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Executive Summary 

 

An advanced separation management function called Conflict Resolution Advisories (CRA) is a crucial 

piece of the planned implementation of the Federal Aviation Administration’s (FAA) Next Generation 

Air Transportation System (NextGen). CRA is a capability designed to aid the air traffic controller in 

ensuring safe separation in air traffic. It uses the En Route Automation Modernization’s (ERAM) conflict 

probe algorithm to detect potential separation violations and provides a rank-ordered listing of potential 

conflict resolution maneuvers. The resolutions are presented to the controller via advanced menus 

accessible from the flight data block on the radar console. CRA allows the controller to insert their 

selected resolution into the ground automation system.  

 

In the current system, a controller’s conflict resolutions are frequently issued via voice and are often 

unknown to the ground automation system. A key benefit of CRA is that it facilitates the entry of full 2-

part amendments (e.g., including the second part of a 2-leg lateral maneuver or next altitude transition 

point). The authors hypothesize that improved intent entry leads to improved performance of the ground 

automation with respect to trajectory modeling and conflict alert generation. This paper documents a 

study testing this hypothesis, in support of the cost benefit case for CRA. 

 

The study employs experimental design techniques to plan and synthesize the results of 50 simulation 

runs. Several factors are examined including forecasted traffic demands from years 2018 and 2025, five 

airspace centers, and a parameter to reflect the level of intent entry to the ground automation system. 

These years are chosen because they represent the mid- and far-term time frame for NextGen, and five 

centers are selected to reflect the breadth of traffic characteristics in the National Airspace System. 

Metrics of interest in this study are trajectory accuracy and alert performance, which the FAA’s Concept 

Analysis Branch (ANG-C41) Conflict Probe Assessment Team has considerable experience in evaluating. 

Simulation runs are made using the Java En Route Development Initiative (JEDI) modeling environment 

and Problem Analysis Resolution and Ranking (PARR) software. PARR is the CRA prototype software 

developed by the MITRE Corporation’s Center for Advanced Aviation System Development and has 

been assessed in several experiments with Certified Professional Controllers (CPC) from across the 

country. Experimental models are fit to the results, and analysis results are presented in detail in this 

report.  

 

Overall, a performance improvement is observed in both trajectory modeling and conflict probe alerts 

with increasing levels of intent entry. Almost 45,000 flights over 240 hours are simulated and the output 

data is fit to a statistical model. The model fits the data closely, capturing between 97 and 100% of the 

variation in the data for different response variables, and indicates a strong non-linear effect from the 

parameter that reflects how completely controller intent is entered to the ground automation- the size of 

the effect is highest at lower levels of intent entry. The results indicate a potential improvement in 

trajectory modeling: 61% decrease in the overall average horizontal error (the two-dimensional distance 

between a sampled trajectory point and the time-coincident track point) and 42% decrease in the overall 

average vertical error when comparing scenarios that simulated the least amount of controller intent entry 

to scenarios with complete entry of full clearances. In addition, the number of trajectories generated that 

do not coincide with a flight plan amendment decrease by 42% overall between these scenarios, 

indicating that the trajectories generated are more stable and that less reconformance rebuilds are 

necessary with more complete entry of a controller’s future intent. 

 

These improvements in trajectory prediction and more accurate trajectories lead to better performance of 

the conflict probe. Two metrics that are used to demonstrate conflict alert performance are the first 

quartile of predicted warning time, and the count of alerts with duration greater than one minute. 
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Inaccurate trajectories result in an increase in late notification of alerts -in other words short warning time 

before a conflict. The authors consider the distribution of predicted warning time, or difference between 

predicted conflict start time and first time of notification for each conflict. The first quartile (25th 

percentile) of the predicted warning times of the alerts in seconds is a valuable metric to describe how the 

lower tail of the distribution is affected. From the statistical model, the first quartile of predicted warning 

time increases by 58 seconds overall when increasing full entry of 2-part clearances to the ground 

automation from 0 to 100%. The count of alerts with duration greater than one minute is important 

because with missing intent, some alerts will not be removed upon issuing an amendment. Alerts that are 

not deleted at the time an amendment is entered can be identified in this study by an alert duration greater 

than one minute, and represent problematic events. The count of these alerts decreases by an average of 

80% over all experimental runs when increasing full entry of 2-part clearances from 0 through 100%. 

 

This study presents a comprehensive simulation of improved intent entry and evaluates the impact that 

Conflict Resolution Advisories could have on the performance of the ground automation with respect to 

trajectory modeling and conflict alert generation.  The authors employed metrics that reflect important 

performance aspects of trajectory modeling and conflict probe alerting.  The results indicate a significant 

impact and definite trend of performance improvement with increasing entry of full 2-part clearances, 

which the use of CRA facilitates. 



 

 vii 

Table of Contents 

1. Introduction .......................................................................................................................................... 1 
1.1 Scope of the Document................................................................................................................ 1 
1.2 Background .................................................................................................................................. 1 
1.3 Benefit to be Studied ................................................................................................................... 2 
1.4 Contributors ................................................................................................................................. 3 
1.5 Document Organization ............................................................................................................... 3 

2. Study Approach .................................................................................................................................... 4 
2.1 Research Hypothesis.................................................................................................................... 4 
2.2 Overall Approach ........................................................................................................................ 4 
2.3 Experimental Factors ................................................................................................................... 6 

2.3.1 Intent Entry .............................................................................................................................. 6 
2.3.2 Traffic Density ........................................................................................................................ 7 
2.3.3 ARTCC ................................................................................................................................... 7 

2.4 Experimental Design ................................................................................................................... 8 
2.5 Fast-Time Simulation .................................................................................................................. 9 
2.6 Data Preparation .......................................................................................................................... 9 
2.7 Analysis Tools ........................................................................................................................... 10 

2.7.1 Trajectory Modeling Analysis ............................................................................................... 10 
2.7.2 Conflict Probe Alert Analysis ............................................................................................... 11 
2.7.3 JMP ....................................................................................................................................... 12 

3. Results ................................................................................................................................................ 12 
3.1 Trajectory Modeling Performance ............................................................................................. 13 

3.1.1 Counts of Trajectories ........................................................................................................... 13 
3.1.2 Trajectory Accuracy .............................................................................................................. 17 

3.2 Conflict Probe Alert Performance ............................................................................................. 21 
3.3 Statistical Model of Experiment Results ................................................................................... 23 

3.3.1 Model Implementation .......................................................................................................... 23 
3.3.2 Model Findings ..................................................................................................................... 24 

3.4 Flight Examples ......................................................................................................................... 33 
3.4.1 Example 1 – False Alert Induced by Reduced Intent Amendment ....................................... 33 
3.4.2 Example 2 – Late Alert due to Reduced Intent Amendment................................................. 37 
3.4.3 Example 3 – False and Missed Alerts due to Multiple Trajectory Rebuilds ......................... 42 

4. Conclusions ........................................................................................................................................ 52 
5. Glossary .............................................................................................................................................. 53 
6. References .......................................................................................................................................... 54 
Appendix A ................................................................................................................................................. 56 
Appendix B ................................................................................................................................................. 58 
Appendix C ................................................................................................................................................. 60 
Appendix D ................................................................................................................................................. 62 
Appendix E ................................................................................................................................................. 67 
 



 

 viii 

 

List of Figures 
 

Figure 1: Model of the NAS Process Being Studied..................................................................................... 5 
Figure 2: Study Process Flow ....................................................................................................................... 6 
Figure 3: Air Route Traffic Control Centers ................................................................................................. 8 
Figure 4: Diagram of Trajectory Errors ...................................................................................................... 11 
Figure 5: Paired t-test Results for Trajectory Count in ZDV 2018 Scenarios ............................................ 15 
Figure 6: Paired t-test Results for Trajectory Error in ZDV 2018 Scenarios .............................................. 19 
Figure 7: Trajectory Error vs. Look Ahead Time ....................................................................................... 20 
Figure 8: Alert Count vs. Intent Level ........................................................................................................ 21 
Figure 9: Percent of Alerts with Duration Exceeding One Minute ............................................................. 22 
Figure 10: Leverage Plots per Response ..................................................................................................... 25 
Figure 11: Residual Error Distributions for AAVE, AAHE, and Trajectory Count ................................... 28 
Figure 12: Residual Error Distributions for Q1WT and Duration Count ................................................... 29 
Figure 13: Predictor Profiler for 2018 (left) and 2025 (right) ..................................................................... 32 
Figure 14: Flight Paths for the Conflicting Aircraft.................................................................................... 34 
Figure 15: Horizontal Visualization of the Conflict Resolution without Intent Entry ................................ 35 
Figure 16: Vertical Visualization of the Conflict Resolution without Intent Entry .................................... 35 
Figure 17: Horizontal Visualization of the Conflict Resolution with Intent Entry ..................................... 36 
Figure 18: Vertical Visualization of the Conflict Resolution with Intent Entry ......................................... 36 
Figure 19: Flight Paths for the Conflicting Aircraft.................................................................................... 37 
Figure 20: Horizontal Visualization of the Predicted Conflict due to Resolution without Intent Entry ..... 38 
Figure 21: Vertical Visualization of the Predicted Conflict due to Resolution without Intent Entry ......... 39 
Figure 22: Horizontal Visualization of the Conflict Resulting in a Late Valid Alert ................................. 40 
Figure 23: Vertical Visualization of the Conflict Resulting in a Late Valid Alert ..................................... 40 
Figure 24: Horizontal Visualization of the Conflict Resolution with Intent Entry ..................................... 41 
Figure 25: Vertical Visualization of the Conflict Resolution with Intent Entry ......................................... 41 
Figure 26: Flight Paths for the Conflicting Aircraft.................................................................................... 42 
Figure 27: Intersection of the Resolution Flight Path and the Deviated Flight Path .................................. 43 
Figure 28: Horizontal Visualization of the Predicted Conflict between UAL398 and AAL448 ................ 44 
Figure 29: Vertical Visualization of the Predicted Conflict between UAL397 and AAL448 .................... 44 
Figure 30: Horizontal Visualization of the Predicted Conflict between AAL448 and AAL408 ................ 45 
Figure 31: Vertical Visualization of the Predicted Conflict between AAL408 and AAL448 .................... 45 
Figure 32: Horizontal Visualization of the Predicted Conflict between UAL397 and AAL408 ................ 46 
Figure 33: Vertical Visualization of the Predicted Conflict between UAL397 and AAL408 .................... 46 
Figure 34: Horizontal Visualization of the Predicted Conflict between AAL408 and AAL448 ................ 47 
Figure 35: Vertical Visualization of the Predicted Conflict between AAL408 and AAL448 .................... 47 
Figure 36: Horizontal Visualization of the False and Missed Alerts .......................................................... 48 
Figure 37: Vertical Visualization of the False and Missed Alerts .............................................................. 49 
Figure 38: Conforming and Conflict Free Trajectories............................................................................... 50 
Figure 39: Horizontal Visualization of the Conflict Free Trajectories ....................................................... 50 
Figure 40: Vertical Visualization of the Conflict Free Trajectories............................................................ 51 
Figure 41: Vertical Trajectory Error vs. Look Ahead Time ....................................................................... 60 
Figure 42: Along Track Trajectory Error vs. Look Ahead Time ................................................................ 61 
Figure 43: Percent of Alerts with Duration Exceeding One Minute for ZAU 2025 ................................... 62 
Figure 44: Percent of Alerts with Duration Exceeding One Minute for ZDV 2018 ................................... 62 
Figure 45: Percent of Alerts with Duration Exceeding One Minute for ZDV 2025 ................................... 63 
Figure 46: Percent of Alerts with Duration Exceeding One Minute for ZLA 2018 ................................... 63 
Figure 47: Percent of Alerts with Duration Exceeding One Minute for ZLA 2025 ................................... 64 



 

 ix 

Figure 48: Percent of Alerts with Duration Exceeding One Minute for ZMA 2018 .................................. 64 
Figure 49: Percent of Alerts with Duration Exceeding One Minute for ZMA 2025 .................................. 65 
Figure 50: Percent of Alerts with Duration Exceeding One Minute for ZNY 2018 ................................... 65 
Figure 51: Percent of Alerts with Duration Exceeding One Minute for ZNY 2025 ................................... 66 
 



