constraint bins.
These bounds are denoted lobound and
for

i ihibound
20,1=i , and are used in Equations (4), (5), and

(6).

Fitness Function
Two fitness functions are available in Cat: a

linear fitness function and an exponential fitness
function. Each of these functions reward both
individual and multiple instances where the tallied
counts, denoted for i , fall within
these constraint bounds. At the same time the
functions penalize instances in which the measured
value is below the low bound or above the high
bound.

icount 20,1=

The linear fitness function is defined as:

20
XF = (1)

The exponential fitness function is defined as:

202
2 X

F = (2)

Where for both Equation (1) and Equation (2)
X is defined as:

∑
=

=
20

1i
ixX (3)

The variable xi represents the individual
contribution that bin i provides to the fitness score.
The calculation for xi depends on three conditions.

1. If the tallied count for a bin lies below the
lower bound (i.e., if counti < loboundi) then

2











=

i

i
i lobound

count
x

(4)

2. If the tallied count for a bin falls within the
lower and upper bounds (i.e., if loboundi ≤
counti < hiboundi) then

1=ix

 (5)

 5

Presented at the Digital Avionics Systems Conference (DASC), October 28-31, 2002, Irvine CA.

3. If the tallied count falls above the upper bound
(i.e., if hiboundi < counti) then

2









=

i

i
i count

hibound
x (6)

For each of these equations, loboundi refers to
constraint bin i’s low bound, hiboundi refers to its
high bound, and counti refers to the number of
encounters tallied to be in the constraint bin.

The value of xi provides a value of 1.0 if the
tallied count in its bin is between the low and high
bounds and decreases to 0.0 as the count gets
further away from either of the bounds. This is seen
in Figure 1, which is a plot showing the individual
contribution for a constraint bin as a function of
tallied count (counti). In this figure the two vertical
dashed lines represent the bin's low bound and
upper bound.

Once the individual values of xi are computed
for each of the 20 constraint bins, X is computed as
their floating-point sum as defined in Equation (3).
This results in X being a weighted sum representing
the number of bins in which the constraints have
been satisfied.

The fitness (F) is then calculated as defined in
either Equation (1) or Equation (2), depending on
user input. Figures 2 and 3 are plots of how fitness
(F) varies as a function of the sum of the individual
contributions (X) when using Equation (1) and
Equation (2), respectively. Note in both of these
plots the sum of the individual contributions ranges
from 0 to 20, where 20 is the maximum value for X
which is achieved when all constraints have been
met.

Selection Technique
The first step a GA takes in evolving a new

generation of chromosomes is to select parent
chromosomes from the current population. In all
GAs the chance of a chromosome being selected to
be a parent is based on the chromosome's fitness.

0.0

0.2

0.4

0.6

0.8

1.0

0

count

x

x
low bound
high bound

Figure 1. Constraint Bin Contribution to Fitness

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
X

F

Figure 2. Linear Fitness Function

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20

X

F

Figure 3. Exponential Fitness Function

 6

Presented at the Digital Avionics Systems Conference (DASC), October 28-31, 2002, Irvine CA.

In Cat the number of parent chromosomes
selected is the same as the number of chromosomes
in the population and the specific selection
technique used by the GA is a user option. The
following selection techniques are available in Cat:

• Fitness Proportionate Selection. This is the
original selection technique developed by
Holland. In this technique the chance of a
chromosome being selected is directly
proportional to the chromosome's contribution
to the total fitness of the population.

• Sigma Scaled Selection. This technique favors
chromosomes with a fitness value close to the
average fitness of the population.

• Boltzmann Selection. This technique uses the
Boltzmann distribution so that the selection
criteria vary with time. When using this
selection technique a GA is similar to simulated
annealing.

• Rank Selection. In this technique the
chromosomes are ranked according to their
fitness. Then the chance of a chromosome
being selected depends on the rank order of the
chromosome. This technique keeps a GA from
converging too quickly.