 

 x 

List of Tables 
Table 1: Summary of Experiment Factors and Levels .................................................................................. 8 
Table 2: Number of Flights ......................................................................................................................... 10 
Table 3: Average Total Trajectory Count by Scenario ............................................................................... 13 
Table 4: Average Count of Trajectories Not Matched to a Clearance ........................................................ 16 
Table 5: Average Error Metrics by Scenario .............................................................................................. 18 
Table 6: Alert Statistics for ZAU Scenarios ............................................................................................... 23 
Table 7: Model Effect Tests for Average Horizontal Error ........................................................................ 26 
Table 8: Model Effect Tests for Average Absolute Vertical Error ............................................................. 26 
Table 9: Model Effect Tests for Response Variable TrajNoClr ................................................................. 26 
Table 10: Model Effect Tests for Response Variable Q1WT ..................................................................... 26 
Table 11: Model Effect Tests for Response Variable DurationCount ........................................................ 27 
Table 12: Summary of Model Coefficient Estimates .................................................................................. 30 
Table 13: Paired t-test Results for Trajectory Counts in All Scenarios ...................................................... 56 
Table 14: Paired t-test Results for Trajectory Errors in All Scenarios ........................................................ 58 
Table 15: Alert Statistics for ZDV Scenarios ............................................................................................. 67 
Table 16: Alert Statistics for ZLA Scenarios .............................................................................................. 67 
Table 17: Alert Statistics for ZMA Scenarios ............................................................................................. 68 
Table 18: Alert Statistics for ZNY Scenarios ............................................................................................. 68 
 

 

 



 

 xi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[THIS PAGE IS INTENTIONALLY LEFT BLANK] 



 

1 

1. Introduction 
This Federal Aviation Administration (FAA) technical note documents a study identified in the NextGen 

Project Level Agreement (PLA) titled TBO - Conflict Resolution Advisories - Voice and Datacomm [6], 

where TBO is the acronym for Trajectory Based Operations. The project includes the concept analysis, 

prototyping, and software development activities required to implement automated resolution advisories 

for predicted conflicts. This report documents the second major fast-time simulation study for the Conflict 

Resolution Advisories (CRA) project and is intended to support the cost benefit case for CRA. The study 

will generate simulated data from a designed experiment and use the data to quantify a benefit of CRA, 

namely, improved entry of aircraft intent. This introductory section presents the scope of this document, a 

brief background of the study, the benefits to be studied, contributors, and the organization of the 

document.  

 

1.1 Scope of the Document 
This document describes a fast-time simulation study that supports the PLA titled, TBO - Conflict 

Resolution Advisories - Voice and Datacomm [6]. This study provides a benefit analysis comparing the 

current procedures for resolving aircraft-to-aircraft conflicts, in which the ground automation may not be 

completely furnished with future intent information, with procedures envisioned for future use. These 

future procedures will make it easier for controllers to issue clearances that contribute to a “closed-loop” 

system
1
 in which the ground automation system is provided with future intent and can in turn generate 

more accurate conflict probe results and recommended resolutions. 

 

1.2 Background 
The FAA created the National Airspace System (NAS) to provide a safe and efficient airspace 

environment for the air transportation system in the United States. This includes all commercial, general 

civilian and military aviation. The NAS is composed of a network of air navigation facilities, air traffic 

control facilities, and airports, along with the technologies and the rules and regulations to operate the 

system. As the air transportation system in the United States has grown, the NAS has evolved by 

incorporating new procedures and new technologies.  

 

The Joint Planning and Development Office (JPDO) has established a vision for the Next Generation Air 

Transportation System (NextGen)[4-5] to fulfill its mission to design and deploy an air transportation 

system meeting the nation's anticipated needs in 2025. Trajectory Based Operations (TBO) is an integral 

part of NextGen and represents a paradigm shift from today’s mainly tactical air traffic control to strategic 

trajectory-based air traffic control that utilizes an unambiguous path in space and time. NextGen 

addresses a number of operational improvements organized into solution sets of related capabilities. CRA 

belongs to the NextGen TBO Solution Set.  

 

CRA is an advanced decision support tool (DST) designed to aid controllers in formulating more efficient 

resolution maneuvers. It is ground-based and implemented into the En Route Automation Modernization 

(ERAM) system. CRA will provide a rank-ordered listing of potential conflict resolution maneuvers and 

                                                      
1 A clearance issued with automation supporting a “closed-loop” system translates to aircraft maneuvers that are 

directed by air traffic control, like today, but unlike today the automation both anticipates the future components of 

the maneuver and provides advisories on what they are. This is contrasted to “open-loop” clearances that are issued 

today that may or may not be entered into the automation, and even when entered, later components of the 

maneuvers are unknown to the automation.  
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is expected to improve operational efficiencies as well as increase the use of “closed-loop” clearances 

where future controller intent is fully known to the ground automation system. 

 

1.3 Benefit to be Studied 
The fast-time simulation described in this study plan is a part of a larger study defined in the PLA [6]. 

This effort is further clarified in the TBO - Conflict Resolution Advisories Benefits Plan [7]. In these 

documents seven anticipated benefits from implementing CRA were identified: 

 Benefit B1: Reduced delays due to increased sector capacity 

 Benefit B2: Reduced maneuvering due to improved intent entry 

 Benefit B3: Reduced maneuvering due to more strategic controller actions, 

 Benefit B4: Reduced altitude restrictions 

 Benefit B5: Reduced number of altitude capped flights 

 Benefit B6: Reduced use of altitude for direction of flight (DOF)  

 Benefit B7: Increased use of established direct routes between city pairs.  

 

The study described in this technical note uses a fast-time simulation tool to investigate Benefit B2: 

Reduced maneuvering due to improved intent entry. This definition is expanded to include improvements 

in trajectory modeling and conflict probe alert performance. The benefit from improved intent entry is 

associated with the use of 2-part maneuvers. CRA menus support the entry of 2-part step climbs and 

descents and 2-leg lateral maneuvers, and it is anticipated that the introduction of CRA will increase the 

frequency and accuracy of controller intent entry for these types of resolutions.  

 

In the current system, controllers often issue off-route headings without amending an aircraft’s flight plan 

[10]. This leaves the automation with no information on the controller’s intent to return the aircraft to 

route; the trajectory modeler must assume a future maneuver turn point. Similarly, controllers may issue 

temporary altitudes during climbs [10]. Even though the temporary altitude may be entered into the 

automation, the intention of the controller regarding planned resumption of the climb is not, and the 

expected time the aircraft will remain at the temporary altitude must be assumed by the trajectory 

modeler. In cases such as these where future intent is not entered into the ground automation, the flight 

path intent known to the ground automation has limited accuracy. The trajectories generated without the 

benefit of correct intent have increased potential for false and missed alerts, alert instability, and increased 

controller workload. 

 

CRA will reduce the entry of open clearances such as temporary altitudes and off-route headings in favor 

of full 2-part clearance entry. When a 2-part maneuver is selected and issued to an aircraft from a CRA 

menu, the entire maneuver is included as a change to the known intended flight path in the ground 

automation. This updated intent information is incorporated in trajectory predictions used for conflict 

detection. This “improved intent entry” to the ground automation is anticipated to have positive impact in 

reducing trajectory modeling error and the number of re-conformances, as well as improving the 

performance of conflict probe alerts in terms of false alerts, late alerts, and other qualities that affect 

controller workload. 

 

A qualitative assessment of the benefit from CRA related to improved intent entry is detailed in a report 

by Kuo and Idris [13]. The report notes that “the un-ambiguous identification of aircraft intent is essential 

for accurate trajectory predictions, thereby allowing accurate and reliable alerting decisions at the conflict 

detection and resolution stages.” To support this idea, Kuo and Idris present various air traffic scenarios to 

demonstrate how improved intent entry in CRA can result in safety benefits. This is accomplished by 

constructing benefit mechanisms that connect intent entry to operational errors.  
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Besides illustrating the safety mechanisms discussed above from [16], the simulation study documented 

in this report will quantify the potential improvement to the trajectory and conflict probe predictions 

resulting from the capture of the additional intent that the CRA tool provides the ERAM automation. 

 

1.4 Contributors 
Several organizations are involved in the CRA project. Three groups that assist in this particular study 

and their roles are mentioned here.  

 

The FAA Concept Analysis Branch (ANG-C41) is located at the William J. Hughes Technical Center, 

Atlantic City International Airport, NJ. ANG-C41 has experience in designing and conducting 

simulation-based studies and is supported on-site by CSSI, Inc and General Dynamics Information 

Technology for this project. The FAA team is responsible for implementing the project plan documented 

in [19] including experimental design, preparing input files, performing output data analysis utilizing 

specialized tools, and documenting the results.  

 

The MITRE Corporation’s Center for Advanced Aviation System Development (MITRE-CAASD) is 

supporting all aspects of the study and providing the prototype CRA software inside their en route 

research prototype, Java En route Development Initiative (JEDI), to simulate various scenarios in fast-

time and produce output data for analysis.  

 

Engility, formerly L-3 Communications Corporation, is addressing the benefit mechanisms and assisting 

in documenting flight examples.  

 

1.5 Document Organization 
This technical note is organized in the following sections. Section 2 describes the approach and 

methodology of the study including the research hypothesis, overall approach, experimental design and 

model, fast-time simulation software, data preparation, and analysis tools. Section 3 presents the results in 

four sub-sections for trajectory modeling and conflict alert performance, the statistical model, and flight 

examples. The study’s conclusions and recommendations are found in Section 4. Section 5 provides a 

glossary of related acronyms. Section 6 contains the references cited within this document. Finally, 

supplemental appendices contain various supporting tables and figures. 
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2. Study Approach 
This section describes the experiment implemented in order to study the benefit from improved intent 

entry. The research hypothesis is stated, the overall approach and design of the experiment to answer this 

hypothesis is presented, simulation methodology and data preparation steps are detailed, and relevant 

metrics are discussed. 

 

2.1 Research Hypothesis 
The objective of this study is to quantify the benefit of the ground automation having the correct intended 

flight path for the entire maneuver when issuing 2-part maneuvers and test the significance of any impact. 

To this end, the simulation and analysis is designed to determine if the automation’s performance 

improves or degrades with increased entry of controller intent. Specific levels of intent entry are modeled 

by randomly withholding (to the desired degree) full amendment clearance information from the ground 

automation; this methodology is detailed in Section 2.5. The null hypothesis to test the impact of 

increased levels of intent entry in this study is stated as follows: 

 

Regardless of the en route air traffic control center and future forecasted traffic level, increasing 

the percent of amendment clearances provided to the ground automation (i.e. intent level) does 

not yield improved performance metrics.  

 

If the null hypothesis can be rejected with a high level of confidence, this strongly implies that there is a 

positive impact from increasing intent levels, as stated by the alternative hypothesis: 

 

Increasing the percent of amendment clearances provided to the ground automation does 

improve the performance, as indicated by the same metrics, at different en route centers and 

forecasted traffic levels. 

 

The metrics used in the analysis to capture performance are related to trajectory and conflict probe 

accuracy and are discussed in detail in Section 2.7. 

 

2.2 Overall Approach 
As stated in Section 1.3 this study addresses benefit B2 as identified in the PLA [6] and summarized in 

the CRA Benefits Plan [7]. The assessment of this benefit was quantified using controlled 

experimentation techniques based on experimental design principles. The data required to assess these 

benefits was gathered using a fast-time simulation of the NAS. Figure 1 presents a graphic depicting the 

NAS as a process that is to be analyzed in this study, including the inputs and outputs.  
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Figure 1: Model of the NAS Process Being Studied 

 

The input to the process in Figure 2 consists of an air traffic scenario and various factors, while the output 

to be evaluated in this study consists of the trajectory and conflict probe performance. Controllable factors 

are the year, the airspace, and the intent level. These are described in Section 2.3. As with all processes, 

there are also uncontrollable factors. The methodology used to simulate the NAS is described in Section 

2.5. 

 

The overall approach used in the study is illustrated in Figure 2 and described as follows. The controllable 

factors are combined as described in Section 2.4 to produce experimental runs with various levels of each 

factor. Each experimental run uses a scenario file that contains one flight plan for every aircraft in that 

scenario. This flight plan file is input to the fast-time simulation along with a specified intent level and 

other simulation-related settings. The output data from the simulation contains track data, clearance 

amendments, trajectories, and conflict probe alerts and is assumed to represent how the automation 

system would have behaved with that particular set of flight plans and the specified level of intent entry. 

Finally, this data is analyzed using specialized tools to evaluate the impact of the various factors. 

 

NAS Air Traffic Scenario Metrics 

Year 

ARTCC 

Intent 

Level 

Uncontrollable 

Factors 
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Figure 2: Study Process Flow 

 

Figure 2 depicts the study process. The data, represented by rectangles, consists of input flight scenario 

files, simulation settings, output data, and analysis results. The processes, represented by ellipses, are the 

fast-time simulation and analysis of data. The processes are described in Sections 2.5 and 2.7, and the 

data are described in Sections 2.6 and 3. 

 

2.3 Experimental Factors 
Three controllable factors are considered in this study. The level of intent entry to the ground automation 

is the main factor of interest. Traffic density is a second experimental factor, which is represented by the 

year for which a traffic scenario is forecast. Finally, differences in air traffic characteristics between Air 

Route Traffic Control Centers (ARTCC) may affect the responses, so several different centers are 

selected to demonstrate how the effect from CRA may vary. Thus, the simulation will have three 

controllable factors:  

 

 percent of clearances fully entered (intent parameter),  

 year, and  

 ARTCC 

 

which are discussed in the following three sub-sections. 

 

2.3.1 Intent Entry 

As mentioned in the previous section, a reduction in the intent that is available to the ground automation 

is modeled by missing or incomplete amendment clearances. The experimental factor that represents the 

Input 
Scenario Files 

Run  
Scenarios 

Output Flight   
Data 

Simulation 
Settings 

Analyze 
Data 

Results 
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level of intent entry in the simulation is the percent of 2-part clearances that are fully entered, where the 

largest percent reflects the highest level of intent entry. Further information about the implementation of 

this factor is given in Section 2.5. It may be possible to estimate the level of intent entry that CRA would 

allow, and the current level, by surveying subject matter experts. The model presented in this study allows 

estimation of the effect at any percent of full 2-part clearance intent entry. 

 

Five levels of this factor will be used in this experiment, making it possible to model intent as a 

continuous factor. The levels of intent entry to the ground automation system are listed below, along with 

the 2-letter codes that are used to identify the intent parameter level in each run suffix. Here, “clearances” 

refers to a full 2-part resolution maneuver. 

 

 Full (FL), 100% of clearances entered 

 High (HI), 75% of clearances entered 

 Medium (MD), 50% of clearances entered 

 Low (LO), 25% of clearances entered 

 None (NN), no clearances entered 

 

2.3.2 Traffic Density 

Increasing levels of traffic density are simulated by using forecast traffic scenarios. The air traffic 

scenarios used in this study were flight plan files based on the AJG Forecast Schedules, derived from 

2010 traffic levels. This study used two 24-hour scenarios: the AJG 2018 Forecast Schedule and the AJG 

2025 Forecast Schedule. The preparation of these scenario files is described in detail in Section 2.6. 

 

2.3.3 ARTCC 

This study deals with conflicts identified in five ARTCCs. The five centers are selected based on 

operational characteristics. The goal is to select center facilities with different characteristics, thus 

representing a wide range of air traffic operations and automation performance. To aid in this selection, 

an analysis is performed to categorize all 20 Continental United States (CONUS) ARTCCs based on 

metrics for conflict probe and trajectory modeling performance and define clusters of centers with similar 

characteristics. Statistical cluster analysis is employed to quantitatively categorize the centers. 

 

A fast-time simulation is run for the 20 CONUS ARTCCs using historical track data that has been time-

shifted to induce realistic conflict events. This method has been used in previous studies [16] as a way to 

test the performance of trajectory modeling and conflict prediction under circumstances that closely 

resemble what the automation system would encounter in operation. The resulting data is analyzed to 

produce conflict probe and trajectory performance metrics and the cluster analysis technique is applied to 

the data. Cluster analysis seeks to define similar groups of entities based on their characteristics. In this 

analysis, Ward’s clustering method is performed in JMP® using the following metrics: missed alert rate, 

false alert rate, average absolute cross track error, average absolute along track error, and average 

absolute vertical error. These metrics are discussed in more detail in Section 2.7 and [3]. Each of the 

trajectory error metrics was calculated at 5 minute and 15 minute look ahead time. Five clusters are 

defined as a result of the analysis, and one ARTCC is selected from each cluster to provide a wide 

representation of TM and CP performance.  
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Figure 3: Air Route Traffic Control Centers 

The five centers chosen for simulation are: Chicago (ZAU), Denver (ZDV), Miami (ZMA), Los Angeles 

(ZLA), and New York (ZNY). These centers are highlighted in Figure 3. 

 

2.4 Experimental Design 
The levels used for each factor are: two forecast years, five ARTCCs, and five levels of intent entry. As 

listed in Table 1, forecast year was modeled at 2018 and 2025 traffic levels. The five ARTCCs chosen 

are: ZAU, ZDV, ZLA, ZMA, and ZNY. The intent parameter has 5 levels, as outlined in Section 2.3.1. 

The combination of these factors at all levels produces a total of 50 possible experimental runs to study. 

 

Table 1: Summary of Experiment Factors and Levels 

Factor 
Description of  

Levels 

Number of 

Levels 

Intent Entry FL, HI, MD, LO,NN 5 

Traffic Density (Year) 2018 and 2025 2 

ARTCC ZAU, ZDV, ZLA, ZMA, ZNY 5 

Total Runs = 50 

 

Since it is a fast time simulation study, the marginal cost associated with running individual runs is 

relatively low. A full factorial design is executed, which includes runs that cover all possible 

combinations of factor levels. Full factorial designs can be applied to reveal the interaction effects of the 

factors under study, and are more efficient than simple one factor experiments. The combination of values 
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presented in Table 1 generates a total of 50 simulation runs for the full factorial design. A model will be 

applied to the responses from the simulation to determine the effect of each factor. 

 

2.5 Fast-Time Simulation 
Fast-time simulation is used to generate track data for input flight plans, simulate CRA amendments, and 

create scenarios reflecting different levels of intent entry. This process is described in detail in Section 3.1 

of [10] and summarized here. The fast-time simulation framework is detailed in [10] and uses MITRE’s 

Java En Route Development Initiative (JEDI) because it has trajectory modeling and conflict detection 

with functional performance similar to ERAM [12].  

 

The process starts with an input file containing one flight plan for each aircraft, from which track data is 

generated using a track simulator. Any predicted loss of separation between flights detected in this track 

data is resolved using a MITRE-CAASD problem resolution prototype named Problem Analysis 

Resolution and Ranking (PARR), a prototype of CRA. The resolution of notified conflicts (alerts) by 

PARR is invoked on a one minute cycle. For each notified conflict the highest ranked resolution is chosen 

and sent to the track simulator, which then simulates track data that follows the resolution.  

 

In the full intent scenarios, the resolution amendments are also sent to the Flight Manager (JEDI) for 

modeling. However, in a reduced intent scenario, some of this resolution information is withheld from the 

Flight Manager, depending on the specified intent level. This difference in information is what 

distinguishes the intent parameter, and it is implemented based on the factor level. For instance, at the NN 

or “no intent” level, the track simulator receives full two-part altitude and lateral amendments, while 

Flight Manager receives only interim altitudes for vertical resolution amendments, and no information at 

all for two-part lateral resolution amendments. At the MD or “medium intent” level, these types of 

resolutions have a 50% chance of being sent to the Flight Manager. Cases where Flight Manager receives 

missing or incomplete intent information are referred to as reduced intent amendments. 

 

Alerts for which a resolution is sent to the track simulator are not resolved in future resolution cycles 

because any implemented resolution is assumed to be following a green, or conflict-free, flight plan. The 

Current Plan look-ahead determines how far along the current flight path the conflict probe is applied and 

is set to 10 minutes for this experiment, with resulting alert notification time between 4 and 10 minutes 

based on conflict likelihood. Trial Plan conflict detection establishes the required time for which a 

resolution path must be conflict free and is set at a 12 minute look ahead, which effectively ensures that 

any proposed resolution will be conflict free for at least 12 minutes. 

 

2.6 Data Preparation 
ANG-C41 created the input flight plan scenarios for this study by using the FAA’s Joint Planning Group 

(AJG) Forecast Schedules. These estimate future air traffic demand and are 24-hour scenarios 

representing air traffic over the entire NAS, including international flights. The forecast schedules were 

used as a basis for air traffic scenarios representing potential flight traffic in the years 2018 and 2025. The 

scenario input files are generated using established tools, including the ATOPScheduleConverter, from 

the Conflict Probe Assessment Team (CPAT) within ANG-C41. To limit each scenario to a specific 

ARTCC, air traffic was filtered to include only those flights traveling through some part of the ARTCC. 

In addition, recorded flight data was analyzed to calculate a representative distribution of aircraft 

equipage codes by aircraft type which was then assigned to the flight plans. 

 

Table 2 provides a summary of the traffic counts in each of the runs for the five centers. The number of 

flights in each scenario output from the fast-time simulation is slightly less than the input number due to 
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flights not reaching the center airspace before the end of the scenario and other simulation issues. These 

final counts are presented on the right hand side of Table 2. 

Table 2: Number of Flights 

 Input Flight Plans Simulation Output 

 2018 2025 2018 2025 

ZAU 4931 5695 4462 5126 

ZDV 3714 4326 3343 3879 

ZLA 4183 4868 3795 4393 

ZMA 4675 5587 4052 4790 

ZNY 6532 7494 5204 5864 

Total 24035 27970 20856 24052 

 

There are 10 unique input files, which account for five different ARTCCs and two levels of traffic 

density. The remaining factor, intent level, was implemented as a simulation input parameter as discussed 

in Section 2.5.  

 

2.7 Analysis Tools 
Metrics to compare the proposed environment to the current environment are needed in quantifying the 

benefit of the proposed changes. Existing tools from CPAT will be utilized in this analysis as detailed in 

the following subsections. 

2.7.1 Trajectory Modeling Analysis 

The output simulation data includes predicted trajectories generated by JEDI’s trajectory modeling and 

used by the conflict probe in detection. When a reduced intent amendment is issued, the trajectory 

modeling system is lacking the necessary information to update the cleared flight plan and build an 

accurate long-term trajectory. The result of this is that the flight’s actual path will deviate from the known 

route and a new trajectory must be built. In a reduced intent scenario, the trajectory reconformance 

algorithm uses default parameters to estimate the turn point or altitude transition point of an aircraft, in 

the case of a two-leg vector or step altitude maneuver, respectively. It is anticipated that in the reduced 

intent scenarios, new trajectories will be generated more frequently which increases trajectory instability 

and degrades the conflict probe performance.  

 

To quantify this change, the number of unique trajectories built by the automation for each unique aircraft 

identification (ACID) is recorded. Another count is made which identifies a specific subset of these 

trajectories. Every time an amendment is entered, a new trajectory is generated. To focus on trajectories 

that were built for other reasons, amendments are matched to trajectories by ACID and time (within one 

second) to identify cases other than when a trajectory is built following an amendment. 

 

It is anticipated that reduced intent amendments may negatively affect the accuracy of the predicted 

trajectories, which also contributes to degraded conflict probe performance. Trajectory error metrics have 

been applied in previous studies to provide a method to measure the accuracy of trajectories in multiple 

dimensions with respect to actual flight position. This provides a means of quantifying the effects of 

improved intent. Sampling methods and definitions of these metrics are presented in [3] and summarized 

here briefly. The Interval Based Sampling Technique (IBST) is the trajectory accuracy sampling method 

developed by ANG-C41. It has been previously documented in [15] and has been used in a number of 

FAA studies and test programs. IBST is a two-step process that pairs track and trajectory points to 

measure the prediction errors for an entire flight. 
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The four basic metrics defined in [15] are horizontal error, vertical error, along track error, and cross track 

error. Figure 4 provides a notional illustration of these errors. The horizontal error is the time coincident 

difference in NM between the predicted position on the trajectory and the actual position calculated from 

surveillance radar reports. Cross track error (NM) is the perpendicular distance between the actual 

position of an aircraft and its projection onto the trajectory. Along track error (NM) is the longitudinal 

distance along the trajectory between the same projection and the time coincident predicted position of 

the aircraft. The vertical error (not illustrated in the figure) is the altitude difference in feet between the 

predicted trajectory position and the time coincident actual position. For further details on these 

definitions and how they are calculated see [15]. 

 

 

Figure 4: Diagram of Trajectory Errors 

 

Following these definitions, horizontal error is unsigned while the other three are signed. For most 

analyses involving these metrics, it is desirable to consider absolute values because the distance from zero 

is of interest. Therefore the absolute value is taken before calculating average values. Finally, the average 

metrics comprise only relevant data points by considering error values for trajectory points where a 

clearance or route amendment has not been received within a specified time period (as that may have 

altered the trajectory) and the flight remains within control of the center. 