• Tournament Selection. In this technique pairs of
chromosomes are randomly chosen and the
chromosome with the higher fitness value is
selected.

During any of these selection processes it is
statistically possible that none of the most fit
chromosomes will get selected. Because of this
possibility Cat uses an algorithm called stochastic
universal sampling with the Fitness Proportionate
Selection, Sigma Scaled Selection, and Boltzmann
Selection techniques, since each of these techniques
select chromosomes based on each chromosome's
expected representation in the selected population.
The stochastic universal sampling algorithm
ensures that fit chromosomes are not statistically
lost in the selection process.

Crossover to Produce New Offspring
The third common trait found in all GAs is

crossover to produce new offspring. In this step the
chromosomes in the selected parents are paired and
some of their genes may be swapped.

In Cat the selected parents are paired serially
and the occurrence of crossover depends on an
input parameter Pc, which is the probability of
crossover. When crossover occurs, the genes
between two parent chromosomes are swapped
using either single-point or two-point crossover
depending on user input. If crossover does not
occur the selected parent's chromosomes become
the offspring chromosomes.

Single-Point Crossover
In single-point crossover a single locus point is

randomly selected and the genes beyond that point
are swapped between the two parent chromosomes.
For example given the two parent chromosomes

<1, 2, 3, 4, 5, 6, 7, ...>

<90, 80, 70, 60, 50, 40, 30, ...>

if the randomly selected locus point is between the
third and fourth genes, the resultant offspring
chromosomes would be

<1, 2, 3, 60, 50, 40, 30, ...>

<90, 80, 70, 4, 5, 6, 7, ...>

where the swapped genes are identified in the bold
font.

This is the simplest form of crossover, but has
limitations including an end point effect that is the
result of always including a chromosome's end
genes in the swap.

Two-Point Crossover
In two-point crossover two loci points are

randomly selected and the genes between those two
points are swapped between the two parent
chromosomes. This technique reduces the end point
effect, which may occur when using single-point
crossover. For example given the two parent
chromosomes

<1, 2, 3, 4, 5, 6, 7, ...>

<90, 80, 70, 60, 50, 40, 30, ...>

if the first randomly selected locus point is between
the second and third genes and the second randomly
selected locus point is between the sixth and
seventh genes, the resultant offspring chromosomes
would be

<1, 2, 70, 60, 50, 40, 7, ...>

<90, 80, 3, 4, 5, 6, 30, ...>

 7

Presented at the Digital Avionics Systems Conference (DASC), October 28-31, 2002, Irvine CA.

where the swapped genes are identified in the bold
font.

Random Mutation
The fourth common trait found in all GAs is

random mutation. This is the final step in evolving a
new generation of chromosomes during which each
of the genes in the chromosomes of the offspring
population is considered for mutation.

In Cat when mutation occurs the gene is
randomly changed to another valid value (allele),
which is a delta time selected randomly from either
a uniform distribution in a user specified interval or
a normal distribution with a zero mean and a user
defined standard deviation. In Cat the occurrence of
mutation depends on an input parameter Pm, which
is the probability of mutation. For example given
the following chromosome

<1, 2, 3, 4, 5, 6, 7, ...>

if the fourth gene were randomly selected to mutate,
it may be changed to

<1, 2, 3, 90, 5, 6, 7, ...>

where the mutated gene is identified in the bold
font.

Additional Features
Two additional features that CPAT

implemented in Cat are elitism and a resume
capability.

Elitism
Elitism is a technique that cheats the GA's

metaphor. As implemented in Cat a user specified
number of the highest ranking chromosomes are
retained prior to the selection step. Then, after the
selection-crossover-mutation steps, the worst
chromosomes are replaced by these elite
chromosomes. As a result Cat can be ensured that
the best chromosomes in a given generation are
present in the succeeding generation. Elitism has
been proven to improve a GA's performance.