 

CPAT tools are used to parse trajectory information from the JEDI output data into a database format. 

The information is then processed to count the total unique trajectories and unique trajectories that are not 

matched to a clearance amendment. Finally, the CPAT tool TrajectorySampler performs the trajectory 

error sampling. 

 

2.7.2 Conflict Probe Alert Analysis 

The available track data in the scenarios has been processed through conflict detection, with resolution 

maneuvers implemented. Using this data, there is no guaranteed way to determine whether the potential 
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loss of separation for which an alert is generated would actually have materialized, or how close it would 

have been without action from ATC. Therefore, this study will not analyze the performance of generated 

alerts in terms of traditional accuracy (e.g., false alerts and missed alerts)
2
. Instead the focus of this 

analysis is on the notification sets and alert-related metrics such as alert counts, duration, and predicted 

warning time. 

 

CPAT tools are used to analyze the alert information output from the simulation runs to identify distinct 

alert notifications using rules specified in [3]. The count of distinct alert notifications is compared across 

the scenarios and used as a response variable in the statistical model.  

 

The duration of each alert notification is calculated as the difference between the latest alert deletion time 

and the earliest alert add time in a given set. It is expected that in cases of reduced intent amendments as 

mentioned in Section 2.5, alerts will not be removed upon resolution. Since the resolution algorithm 

attempts to resolve conflicts every minute, alert durations greater than 1 minute are indicators of 

problematic alerts.  

 

The predicted warning time provided by an alert is calculated as the notification start time subtracted from 

the predicted conflict start time. The distribution of warning times is analyzed across the various 

scenarios. A shift in the warning time distribution may indicate a degradation in conflict probe 

performance. Therefore the 25
th
 percentile, or first quartile (Q1), of the alerts’ predicted warning times is 

calculated as a metric of interest in tracking the CP performance. 

 

2.7.3 JMP 

JMP® is an interactive data visualization and statistical analysis tool available through the SAS Institute.
3
 

ANG-C41 has used JMP® successfully in many other studies [17][18]. It was used extensively for the 

data analysis in this study because of its ability to interface directly with ANG-C41's Oracle® databases 

to provide data tables, graphs, charts, and reports and because of its ability to provide statistical analyses 

and modeling capabilities including support of the study’s Design of Experiment (DOE).  

 

3. Results 
This section presents the results of the experiment in four sub-sections. Section 3.1 deals with the 

performance of the trajectory modeling in terms of the accuracy of the predicted trajectory positions and 

the number of trajectory rebuilds that are generated during the simulation. General descriptive statistics 

are provided in addition to testing for statistical differences between treatment scenarios. Section 3.2 

investigates the performance of the conflict probe and specifically, the alerts generated by the simulated 

automation system that would have been shown to controllers interacting with the system tool. Metrics 

from each of these first two sections are selected as response variables in a statistical model in Section 

3.3, which discusses how the model is fit to the experiment data to determine the effects of the different 

factors and their interactions. Finally, specific examples of improvement with increased intent are 

presented in Section 3.4. The examples are taken from the simulated flight data of two scenarios. 

 

                                                      
2 Traditional conflict prediction metrics or a version of such will be left for future study.  

3 The SAS Institute Inc., SAS Campus Drive, Cary, NC 27513. 
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3.1 Trajectory Modeling Performance 
The following two subsections provide a descriptive and inferential statistical analysis of the trajectory 

modeling in the simulated data. The accuracy and stability of predicted trajectories are key to the overall 

performance of the ERAM system and conflict probe. 

 

3.1.1 Counts of Trajectories 

As stated in Section 2.7.1, new trajectories are built when aircraft track data do not adhere to the known 

route. The trajectory reconformance algorithm is forced to guess a turn point or altitude transition to 

rejoin the known route and this is likely to result in trajectories with poor prediction accuracy and, in turn, 

further trajectory rebuilds. It is expected that reduced intent scenarios will result in more frequent 

deviations from the known route and more frequent generation of new trajectories. The number of 

trajectories generated per ACID is analyzed to quantify the effect of improved intent and the results are 

presented in this section. 

 

The number of unique trajectories, distinguished by the trajectory build time, for each flight in a scenario 

is recorded. These counts are averaged over all of the flights in a scenario, and the average (per flight) 

values are presented in Table 3. The scenario data are grouped by the factors ARTCC, Year, and Intent 

Level. 

 

Table 3: Average Total Trajectory Count by Scenario 

ARTCC Year Intent 
Average Total 

Trajectory Count 

ZAU 

2018 

FL 2.9 

HI 3.1 

MD 3.4 

LO 3.6 

NN 3.9 

2025 

FL 3.0 

HI 3.2 

MD 3.4 

LO 3.7 

NN 4.0 

ZDV 

2018 

FL 2.5 

HI 2.7 

MD 2.8 

LO 3.0 

NN 3.2 

2025 

FL 2.6 

HI 2.8 

MD 3.0 

LO 3.1 

NN 3.3 
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ARTCC Year Intent 
Average Total 

Trajectory Count 

ZLA 

2018 

FL 2.8 

HI 3.0 

MD 3.4 

LO 3.6 

NN 3.9 

2025 

FL 2.9 

HI 3.2 

MD 3.5 

LO 3.9 

NN 4.2 

ZMA 

2018 

FL 2.9 

HI 3.1 

MD 3.3 

LO 3.6 

NN 3.8 

2025 

FL 3.0 

HI 3.2 

MD 3.4 

LO 3.7 

NN 4.0 

ZNY 

2018 

FL 2.9 

HI 3.1 

MD 3.3 

LO 3.6 

NN 3.8 

2025 

FL 2.9 

HI 3.2 

MD 3.4 

LO 3.7 

NN 3.9 

 

There are clear trends in Table 3 of count values decreasing with improved intent entry. To verify that this 

effect is significant, a statistical test is applied to the data. Each of the four reduced intent scenarios is 

considered as a treatment run and compared against the full intent scenario (FL, or 100% of clearances 

entered into automation) using a paired t-test. The same flights are present in all five scenarios for a 

specified Year and ARTCC, so the trajectory count for each flight in a treatment run is compared to the 

trajectory count for the same flight in the full intent run. The paired t-test examines the distribution of 

differences in counts between the two scenarios, and tests if the mean of the differences is statistically 

different from zero. The results of an example t-test are presented in Figure 5. 
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Traj Count (No Clr) (NN) 1.59868  t-Ratio 17.34 

Traj Count (No Clr) (FL) 1.01709  DF 3627 

Mean Difference 0.58159  Prob > |t| <.0001* 

Std Error 0.03354  Prob > t <.0001* 

Upper 95% 0.64734  Prob < t 1.0000 

Lower 95% 0.51583    

N 3628    

Correlation 0.08046    

Figure 5: Paired t-test Results for Trajectory Count in ZDV 2018 Scenarios 

 

From Figure 5 the difference in trajectory counts can be observed. The p-value is identified as “Prob > t” 

because it is the random probability of generating a t-statistic greater than 17.34, and in this example it is 

very small which supports the determination that the difference is statistically significant. One paired t-

test is done for each of the four reduced intent scenarios in a given ARTCC and Year, for a total of 40 

tests. The same conclusion is reached, that the trajectory counts are lower overall in the full intent 

scenario than in the reduced intent scenarios. This difference is statistically significant in all comparisons, 

with all p-values less than 10
-4

. Table 13 in Appendix A contains the difference in means and Student’s 

paired t-statistic for each comparison. 

 

The second type of trajectory count is a subset of the total trajectory count. The reason for defining this 

metric is that more clearance amendments are entered, and therefore more trajectories are generated, as 

the level of intent decreases between scenarios. The metric is designed to account for this increase and 

focus on the generation of additional trajectories. As explained in Section 2.7.1, entered amendments are 

matched to generated trajectories with the same ACID and occurring within one second, and the 

trajectories that are not matched to a clearance are counted. This represents how many “extra” trajectories 

are generated in a scenario. The counts are averaged over all of the flights in a scenario, and the averages 

are presented in Table 4, grouped by factors similar to the previous table. 
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Table 4: Average Count of Trajectories Not Matched to a Clearance 

ARTCC Year Intent 
Average 

Trajectory Count 

ZAU 

2018 

FL 1.1 

HI 1.3 

MD 1.5 

LO 1.7 

NN 1.9 

2025 

FL 1.1 

HI 1.3 

MD 1.5 

LO 1.7 

NN 2.0 

ZDV 

2018 

FL 1.0 

HI 1.2 

MD 1.3 

LO 1.5 

NN 1.6 

2025 

FL 1.0 

HI 1.2 

MD 1.4 

LO 1.5 

NN 1.7 

ZLA 

2018 

FL 1.0 

HI 1.2 

MD 1.5 

LO 1.7 

NN 2.0 

2025 

FL 1.0 

HI 1.3 

MD 1.5 

LO 1.9 

NN 2.2 

ZMA 

2018 

FL 1.1 

HI 1.2 

MD 1.4 

LO 1.6 

NN 1.8 

2025 

FL 1.1 

HI 1.3 

MD 1.4 

LO 1.6 

NN 1.9 
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ARTCC Year Intent 
Average 

Trajectory Count 

ZNY 

2018 

FL 1.1 

HI 1.3 

MD 1.4 

LO 1.7 

NN 1.8 

2025 

FL 1.1 

HI 1.3 

MD 1.5 

LO 1.7 

NN 1.9 

 

Again, there are clear trends in Table 4 of count values decreasing with improved intent. Similar to the 

analysis for total trajectory count, a paired t-test is applied to the data to verify that the effect is 

significant. Comparing each reduced intent scenario to the corresponding full intent scenario, the 

difference for each flight is calculated. A paired t-test determines whether the mean of the differences is 

statistically different from zero. Similar to the full trajectory count analysis, 40 tests are done and the 

results presented in Table 13 in Appendix A. The same determination of statistical significance is reached 

in all cases: the counts of extra trajectories in a reduced scenario are lower overall than in the full intent 

scenario. In these tests, the p-values are all less than 10
-4

 and the Student’s paired t-statistic values are 

compared to the results for total trajectory counts in Table 13. The results show that, even after 

accounting for an increase in trajectory generation from increased issuance of clearances, the effect of 

improved intent on trajectory generation is significant. 

 

3.1.2 Trajectory Accuracy 

To quantify the effect of improved intent entry on the accuracy of predicted trajectories, the IBST is 

applied to the trajectories and simulated track data as detailed in Section 2.7.1. The resulting trajectory 

error metrics are compiled and presented here. First, the average of absolute cross track error values 

(denoted as AACTE) is calculated for each flight in a given scenario, taking into account all desired 

sampled points for that flight. The average of this value is then calculated over all flights in the scenario 

and presented in Table 5 to illustrate the general trend in accuracy between scenarios. The same process is 

used to compile average absolute along track error (AAATE) in NM, average absolute vertical error 

(AAVE) in feet, and average horizontal error (AHE), which is unsigned and expressed in NM. The 

average values by scenario for these four trajectory error metrics are presented in Table 5. The scenarios 

are grouped by ARTCC, Year, and Intent Level. 
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Table 5: Average Error Metrics by Scenario 

ARTCC Year Intent 
Avg AACTE 

(NM) 

Avg AAATE 

(NM) 

Avg AAVE 

(ft) 

Avg AHE 

(NM) 

ZAU 

2018 

FL 0.030 0.143 87 0.155 

HI 0.062 0.169 97 0.205 

MD 0.106 0.203 111 0.272 

LO 0.157 0.237 127 0.343 

NN 0.208 0.244 143 0.388 

2025 

FL 0.028 0.140 87 0.151 

HI 0.061 0.176 100 0.211 

MD 0.112 0.203 116 0.276 

LO 0.160 0.249 132 0.354 

NN 0.227 0.260 147 0.415 

ZDV 

2018 

FL 0.021 0.044 13 0.049 

HI 0.046 0.063 17 0.089 

MD 0.075 0.074 19 0.124 

LO 0.112 0.093 23 0.171 

NN 0.132 0.096 28 0.190 

2025 

FL 0.021 0.042 15 0.050 

HI 0.058 0.071 19 0.106 

MD 0.076 0.078 21 0.128 

LO 0.107 0.088 28 0.164 

NN 0.136 0.103 32 0.199 

ZLA 

2018 

FL 0.026 0.088 52 0.098 

HI 0.053 0.123 61 0.145 

MD 0.105 0.161 72 0.227 

LO 0.157 0.194 79 0.283 

NN 0.227 0.235 97 0.367 

2025 

FL 0.028 0.093 55 0.103 

HI 0.079 0.141 69 0.192 

MD 0.160 0.194 77 0.301 

LO 0.216 0.230 95 0.378 

NN 0.312 0.296 116 0.500 

ZMA 

2018 

FL 0.022 0.128 74 0.124 

HI 0.039 0.155 86 0.159 

MD 0.071 0.178 103 0.210 

LO 0.097 0.200 116 0.246 

NN 0.126 0.205 132 0.273 

2025 

FL 0.023 0.139 74 0.133 

HI 0.055 0.162 87 0.180 

MD 0.073 0.183 104 0.215 

LO 0.113 0.201 121 0.263 

NN 0.166 0.225 142 0.325 
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ARTCC Year Intent 
Avg AACTE 

(NM) 

Avg AAATE 

(NM) 

Avg AAVE 

(ft) 

Avg AHE 

(NM) 

ZNY 

2018 

FL 0.036 0.234 88 0.220 

HI 0.072 0.279 102 0.286 

MD 0.090 0.308 108 0.324 

LO 0.134 0.327 127 0.379 

NN 0.169 0.348 136 0.420 

2025 

FL 0.039 0.234 94 0.226 

HI 0.061 0.282 109 0.283 

MD 0.097 0.295 114 0.323 

LO 0.139 0.349 132 0.400 

NN 0.176 0.368 146 0.440 

 

There are clear trends in the Table 5 data of trajectory accuracy increasing (error values decreasing) with 

improved intent. To verify that this effect is statistically significant, a paired t-test is applied to the data. 

Each of the four reduced intent scenarios is compared against the corresponding full intent scenario. The 

same flights are present in all five scenarios for a specified Year and ARTCC, and the average trajectory 

error for each flight in a reduced intent scenario is compared to the average error for the same flight in the 

full intent scenario. The results of an example t-test are presented in Figure 6. 
 

 

 
Avg Horz Err (NN) 0.18985  t-Ratio 11.53 

Avg Horz Err (FL) 0.04948  DF 3337 

Mean Difference 0.14037  Prob > |t| <.0001* 

Std Error 0.01218  Prob > t <.0001* 

Upper 95% 0.16425  Prob < t 1.0000 

Lower 95% 0.11649    

N 3338    

Correlation 0.17383    

Figure 6: Paired t-test Results for Trajectory Error in ZDV 2018 Scenarios 

 

From Figure 6 the difference in trajectory accuracy can be observed. The Student’s paired t-statistic is 

calculated as 11.53, with an associated p-value less than 0.0001. This probability is very small and 

supports the determination that the difference is statistically significant. Four paired t-tests (one each for 
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AACTE, AAATE, AAVE, and AHE) are done for each of the four reduced intent scenarios in a given 

ARTCC and Year, for a total of 160 tests. The same conclusion is reached, that trajectory errors are lower 

overall in the full intent scenario than in the reduced intent scenarios. This difference is statistically 

significant in all comparisons, with all p-values less than 10
-3

. Table 14 in Appendix B contains the 

difference in means and Student’s paired t-statistic for each comparison. 

 

A different analysis approach is to consider the trajectory errors at a specific amount of time into the 

future, or look ahead time. This allows for evaluation of the trajectory predictor performance trend with 

look ahead time, and comparison of how this trend is affected by improved intent. The average absolute 

cross track error for a given look ahead time and all sampled points is calculated for 0, 300, 600, 900, and 

1200 second look ahead times (every 5 minutes) and presented in Figure 7 for the set of ZAU (2018 and 

2025) scenarios. The legend lists the scenarios in the same order in which they appear in the graphs. 

 

 

Figure 7: Trajectory Error vs. Look Ahead Time 

From Figure 7 it is observed that an increase in the level of intent entry corresponds to a decrease in 

average absolute cross track error at every look ahead time for the ten scenarios shown. In addition, the 

benefit from increased intent entry is more pronounced at longer look ahead times. Similar graphs for 

vertical and along track errors are located in Appendix C. It is noted that the relative differences are 

smaller for vertical error, and there is a slight inconsistency in the pattern for along track error. 
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3.2 Conflict Probe Alert Performance 
Conflict alerts generated by the automation are collected for each simulated scenario. Alert addition, 

modification, and deletion events are grouped into notification sets using CPAT tools with specially 

designed logic. These notification sets are analyzed for overall count, alert duration, and predicted 

warning time to demonstrate benefits from improved intent entry. The count of distinct alert notifications 

is presented in Figure 8.  

 

 

Figure 8: Alert Count vs. Intent Level 

 

From Figure 8, the trend in each center is a consistent decrease with increased intent level, regardless of 

traffic year. These trends differ across the various centers. In particular, ZDV exhibits slightly different 

behavior, although the counts do follow the general trend of decreasing with increased intent level. These 

types of differences may be investigated in future studies. 

 

Due to open clearances in reduced intent scenarios, it is expected that a significant number of alerts will 

not be removed upon issuing an amendment, whereas with full intent, the majority are successfully 

resolved and the alerts deleted. Alerts with duration greater than 60 seconds are depicted in Figure 9, 

which provides the distribution of alert duration in one minute intervals. Since the resolution algorithm 

attempts to resolve alerts every minute, these can be interpreted as alerts that are not deleted at the time an 

amendment is entered. The percentage of problematic events over all events allows for a relative measure 
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of performance between the scenarios. It is expected that improving the ground automation will diminish 

this percentage and it is hypothesized here that providing better intent information will improve the 

related automation functions. The percent of alerts with long duration metric was computed for all 

scenarios and aggregate percentages are, from most intent to least intent provided: 15.6%, 21.5%, 26.3%, 

28.9%, and 34.0%. These data are further detailed by partitioning the event durations into increments of 

one minute. Figure 9 illustrates the metric over the five intent levels for ZAU with 2018 traffic and 

provides evidence that as intent is increased, the percentage of problematic events decreases. The other 

scenarios show a similar relative pattern and are included in Appendix D. 

 

 

Figure 9: Percent of Alerts with Duration Exceeding One Minute 

Another result of inaccurate trajectories from reduced intent amendments is an increase in the frequency 

of late notification of alerts. One factor that contributes to this increase is a short problem detection look 

ahead during the first off-leg of a vector maneuver or the level segment of a step altitude maneuver. For 

instance, if a modeled segment length has shorter duration than the controller's true intention, potential 

conflicts may only be alerted after a reconformance trajectory extending the off-leg or level segment is 

built, and accordingly these alerts may have a relatively small warning time. The first quartile of the 

predicted warning time is a valuable metric to describe how the lower tail of the distribution is affected by 

a change.  

 

To demonstrate how the predicted warning time distribution is affected, Table 6 presents data from ZAU, 

grouped by intent level and year. Count is the number of alerts generated, and Percent of Alerts with 

Duration > 1 min. represents the aggregated percentages from the previous histograms. Q1 of Predicted 

Warning Time is the 25
th
 percentile of the warning times predicted by the alerts (predicted conflict start 

time – notification start time) in seconds.  
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Table 6: Alert Statistics for ZAU Scenarios 

ARTCC Year Intent Count 

Q1 of Predicted 

Warning Time 

(seconds) 

Percent with 

Duration  

> 1 min. 

ZAU 

2018 

FL 1381 291 15.6 

HI 1494 282 21.5 

MD 1635 270 26.3 

LO 1829 240 28.9 

NN 2103 199 34 

2025 

FL 1812 292 14.3 

HI 1939 283 18.9 

MD 2116 273 24.1 

LO 2351 244 28.9 

NN 2713 208 33 

 

In general, the number of alerts created increases as the intent level decreases, as is expected, though there 

is one anomalous value for ZDV 2018 with low intent level. Q1 of the predicted warning time represents 

the minimum predicted warning time for three-quarters of the data set, so decreasing this value represents 

a degradation of the minimum expected warning time predicted by the majority of alerts. This metric 

provides an alternate way of showing change in performance and supports the histograms, represented in 

aggregate form in the tables as Percent Alerts with Duration > 1 min. They support each other since one 

shows degradation in performance via predicted warning time decreasing and the other shows this via an 

increasing percentage of problematic alerts. Similar tables for the other four centers are provided in 

Appendix E. 

 

 

3.3 Statistical Model of Experiment Results 
The results of implementing the inferential statistical approach are presented in this section. A detailed 

multivariate regression model is used to fit the results of the designed experiment with the goal of 

determining which factors have a significant effect on the response variables and the size of these effects. 

Metrics from trajectory modeling and conflict alert performance are selected as response variables for the 

model. Section 3.3.1 implements a statistical model and describes how the experiment data is fitted to the 

model, while Section 3.3.2 discusses the findings from the model. 

 

3.3.1 Model Implementation 

Equation 1 illustrates the mathematical model for this experiment. It represents the full factorial design 

where all levels and factors are crossed, allowing all the interactions to be examined. This amounts to 

three main effects (single variables), three two-way interaction terms (double variables), and a quadratic 

term on the continuous variable, intent level. The constant or overall mean effect is represented as the 

“µ”term. 
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Response:  

  Rijk = µ + Yi + Aj + Ik + Yi Aj + Yi Ik + Aj Ik + Ik Ik + εn(ijk) Equation 1 

 

Where: 

 

 Yi = forecast years, i = 1, 2  

Aj = ARTCC, j = 1, 2, 3, 4, 5  

Ik = intent level, k = 1, 2, 3, 4, 5  

εn(ijk) = random error, n = 1, 2, … for all i, j, k  

 

The model assumes the random error εn(ijk) is approximately independently normally distributed with a 

zero mean and that the various factors are linearly additive as illustrated in Equation 1. 

 

Five response variables are evaluated and the same model in Equation 1 addresses all five separately. 

Thus, the term, “Rijk,” can refer to any one of the response variables. These values are calculated for each 

of the various runs (and associated factor levels) defined in Table 1. The term “Rijk” then is an estimate of 

the expected value for each of these five output functions. The response variables studied with this model 

are: average absolute horizontal trajectory error, average absolute vertical trajectory error, the count of 

trajectories with no associated clearance, the first quartile of predicted warning time, and the count of 

alerts with duration greater than one minute. 

 

An experimental design is presented in Section 2.4. As coded in Equation 1 and described in Table 1, this 

design is referred to as a full factorial design in the literature [1][9][14][17]. A full factorial design 

includes all possible combinations of factor levels in the experiment. It is expensive in terms of runs 

required but offers several advantages, especially early in the study of a process. In this study, the 

quantity of runs is relatively inexpensive because a fast-time simulation model is employed. Factorial 

designs can be used to reveal the interaction effects of the factors under study and they are significantly 

more efficient than many one-factor experiments. The combinations of factor levels provide replications 

for evaluation of the individual factors, when some factors or factor combinations are removed from the 

experiment. The full factorial experiment described in Section 2.4 is implemented and the results from the 

50 experimental runs are collected and the model is fit to the calculated response data. 

3.3.2 Model Findings 

The fitted model is summarized graphically in Figure 10, where five leverage plots illustrate the actual 

and modeled values for each of the five responses. If the model could perfectly capture all the observed 

variation in the system, the actual measured response mean plotted on the y-axis in the figures and the 

coincident modeled version on the x-axis would fall on a diagonal line perfectly. The term “Rsq” in the 

plots is the coefficient of determination of the model.
4
 This term provides a quantification of how well the 

model captures the observed variation in the system under study. For the five response variables under 

study in this experiment, the R
2
 ranged from 0.97 to 1.00. In practical terms, this means that the model 

defined in Equation 1 captured from 97 to 100 percent of the variation in the actual system under study. It 

is clear for all five responses that the model captures the trend and a high percentage of the variation. 

 

                                                      
4 From Ref. [8], the R

2
 is the coefficient of determination and is equal to the ratio of the sum of squares of the model 

divided by the sum of squares of the total variation. The total variation equals the modeled variation plus the error in 

the model (estimated by calculating the difference between model and observed values). 
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Figure 10: Leverage Plots per Response 

 

Tables 7-11 list the effect tests for the various factor level combinations of the experiment. The intent 

level is a continuous factor that may have non-linear effects while the others all represent fixed effects. 

The column labeled “Source” defines the particular effect produced from the combinations of factors 

listed. The column labeled “DF” is the degrees of freedom for the particular factor combination. The 

column labeled “Sum of Squares” is calculated by summing the squared differences of the observations 

minus the mean. The column labeled “F Ratio” is the test statistic produced by model mean square 
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divided by the error mean square. The column labeled “p-value” is the probability that the test statistic is 

not significant. A p-value that is less than 0.05 is marked by an asterisk to indicate it provides evidence 

that the particular factor is statistically significant. 