Resume Capability
When running Cat sufficient information is

written to a file during each generation so that
another run can be initiated starting with that
generation. This capability has proved to be useful
because it provides the ability to start up a run that

may have terminated prematurely. It also provides
the ability to restart a run with different constraint
bin values.

Pseudocode
Figure 4 contains high-level pseudocode that

describes Cat.

1 Initialization
2 do {
3 evaluate the fitness of each chromosome
4 save the elite
5 select a parent population
6 create offspring using crossover
7 randomly mutate offspring chromosomes
8 save the new population.
9 } while (termination criteria not met) ;

Figure 4. Genetic Algorithm Pseudocode

• Line 1 represents Cat’s initialization. During
initialization user input is processed and flight
information is selected from tables within the
Oracle database. This flight information is
stored in memory so the program no longer
needs to access the tables.

• Lines 2 through 9 represent the processing loop.
Each iteration represents the evolution of a
single generation.

• Line 3 represents the evaluation of the fitness
score for each chromosome in the population.
The fitness calculation requires that each track
point for every flight must be compared with
each track point for every other flight. Even
though gross filter techniques are used this
function is ()2nO . To achieve a reasonable run
time Cat calculates the fitness of each
chromosome in a child process that returns its
result via interprocess communication.

• Line 4 represents the elitism implementation.
The chromosomes are first rank ordered, and
then a user specified number of the best
chromosomes are saved. In each successive
generation these saved chromosomes replace
the worst chromosomes in the population.

• Lines 5, 6, and 7 represents the selection,
crossover, and mutation processes.

 8

Presented at the Digital Avionics Systems Conference (DASC), October 28-31, 2002, Irvine CA.

• Line 8 represents when data associated with the
current generation is output to a file. This
provides the resume capability. Additional files
are also created that can be viewed by the user
to monitor Cat’s progress.

• Line 9 represents the end of the processing
loop. The loop terminates if a user specified
maximum number of generations is achieved or
if the value of one of the chromosomes reaches
a user specified value.

Example
The following example is based on field data

recorded at the Atlanta Air Route Traffic Control
Center. The non-time shifted scenario covers a time
period of approximately four hours and contains
1545 distinct flights. As expected this field data
contains no aircraft-to-aircraft conflicts.

Cat was given the data in the columns labeled
Low and High in Table 2 as the low and high
constraint bounds. This represents an increase from
no conflicts to a significant number of conflicts
(viz. between 247 and 302) with user specified
distributions for the horizontal distance at closest
approach, vertical distance at closest approach,
encounter angle, and transition mix. (The column
labeled Count represents the solution count and will
be discussed later.)

Additional user input to Cat specified the
following:

• The population size was 20.

• Fitness was calculated using the exponential
fitness function defined in Equation (2).

• The Sigma Scaled selection technique was
used.

• The Probability of Crossover was set to 0.75.

• Two-point crossover was used.

• The Probability of Mutation was set to 0.01

• A normal distribution with a mean of 0.0 and a
standard deviation of 300 seconds was used for
establishing the initial population and for
random mutation.

• Four elite chromosomes were retained for each
successive generation.

Cat was launched with this input on a Sun
Ultra 60 workstation with dual 450 MHz processors
under the Solaris 8 operating system interfacing
with an Oracle 8.1.6 relational database.

After 126 generations the population had
found a solution (i.e., one of the chromosomes had
a fitness score of 1.0) and the average fitness score
of population was 0.94003. The column labeled
Count in Table 2 presents the actual conflict count
for each of the constraint bins in the solution. In all
cases the conflict distribution lies within the user
requested bounds. This took approximately 7 hours
and 45 minutes.