 

Table 7: Model Effect Tests for Average Horizontal Error 

 

Source 

 

DF 

Sum of 

Squares 

 

F Ratio 

 

p-Value 

Intent% 1 0.12746576 832.8155 <.0001* 
ARTCC 4 0.11483390 187.5709 <.0001* 
Traffic Year 1 0.00651133 42.5427 <.0001* 
Intent%*ARTCC 4 0.02748042 44.8868 <.0001* 
Intent%*Traffic Year 1 0.00242900 15.8702 0.0004* 
ARTCC*Traffic Year 4 0.00760976 12.4299 <.0001* 
Intent%*Intent% 1 0.00000131 0.0086 0.9267 

 

Table 8: Model Effect Tests for Average Absolute Vertical Error 

 

Source 

 

DF 

Sum of 

Squares 

 

F Ratio 

 

P-Value 

Intent% 1 6058.225 1109.408 <.0001* 

ARTCC 4 30930.359 1416.025 <.0001* 

Traffic Year 1 371.661 68.0601 <.0001* 

Intent%*ARTCC 4 1755.926 80.3882 <.0001* 

Intent%*Traffic Year 1 72.955 13.3599 0.0009* 

ARTCC*Traffic Year 4 103.784 4.7513 0.0039* 

Intent%*Intent% 1 70.119 12.8405 0.0011* 

 

Table 9: Model Effect Tests for Response Variable TrajNoClr 

 

Source 

 

DF 

Sum of 

Squares 

 

F Ratio 

 

P-Value 

Intent% 1 1.7607103 2317.748 <.0001* 

ARTCC 4 0.0991183 32.6191 <.0001* 

Traffic Year 1 0.0360800 47.4946 <.0001* 

Intent%*ARTCC 4 0.1171211 38.5437 <.0001* 

Intent%*Traffic Year 1 0.0158811 20.9054 <.0001* 

ARTCC*Traffic Year 4 0.0112091 3.6888 0.0137* 

Intent%*Intent% 1 0.0037736 4.9675 0.0328* 

 

Table 10: Model Effect Tests for Response Variable Q1WT 

 

Source 

 

DF 

Sum of 

Squares 

 

F Ratio 

 

P-Value 

Intent% 1 10432.901 285.4311 <.0001* 

ARTCC 4 6417.190 43.8916 <.0001* 

Traffic Year 1 25.205 0.6896 0.4123 

Intent%*ARTCC 4 2834.403 19.3864 <.0001* 

Intent%*Traffic Year 1 45.901 1.2558 0.2705 

ARTCC*Traffic Year 4 145.833 0.9974 0.4228 

Intent%*Intent% 1 1477.125 40.4123 <.0001* 
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Table 11: Model Effect Tests for Response Variable DurationCount 

 

Source 

 

DF 

Sum of 

Squares 

 

F Ratio 

 

P-Value 

Intent% 1 480592.08 905.5296 <.0001* 

ARTCC 4 109485.04 51.5728 <.0001* 

Traffic Year 1 164393.78 309.7501 <.0001* 

Intent%*ARTCC 4 51098.96 24.0701 <.0001* 

Intent%*Traffic Year 1 31612.84 59.5648 <.0001* 

ARTCC*Traffic Year 4 6461.92 3.0439 0.0306* 

Intent%*Intent% 1 24182.86 45.5652 <.0001* 

 

The results in Table 7 through Table 11 indicate that all of the main factors had a statistically significant 

effect according to the fitted model, with the exception of traffic year (and its possible interactions) on 

predicted warning time. Furthermore, the effect of intent level is found to be non-linear for all response 

variables, with the exception of horizontal error, for which intent has a fixed, linear effect. 

 

The model assumes that the unattributed variation or error in the model, referred to as random error, εn(ijk) 

in Equation 1 is approximately normally distributed. An additional validation of the model is to test the 

residuals for normality. These residual errors are presented for each of the five response variables in 

histograms overlaid with fitted normal distribution density lines, box plots, and normal probability plots 

for each response variable. Figure 11 depicts residuals for Avg. Abs. Vertical Error, Avg. Horizontal 

Error, and Trajectory Count (of trajectories not matched to a clearance). Figure 12 depicts residual errors 

for the 1
st
 quartile of predicted warning time (Q1WT) and the count of alerts with duration greater than 1 

minute. 
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Figure 11: Residual Error Distributions for AAVE, AAHE, and Trajectory Count 
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Figure 12: Residual Error Distributions for Q1WT and Duration Count 
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The histograms and box plots illustrate that the distributions are fairly symmetric and centered at zero as 

expected if normally distributed. The normal probability plot illustrates for each response that the model 

errors fall along the diagonal probability line, indicating that each is at least approximately normally 

distributed and supporting the validity of the model. 

 

The experimental results produce a statistical model with coefficient estimates that are summarized in 

Table 12. This model allows us to draw conclusions on the relationships and net effects of the various 

factors under study.  

 

Table 12: Summary of Model Coefficient Estimates 

 

 

Source 

 

Avg Horz 

Err (NM) 

Avg Abs 

Vert Error 

(ft) 

 

Trajectory 

(No Clr.) 

Count 

 

Duration 

Count 

 

Q1 of 

Warning 

Time (s) 

Intercept 0.3306828 104.47396 1.7937376 488.27429 251.47643 

Intent%  -0.00202  -0.440299  -0.007506  -3.9216 0.5778 

ARTCC[ZAU] 0.042936 29.282419 0.0434468 123.52  -17.47 

ARTCC[ZMA]  -0.027607 18.06752  -0.012748  -61.88 0.48 

ARTCC[ZNY] 0.0960769 28.097564 0.0284487  -45.28  -14.07 

ARTCC[ZLA]  -0.006081  -11.58431 0.0576475 9.52 3.33 

ARTCC[ZDV]  -0.105325  -63.86319  -0.116794  -25.88 27.73 

Traffic Year[2025-2018] 0.0228234 5.4527832 0.0537252 114.68  -1.42 

(Intent%-50)*ARTCC[ZAU]  -0.000336  -0.111645  -0.000517  -0.9392 0.2611 

(Intent%-50)*ARTCC[ZMA] 0.0005096  -0.156627 0.0003695 0.9768  -0.2539 

(Intent%-50)*ARTCC[ZNY] 0.0001415  -0.018189 0.0004878 0.4568 0.2191 

(Intent%-50)*ARTCC[ZLA]  -0.001094  -0.033004  -0.002252  -1.2272  -0.0119 

(Intent%-50)*ARTCC[ZDV] 0.0007796 0.3194645 0.0019119 0.7328  -0.2144 

(Intent%-50)*Traffic Year[2025-2018]  -0.000394  -0.068331  -0.001008  -1.4224 0.0542 

ARTCC[ZAU]*Traffic Year[2025-2018]  -0.014156  -2.243095  -0.030131  -14.68 4.97 

ARTCC[ZMA]*Traffic Year[2025-2018]  -0.001887  -1.673652  -0.003673 4.12  -3.48 

ARTCC[ZNY]*Traffic Year[2025-2018]  -0.014235 1.5012082  -0.027379  -32.88 2.02 

ARTCC[ZLA]*Traffic Year[2025-2018] 0.0481462 4.983336 0.0522818 34.52  -4.13 

ARTCC[ZDV]*Traffic Year[2025-2018]  -0.017868  -2.567797 0.0089017 8.92 0.62 

(Intent%-50)*(Intent%-50) 1.5501e-7 0.0011323 8.3068e-6 0.0210286  -0.005197 

 

The results in Table 12 can be interpreted by comparing the size of the effects to the intercept, which is 

the mean response value over all levels. For every one percent increase in intent entered, the average 

horizontal error decreases by 0.002NM and average absolute vertical error by -0.44 ft. The number of 

trajectories per flight decreases by 0.0075 for every percent increase in intent entry, compared to the 

1.7937 overall average. The count of alerts with duration greater than one minute decreases by roughly 

3.92 on average per one percent increase. This is compared to the intercept value of 488 total long 

duration alerts. The first quartile of predicted warning time increases by 0.5778 seconds for every 

increase of one percent intent entry. Comparing no intent entry (0%) to full intent entry (100%), therefore, 

the first quartile increases by roughly one minute.  Likewise, the horizontal error decreases by 0.2NM, or 

61%; vertical error decreases by 44 ft, or roughly 42% of the general average. The trajectory count per 

flight decreases by 0.7 from minimum to maximum intent entry, which is 42%. And the count of alerts 

with long duration decreases by 392, or 80% of the intercept value. 

 

The JMP® commercial software tool provides an interactive model calculator called the predictor profiler 

that allows the examination of the effects of the various factors of the model
5
. Figure 13 presents the 

predictor profile plot of the model results. The general trend is that year has a negligible effect on all 

                                                      
5 For details on the JMP® software tool and the predictor profiler see www.jmp.com. 

http://www.jmp.com/
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responses except the count of alerts with long duration. The choice of ARTCC has the largest effect on 

the average of the absolute vertical errors. Increasing the intent level also displays desirable effects in the 

model: average horizontal and vertical error decrease, the count of trajectories with no associated 

clearance decreases, the count of alerts with long duration decreases, and the predicted warning time 

increases. These trends show that the model agrees with the hypothesis that increased intent in the system 

produces a positive effect.  
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Figure 13: Predictor Profiler for 2018 (left) and 2025 (right)



 

33 

The slopes of the plotted lines in Figure 13 indicate the magnitude and direction of each factor’s effect on 

the model. The curvature in the intent factor indicates its non-linear effects which are stronger at low 

intent levels. The y-axis plots the response variable estimates from the model and the decimal numbers on 

each y-axis represents the modeled response variable at the levels specified in the figures. The setting 

chosen for the profiler graphics are the ZDV ARTCC, at full (100%) intent for both years. ZDV is chosen 

because it demonstrates the greatest positive benefits. 

 

3.4 Flight Examples 
This section presents three example conflicts that are selected to demonstrate how the trajectory modeling 

and conflict probe alert performance vary with intent level. Instances are identified in a reduced intent 

scenario in which intent is not sent to the ground automation system. Each example follows one such 

instance in the reduced intent scenario and compares it to the same time in the associated full intent 

scenario. Relevant trajectory information and conflict alert information are presented. The paths of the 

flights involved are depicted from each scenario to show the effect of improved intent.  

 

The examples attempt to capture a wide array of benefit mechanisms from improved intent entry. The 

first scenario is 2018 traffic in Chicago center (ZAU) with low intent entry (that is, with 25% of 2-part 

clearances entered). This low-intent scenario is compared to the full intent scenario (with all clearances 

fully entered) for ZAU 2018 traffic. The FAA FliteViz4D visualization tool [2] is used to explore the 

scenario data and produce the graphics in the following examples. 

 

Please note this section presents simulations of aircraft encounters. While the flight trajectories are 

representative of real trajectories that could have been generated by the ground automation system, the 

track data are entirely fabricated and in no way reflect actual encounters that took place. The flight names 

used in the examples may reflect actual call signs used in operations, but the reader is cautioned that they 

are computer generated for this experiment only and do not reflect real flights. 

 

3.4.1 Example 1 – False Alert Induced by Reduced Intent Amendment 

The first example involves Flight JBU921, an Embraer 190 aircraft flying from Boston Logan airport to 

Chicago O’Hare airport, with the intermediate fixes EMMMA, WYNDE, ERNNY, and RAPPI. Flight 

UAL327 is a Boeing 757 aircraft flying from LaGuardia airport in New York to Chicago O’Hare airport, 

with the intermediate fixes COATE, MINEO, GOOSS, EMMMA, WYNDE, ERNNY, and RAPPI, as 

depicted in Figure 14. The cruise altitudes are FL360 for JBU921 and FL380 for UAL327. The encounter 

duration between the aircraft starts at 49190 seconds and ends at 49340 seconds.  
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Figure 14: Flight Paths for the Conflicting Aircraft 

 

A conflict is predicted between these two aircraft to occur at 49266 seconds and the notification time of 

the conflict is 48881 seconds. The minimum horizontal and vertical separations for the predicted conflict 

are 4.41 nautical miles and 993 feet respectively. A two-part lateral resolution maneuver for JBU921 is 

issued to resolve the conflict without intent entry, JBU921 starts the maneuver at 49195 seconds, and 

UAL327 starts to descend at 49234 seconds. Without the knowledge of the resolution intent, the 

trajectory predictor (TP) assumes a shorter outbound distance with which the conflict probe (CP) predicts 

a false conflict between JBU921 and UAL327 to occur at 49246 seconds, as depicted in Figure 15 and 

Figure 16. The conflict prediction is made when JBU921 reaches the actual position of (x=592.76, 

y=435.00, z=36000) and UAL327 reaches (x=592.56, y=420.18, z=37987), where x and y are the 

perpendicular distances in NM to some fixed point of reference, and z is the altitude in feet. The conflict 

is predicted to occur at 3 minutes into the future of the aircraft being at these positions. The headings used 

for the prediction are 273 degrees for JBU921 and 258 degrees for UAL327, and the speeds used for the 

prediction are 453 knots for JBU921 and 462 knots for UAL327. The minimum horizontal and vertical 

separations for the falsely predicted conflict are 3.57 nautical miles and 15 feet respectively.  
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Figure 15: Horizontal Visualization of the Conflict Resolution without Intent Entry 

 

 

Figure 16: Vertical Visualization of the Conflict Resolution without Intent Entry 
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When the resolution maneuver is issued with intent entry, the TP models the exact outbound distance and 

the resulting trajectories are conflict free, as depicted in Figure 17 and Figure 18. 

 

 

Figure 17: Horizontal Visualization of the Conflict Resolution with Intent Entry 

 

 

Figure 18: Vertical Visualization of the Conflict Resolution with Intent Entry 
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So, when the 2-leg maneuver for JBU921 is not entered into the ground automation system, the modeled 

trajectory is incorrect. Due to this lack of intent information, the conflict probe generates an alert for a 

predicted conflict which does not occur. In contrast, when the full clearance for JBU921 is entered into 

the ground automation the trajectory is modeled correctly, and no false alert is produced. 

 

3.4.2 Example 2 – Late Alert due to Reduced Intent Amendment 

The second example in ZAU involves Flight PAT128, a Fairchild Metro-Merlin 4 aircraft flying from 

Columbia Metropolitan airport in South Carolina to La Crosse Municipal airport in Wisconsin, with the 

intermediate fixes SPA, BMG, DNV and SIBER. Flight SWA107 is a Boeing 737 aircraft flying from 

Midway airport in Chicago to LAX International airport in Los Angeles, with the intermediate fixes 

SIMMN, MZV, ALBRT, JAVAS, LMN, COCAN, BUGGA, EMMEY, and CIVET, as depicted in Figure 

19. The cruise altitudes are FL200 for PAT128 and FL400 for SWA107. SWA107 implements a step 

climb at 54540 seconds for which the full amendment is not entered into the automation system. The 

encounter duration between the aircraft starts at 55400 seconds and ends at 55540 seconds.  

 

 

Figure 19: Flight Paths for the Conflicting Aircraft 

 

A conflict is predicted between these two aircraft to occur at 55391 seconds and the notification time of 

the conflict is 55008 seconds. The minimum horizontal and vertical separations for the predicted conflict 

are 2.86 nautical miles and 117 feet respectively. A two-part lateral resolution maneuver is issued for 

PAT128 to resolve the conflict without intent entry and PAT128 starts the maneuver at 55062 seconds. 
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This resolution is based on partial intent information for SWA107. After PAT128 performs the resolution 

maneuver, a conflict is predicted along the resolution trajectory to occur at 55420 seconds between 

SWA107 and PAT128, as depicted in Figure 20 and Figure 21. The trajectories are predicted when 

PAT128 reaches (412.77, 348.56, 20000) and SWA107 reaches (415.81, 348.88, 19481) with 1 minute 

look ahead time. The headings used for the prediction are 282 degrees for PAT128 and 249 degrees for 

SWA107, and the speeds used for the prediction are 269 knots for PAT128 and 354 knots for SWA107. 

The minimum horizontal and vertical separations for the predicted conflict are 3.69 nautical miles and 

100 feet respectively. 

 

 

Figure 20: Horizontal Visualization of the Predicted Conflict due to Resolution without Intent 

Entry 
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Figure 21: Vertical Visualization of the Predicted Conflict due to Resolution without Intent Entry 

 

However, the loss of separation occurs at 55427 seconds, which makes the 1-minute look ahead conflict 

prediction a late detection with a seven-second warning time, as depicted in Figure 22 and Figure 23. The 

loss of separation occurs when PAT128 reaches (417.26, 348.91, 20000) and SWA107 reaches (413.83, 

348.08, 19481). The minimum observed horizontal separation is 4.1 nautical miles and the minimum 

observed vertical separation is 529 feet. 
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Figure 22: Horizontal Visualization of the Conflict Resulting in a Late Valid Alert 

 

 

Figure 23: Vertical Visualization of the Conflict Resulting in a Late Valid Alert 
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When the resolution is issued with intent entry, the TP predicts the trajectories more accurately and the 

CP does not predict any conflict, as depicted in Figure 24 and Figure 25. 

 

 

Figure 24: Horizontal Visualization of the Conflict Resolution with Intent Entry 

 

 

Figure 25: Vertical Visualization of the Conflict Resolution with Intent Entry 

 

When the 2-leg maneuver for PAT128 is not entered into the ground automation system, and an interim 

altitude is entered for SWA107, the modeled trajectories are incorrect. The lack of intent information 

causes the conflict probe alert to be late. In contrast, when the full clearances are entered into the ground 

automation the trajectories are modeled correctly. 
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3.4.3 Example 3 – False and Missed Alerts due to Multiple Trajectory 
Rebuilds 

The third and last example involves Flight AAL408, a McDonnell Douglas MD-82 aircraft flying from 

San Antonio International airport in Texas to Chicago O’Hare International airport, with the intermediate 

fixes HENLY, JUMBO, EDNAS, AKUNA, BENKY and NEWRK. Flight AAL448 is a Boeing 737 

aircraft flying from Grove Hill Municipal Airport in Illinois to Chicago O’Hare International airport, with 

the intermediate fixes BENKY, and NEWRK. Flight UAL397 is a Boeing 757 aircraft flying from 

McCarran International airport in Las Vegas to Chicago O’Hare International airport, with the 

intermediate fixes TOMIS, BATIS, NICLE, PWE, IRK, COLIE, LOAMY, BENKY, and NEWRK, as 

depicted in Figure 26. The cruise altitudes are FL310 for AAL408, FL380 for AAL448, and FL350 for 

UAL397. The encounter duration for the three aircraft starts at 80580 seconds and ends at 81450 seconds.  

 

 

Figure 26: Flight Paths for the Conflicting Aircraft 

 

A conflict is predicted to occur between AAL408 and AAL448 at 80887 seconds and the notification time 

of the conflict is 80558 seconds. The minimum horizontal and vertical separations for the predicted 

conflict are 4.65 nautical miles and 210 feet respectively. A two-part lateral resolution maneuver is issued 

for AAL448 to resolve the conflict without intent entry and AAL448 starts the maneuver at 80573 

seconds. Aircraft UAL397 deviates from its planned route at 80616 seconds due to an clearance being 

given but not entered into the automation system.  In following this clearance, UAL397 changes its 

heading from 67 degrees to 105 degrees, while AAL448 is moving toward UAL397’s deviated flight 

path, as depicted in Figure 27.  
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Figure 27: Intersection of the Resolution Flight Path and the Deviated Flight Path 

 

Without the knowledge of the intent of both aircraft, the TP assumes shorter turn out distance for 

AAL448 and UAL397’s original planned path to predict the trajectories for UAL397 and AAL448. As a 

result, the CP predicts a false conflict between UAL397 and AAL448 to occur at 80772 seconds with 

predicted minimum horizontal separation of 1.46NM and minimum vertical separation of 150 feet, as 

depicted in Figure 28 and Figure 29. As the aircraft proceed along the current directions, the CP predicts a 

false conflict between AAL448 and AAL408 to occur at 80942 seconds using AAL448’s trajectory 

rebuild with shorter turn out distance and AAL408’s trajectory along its planned flight path. The 

horizontal and vertical minimum separations for the predicted conflict are 1.22 nautical miles and 514 feet 

respectively, as depicted in Figure 30 and Figure 31 . 
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Figure 28: Horizontal Visualization of the Predicted Conflict between UAL398 and AAL448 

 

 

Figure 29: Vertical Visualization of the Predicted Conflict between UAL397 and AAL448 
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Figure 30: Horizontal Visualization of the Predicted Conflict between AAL448 and AAL408 

 

 

Figure 31: Vertical Visualization of the Predicted Conflict between AAL408 and AAL448 
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In response to the false alert predicted to occur at 80942 seconds, AAL408 starts to perform the two-part 

lateral resolution maneuver without intent entry at 80800 seconds, while the CP predicts a conflict 

between AAL408 and UAL 397 using AAL408’s trajectory along its planned flight path and UAL397’s 

trajectory with shorter turn out distance, as depicted in Figure 32 and Figure 33. 

 

 

Figure 32: Horizontal Visualization of the Predicted Conflict between UAL397 and AAL408 

 

 

Figure 33: Vertical Visualization of the Predicted Conflict between UAL397 and AAL408 
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The TP continues to assume the shorter turn out distance to generate the trajectory for AAL408, and the 

CP predicts a conflict between AAL408 and AAL448 to occur at 81004 seconds with the minimum 

horizontal and vertical separation being 3.7 nautical miles and 749 feet, as depicted in Figure 34 and 

Figure 35. 

 

 

Figure 34: Horizontal Visualization of the Predicted Conflict between AAL408 and AAL448 

 

 

Figure 35: Vertical Visualization of the Predicted Conflict between AAL408 and AAL448 

 

As AAL408 and AAL448 complete the turn and stay on the resolution trajectory, a conflict between the 

aircraft is missed by the CP, occurring at 81346 seconds with the horizontal and vertical minimum 
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separation being 4.01 nautical miles and 900 feet respectively. In addition, the CP predicts a conflict 

between AAL408 and UAL397 to occur at 81546 seconds with the horizontal and vertical minimum 

separation being 1.741 nautical miles and 460 feet respectively. The missed and false alerts are depicted 

in Figure 36 and Figure 37. 

 

 

Figure 36: Horizontal Visualization of the False and Missed Alerts 
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Figure 37: Vertical Visualization of the False and Missed Alerts 

 

Figure 38 illustrates that, in the full intent scenario, aircraft UAL397 conforms to its planned route, 

AAL448 performs the resolution maneuver with intent entry, and AAL408 does not respond to the 

aforementioned false alert. Because of the intent consistency, the trajectories generated by the TP 

conform to the track data and the trajectories are conflict free. As a result, there is no false alert or conflict 

missed by the CP, as depicted in Figure 39 and Figure 40. 
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Figure 38: Conforming and Conflict Free Trajectories 

 

 

Figure 39: Horizontal Visualization of the Conflict Free Trajectories 
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Figure 40: Vertical Visualization of the Conflict Free Trajectories 

 

All three flights -UAL397, AAL408, and AAL448- implement 2-leg maneuvers that are not entered into 

the ground automation system in the low-intent scenario. As a result, the modeled trajectories are 

incorrect. The lack of intent information causes two false conflicts, an unnecessary maneuver, and a 

missed alert. In contrast, when the full clearances are entered into the ground automation the trajectories 

are modeled correctly and these undesirable events are avoided. 
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4. Conclusions 
CRA is envisioned as an advanced decision support tool for air traffic control deployed within the 

NextGen TBO initiatives. It predicts future conflicts between aircraft and proposes ranked resolution 

options, supporting increased use of “closed-loop” clearances by facilitating the entry of controller-

selected resolutions. Contrasted with the methods used in today’s operations, where amendments are 

typically issued via voice and are often unknown to the ground automation system, this improved entry of 

amendments expands the information available to the automation regarding future intent. It is 

hypothesized that this additional information will increase the accuracy of ground-based trajectory 

modeling and improve conflict probe alert performance. 

 

The objective of this study, as defined in Section 1.3, is to investigate the benefits of improved trajectory 

modeling and conflict probe performance due to increased entry of controller intent, using a fast-time 

simulation methodology that involves a CRA prototype and ERAM-like system. The assumption that 

CRA will increase intent information available to ground automation systems will be validated in separate 

analysis. This is one of a series of studies to estimate a number of potential benefits of CRA; see Section 

1.3 for a full listing. This study utilized a sound methodology utilizing several powerful tools and 

platforms including fast-time simulation airspace and ATC software, both internally developed and 

commercial off-the-shelf statistical and graphical platforms, and advanced multi-regression modeling to 

synthesize the results and estimate the net effects. Almost 45,000 flights over 240 hours are simulated. 