Table 2. Example Constraint Bins

Constraint Low Count High
Number of Conflicts 247 269 302

Horiz: 0 to 1 nm 60 62 74
Horiz: 1 to 2 nm 51 54 63
Horiz: 2 to 3 nm 50 59 61
Horiz: 3 to 4 nm 55 60 67
Horiz: 4 to 5 nm 31 34 37
Vert: 0 to 400’ 204 220 250

Vert: 400 to 800’ 16 19 20
Vert: 800 to 1200’ 15 17 19

Vert: 1200 to 1600’ 9 11 11
Vert: 1600 to 2000’ 2 2 2

Angle: 0 to 30° 73 90 90
Angle: 30 to 60° 31 32 39
Angle: 60 to 90° 31 35 39
Angle: 90 to 120° 26 26 33

Angle: 120 to 150° 42 42 53
Angle: 150 to 180° 44 44 48

Level-level 90 90 110
Level-transitioning 97 113 119

Transitioning-transitioning 59 66 73

Since each of the chromosomes for this run
contains 1545 genes, space prohibits presenting the
individual chromosomes in this example. However,
Table 3 presents the individual sorted fitness scores
for the first three generations. As expected, the first
generation (Gen #0) has low fitness scores since
these 20 chromosomes contain random genes. The
chromosome with the best fitness in generation #0
had a fitness score of 0.0886440 and the average
fitness of the population was 0.0235534. The
successive generations show an overall
improvement in the fitness scores with best fitness
values of 0.0911046 and 0.1023070 and average

 9

Presented at the Digital Avionics Systems Conference (DASC), October 28-31, 2002, Irvine CA.

fitness scores of 0.0438816 and 0.0651789,
respectively. Table 3 also shows how the elite
chromosomes from a previous generation are
retained; these elite chromosomes are represented
by the bold font in the columns labeled Gen #1 and
Gen #2

Table 3. Fitness Scores for Initial Generations

Gen #0 Gen #1 Gen #2
0.0886440 0.0911046 0.1023070
0.0488699 0.0886440 0.0953004
0.0321908 0.0863275 0.0912814
0.0313339 0.0712683 0.0911046
0.0274708 0.0706393 0.0886440
0.0264061 0.0547135 0.0884806
0.0241474 0.0499142 0.0863275
0.0241063 0.0488699 0.0846547
0.0196521 0.0412677 0.0826284
0.0194637 0.0321908 0.0803263
0.0189504 0.0313339 0.0733514
0.0182859 0.0312214 0.0712683
0.0156847 0.0292689 0.0465129
0.0144459 0.0288748 0.0415218
0.0132846 0.0266635 0.0331802
0.0110749 0.0264580 0.0323595
0.0105811 0.0181483 0.0321876
0.0100104 0.0177470 0.0305996
0.0084683 0.0166889 0.0291958
0.0079964 0.0162869 0.0223448

All but 38 of the 1545 flights were time shifted
by Cat. However, the amount of time shift was not
excessive. The average time shift was only -7. 5
seconds (earlier in time) with a standard deviation
of 301.9 seconds. The most a flight was shifted
earlier in time was 950 seconds. The most a flight
was shifted later in time was 880 seconds. These
results are consistent with the user input. Figure 5
shows a histogram showing the frequency
distribution of the time shifts for all of the flights.
This means that Cat was able to derive data to
generate a scenario with the desired number of
conflicts and the desired distribution of conflict
parameters by time shifting the flights no more than
16 minutes from their original times.

Figure 6 shows a plot of fitness versus
generation. The thicker line represents the fitness
value of the chromosome with the highest fitness
for in a generation. The thinner line represents the
average fitness value for the generation.

0

50

100

150

200

250

f < -950

-950 < f <= -850

-850 < f <= -750

-750 < f <= -650

-650 < f <6:6= -550

-550 < f <= -450

-450 < f <= -350

-350 < f <= -250

-250 < f <= -150

-150 < f <= -50

-50 < f <= 50

50 < f <= 150

150 < f <= 250

250 < f <= 350

350 < f <= 450

450 < f <= 550

550 < f <= 650

650 < f <= 750

750 < f <= 850

850 < f <= 950

Time shift (seconds)

Figure 5. Frequency Distribution of Time Shift

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 20 40 60 80 100 120
Generation

Fi
tn

es
s

Best fitness
Average fitness

Figure 6. Fitness vs. Generation

Acronyms
CCLD Core Capability Limited Deployment

CPAT Conflict Probe Assessment Team

CTAS Center TRACON Automation System

DST Decision Support Tool

FL Flight Level

GA Genetic algorithm

GNU GNU's Not Unix

URET User Request Evaluation Tool

 10

Presented at the Digital Avionics Systems Conference (DASC), October 28-31, 2002, Irvine CA.

References
[1] Cale, Mary Lee, Michael Paglione, Dr. Hollis
Ryan, Dominic Timoteo, Robert Oaks, April 1998,
"URET Conflict Prediction Accuracy Report,"
DOT/FAA/CT-TN98/8, WJHTC/ACT-250.

[2] Paglione, Mike, Dr. Hollis F. Ryan, Robert D.
Oaks, J. Scott Summerill, Mary Lee Cale, May
1999, "Trajectory Prediction Accuracy Report User
Request Evaluation Tool (URET)/Center-TRACON
Automation System (CTAS),"
DOT/FAA/CT_TN99/10, WJHTC/ACT-250.

[3] Conflict Probe Assessment Team, November
2000, CD-ROM, "URET CCLD Final Accuracy
Scenario Delivery Refresh Data, Revision 1,"
Federal Aviation Administration, Engineering and
Integration Branch, ACT-250, William J. Hughes
Technical Center, New Jersey, 08405.

[4] Conflict Probe Assessment Team, October
2001, CD-ROM, "URET CCLD Final Accuracy
Scenario Delivery Scenario Data, Revision G,"
Federal Aviation Administration, Engineering and
Integration Branch, ACT-250, William J. Hughes
Technical Center, New Jersey, 08405.

[5] Lockheed Martin Air Traffic Management,
August, 1998, "User Request Evaluation Tool
(URET) Core Capability Limited Deployment
(CCLD) System Specification (SSS), Volume I,
Part 2: Conflict Probe," Lockheed Martin Air
Traffic Management, Rockville, MD.

[6] Oaks, Robert, Mike Paglione, Fall 2001,
"Generation of Realistic Air Traffic Scenarios
Based on Recorded Field Data," 46th Annual Air
Traffic Control Association Conference
Proceedings, Arlington, VA, pp.142-146.

[7] Oaks, Robert D., August 2002, "A Study on the
Feasibility of Using a Genetic Algorithm to
Generate Realistic Air Traffic Scenarios Based on
Recorded Field Data," paper presented at the AIAA
Guidance, Navigation, and Control Conference,
Monterey, CA

 [8] Vose, Michael D., 1999, The Simple Genetic
Algorithm: Foundations and Theory, Cambridge,
MA, The MIT Press.

 [9] Goldberg, David E., 1989, Genetic Algorithms
in Search, Optimization, and Machine Learning,
Reading, MA, Addison-Wesley.

[10] Michalewicz, Zbigniew, 1996, Genetic
Algorithms + Data Structures = Evolution
Programs, Third Edition, New York, NY, Springer-
Verlag.

 [11] Mitchell, Melanie, 1998, An Introduction to
Genetic Algorithms, Cambridge, MA, The MIT
Press.

[12] Bilimoria, K. D. and H. Q. Lee, August, 2001,
"Properties of Air Traffic Conflicts for Free and
Structured Routing," paper presented at the AIAA
Guidance, Navigation, and Control Conference,
Montreal, Canada.

 11

	Abstract
	Introduction
	Air Traffic Scenarios
	Encounters and Conflicts
	Time Shifting
	The Genetic Algorithm
	Population of Chromosomes
	Selection According to Fitness
	Constraint Bins
	Fitness Function
	Selection Technique

	Crossover to Produce New Offspring
	Single-Point Crossover
	Two-Point Crossover

	Random Mutation
	Additional Features
	Elitism
	Resume Capability

	Pseudocode
	Example
	Acronyms
	References