 

Overall, a performance improvement is observed in both trajectory modeling and conflict probe alerts 

with increasing levels of intent entry. The model fits the output data closely, capturing between 97 and 

100% of the variation in the data for different response variables, and indicates a strong non-linear effect 

from the intent level parameter- the size of the effect is highest at lower levels of intent entry. The results 

indicate a potential improvement in trajectory modeling: 61% decrease in the overall average horizontal 

error and 42% decrease in the overall average vertical error when comparing scenarios that simulated the 

least amount of controller intent entry to scenarios with complete entry of full clearances. In addition, the 

number of trajectories generated that do not coincide with a flight plan amendment decrease by 42% 

overall between these scenarios, indicating that the trajectories generated are more stable and that less 

reconformance rebuilds are necessary with more complete entry of a controller’s future intent. 

 

These improvements in trajectory prediction and more accurate trajectories lead to better performance of 

the conflict probe. Two metrics that are used to demonstrate conflict alert performance are the first 

quartile of predicted warning time, and the count of alerts with duration greater than one minute. From the 

statistical model, there is an overall increase of 58 seconds in the first quartile of predicted warning time 

of alerts when increasing full entry of 2-part clearances to the ground automation from 0 to 100%. The 

count of alerts with duration greater than one minute reflects how often alerts are not removed upon 

issuing an amendment, and these alerts decrease by an average of 80% over all experimental runs when 

increasing full entry of 2-part clearances from 0 through 100%. 

 

In summary, this study presents a comprehensive simulation of improved intent entry and evaluates the 

impact that Conflict Resolution Advisories could have on the performance of the ground automation with 

respect to trajectory modeling and conflict alert generation.  The authors employed metrics that reflect 

important performance aspects of trajectory modeling and conflict probe alerting.  The results indicate a 

significant impact and definite trend of performance improvement with increasing entry of full 2-part 

clearances, which CRA facilitates. 
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5. Glossary 
ANG-C41 FAA’s Concept Analysis Branch 

ANSP Air Navigation Service Provider 

ARTCC Air Route Traffic Control Center 

AJG FAA’s Joint Planning Group 

ATC Air Traffic Control 

ATO-P Air Traffic Organization – NextGen and Operations Planning Office 

CONUS Continental United States 

CP Conflict Probe 

CRA Conflict Resolutions Advisories 

Datacomm Data communications 

DOE Design of Experiment 

DOF Direction of Flight 

DST Decision Support Tool 

ETMS Enhanced Traffic Management System 

FAA Federal Aviation Administration 

FB Fuel Burn 

FD Flight Delay 

FDS Flight Data Set 

FT Flight Time 

FY Fiscal Year 

IFR Instrument Flight Rules 

JEDI Java En Route Development Initiative 

JPDO Joint Planning Development Office 

MySQL The MySQL® open source relational database system 

NAS National Airspace System 

NASA National Aeronautics and Space Administration 

NextGen Next Generation Air Transportation System 

OPSNET Operations Network 

PARR Problem Analysis Resolution and Ranking 

PLA Project Level Agreement 

TBO Trajectory-Based Operations 

TP Trajectory Predictor 

UTC Coordinated Universal Time 

VFR Visual Flight Rules 

VHF Very High Frequency 

ZAU Chicago ARTCC 

ZDV Denver ARTCC 

ZLA Los Angles ARTCC 

ZMA Miami ARTCC 

ZNY New York ARTCC 
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Appendix A 
 

This appendix provides paired t-test results for comparing trajectory counts at different intent levels as 

described in Section 3.1.1. The two metrics are the count of all trajectories and the count of trajectories 

that are not matched to a clearance. Each is presented as an average count per flight in Table 13, which 

provides the difference in means and Student’s paired t-statistic for each comparison of a reduced intent 

scenario to the full intent scenario. Positive differences in the table reflect an increase from the full intent 

scenario to the reduced intent scenario. 

 

Table 13: Paired t-test Results for Trajectory Counts in All Scenarios 

   
Mean Difference Paired t-Statistic 

ARTCC Year Intent 

Total 

Trajectory 

Count 

Traj. Not Matched 

to Clearance 

Total 

Trajectory 

Count 

Traj. Not Matched 

to Clearance 

ZAU 

2018 

HI 0.2 0.2 10.0 9.4 

MD 0.4 0.4 16.4 15.7 

LO 0.7 0.6 20.6 20.2 

NN 1.0 0.8 25.1 24.6 

2025 

HI 0.2 0.2 11.9 11.9 

MD 0.4 0.4 17.9 17.9 

LO 0.8 0.6 22.9 22.2 

NN 1.1 0.9 28.0 27.4 

ZDV 

2018 

HI 0.2 0.2 8.5 8.0 

MD 0.3 0.3 11.7 11.5 

LO 0.5 0.4 15.9 15.7 

NN 0.7 0.6 18.0 17.3 

2025 

HI 0.2 0.2 7.4 7.2 

MD 0.4 0.3 11.0 10.5 

LO 0.5 0.5 16.3 16.1 

NN 0.7 0.7 16.1 15.4 

ZLA 

2018 

HI 0.2 0.2 10.7 10.9 

MD 0.5 0.5 14.7 14.7 

LO 0.8 0.6 17.5 17.0 

NN 1.1 0.9 23.5 23.1 

2025 

HI 0.4 0.3 10.7 9.9 

MD 0.6 0.5 15.2 14.5 

LO 1.0 0.8 14.0 12.9 

NN 1.3 1.1 24.9 23.9 
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Mean Difference Paired t-Statistic 

ARTCC Year Intent 

Total 

Trajectory 

Count 

Traj. Not Matched 

to Clearance 

Total 

Trajectory 

Count 

Traj. Not Matched 

to Clearance 

ZMA 

2018 

HI 0.2 0.1 9.2 8.9 

MD 0.4 0.3 14.0 13.9 

LO 0.6 0.5 18.0 17.7 

NN 0.8 0.7 22.8 23.5 

2025 

HI 0.2 0.2 9.4 9.1 

MD 0.4 0.4 14.8 14.2 

LO 0.7 0.6 19.4 18.9 

NN 1.0 0.8 24.4 24.0 

ZNY 

2018 

HI 0.3 0.2 4.2 3.8 

MD 0.4 0.3 16.6 16.2 

LO 0.7 0.6 10.9 9.5 

NN 0.9 0.7 25.4 25.1 

2025 

HI 0.2 0.2 13.2 12.5 

MD 0.4 0.4 18.6 17.8 

LO 0.7 0.6 23.6 22.8 

NN 1.0 0.8 28.2 28.0 
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Appendix B 
This appendix provides paired t-test results for four types of trajectory errors: Average Absolute Cross Track Error, Average Absolute Along 

Track Error, Average Absolute Vertical Error, and Average Horizontal Error, as described in Section 3.1.2. Table 14 contains the difference in 

means and Student’s paired t-statistic for each comparison. Positive differences in the table reflect an increase from the full intent scenario to the 

reduced intent scenario. 

 

Table 14: Paired t-test Results for Trajectory Errors in All Scenarios 

   
Mean Difference Paired t-Statistic 

ARTCC Year Intent 
Avg AACTE 

(NM) 

Avg AAATE 

(NM) 

Avg AAVE 

(ft) 

Avg AHE 

(NM) 

Avg 

AACTE 

Avg 

AAATE 

Avg 

AAVE 

Avg 

AHE 

ZAU 

2018 

HI 0.031 0.026 10.100 0.051 6.8 3.8 4.7 6.0 

MD 0.076 0.060 23.678 0.118 9.8 8.7 8.8 11.0 

LO 0.126 0.094 39.285 0.189 11.2 10.5 10.9 12.8 

NN 0.177 0.102 56.118 0.234 13.5 12.8 12.4 14.7 

2025 

HI 0.033 0.036 12.693 0.059 8.0 6.6 6.0 8.9 

MD 0.084 0.063 28.832 0.125 9.1 9.6 8.5 10.8 

LO 0.132 0.109 44.717 0.203 11.8 11.0 11.5 13.5 

NN 0.199 0.119 59.805 0.263 14.7 13.5 13.5 16.0 

ZDV 

2018 

HI 0.024 0.020 3.505 0.040 5.7 5.2 3.7 6.7 

MD 0.054 0.031 5.416 0.074 7.0 7.9 4.5 8.3 

LO 0.091 0.050 9.759 0.121 8.7 9.4 5.9 10.0 

NN 0.111 0.052 14.202 0.140 10.3 11.1 6.9 11.5 

2025 

HI 0.037 0.029 3.857 0.056 6.4 4.3 4.5 6.4 

MD 0.055 0.036 6.482 0.078 8.8 6.6 6.2 9.3 

LO 0.085 0.046 13.120 0.114 10.8 10.9 7.2 12.1 

NN 0.115 0.061 16.790 0.149 11.9 8.8 6.9 12.5 
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Mean Difference Paired t-Statistic 

ARTCC Year Intent 
Avg AACTE 

(NM) 

Avg AAATE 

(NM) 

Avg AAVE 

(ft) 

Avg AHE 

(NM) 

Avg 

AACTE 

Avg 

AAATE 

Avg 

AAVE 

Avg 

AHE 

ZLA 

2018 

HI 0.026 0.035 8.753 0.047 6.9 3.2 4.4 6.4 

MD 0.079 0.074 19.865 0.129 9.0 7.2 7.9 10.2 

LO 0.130 0.106 26.120 0.185 10.7 5.5 8.0 11.0 

NN 0.200 0.148 44.582 0.269 13.6 7.2 10.6 14.0 

2025 

HI 0.052 0.049 14.126 0.089 7.5 6.4 5.3 7.4 

MD 0.132 0.102 22.070 0.198 3.6 5.8 9.1 4.5 

LO 0.188 0.138 39.860 0.275 5.0 7.8 10.5 6.0 

NN 0.284 0.203 60.734 0.396 7.2 8.6 12.2 8.0 

ZMA 

2018 

HI 0.017 0.027 11.989 0.035 5.7 4.0 5.6 5.6 

MD 0.049 0.050 29.140 0.086 8.1 7.5 7.7 9.4 

LO 0.075 0.071 42.448 0.123 9.4 7.6 9.5 10.4 

NN 0.104 0.076 58.016 0.150 11.9 10.8 11.4 13.8 

2025 

HI 0.032 0.024 12.722 0.048 6.3 4.8 4.7 6.7 

MD 0.050 0.044 29.973 0.083 9.1 7.5 8.0 10.4 

LO 0.090 0.062 47.029 0.130 11.9 9.3 10.1 12.6 

NN 0.143 0.087 67.374 0.192 14.3 13.1 12.0 15.6 

ZNY 

2018 

HI 0.036 0.045 13.593 0.066 5.2 4.1 5.2 6.1 

MD 0.053 0.075 19.649 0.104 6.4 6.2 9.2 8.6 

LO 0.098 0.093 39.225 0.159 9.0 7.2 10.3 10.6 

NN 0.133 0.114 47.820 0.200 11.4 7.8 12.5 12.4 

2025 

HI 0.022 0.048 15.008 0.057 5.2 4.6 6.0 6.3 

MD 0.058 0.062 19.572 0.096 8.4 5.8 6.4 8.9 

LO 0.100 0.115 37.302 0.174 10.5 7.5 10.0 11.3 

NN 0.136 0.134 51.380 0.214 12.0 8.2 12.0 12.9 
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Appendix C 
This appendix provides additional graphs depicting trajectory error as a function of look ahead time as 

described in Section 3.1.2. Figure 41 and Figure 42 are set up in a similar fashion to Figure 7. 

 

 

Figure 41: Vertical Trajectory Error vs. Look Ahead Time 
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Figure 42: Along Track Trajectory Error vs. Look Ahead Time 
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Appendix D 
This appendix provides additional graphs with histograms of alert duration as a function of look ahead 

time as described in Section 3.2. Figure 43- Figure 51 are set up in a similar fashion to Figure 9. 

 

 

Figure 43: Percent of Alerts with Duration Exceeding One Minute for ZAU 2025 

 

 

Figure 44: Percent of Alerts with Duration Exceeding One Minute for ZDV 2018 
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Figure 45: Percent of Alerts with Duration Exceeding One Minute for ZDV 2025 

 

 

Figure 46: Percent of Alerts with Duration Exceeding One Minute for ZLA 2018 
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Figure 47: Percent of Alerts with Duration Exceeding One Minute for ZLA 2025 

 

 

Figure 48: Percent of Alerts with Duration Exceeding One Minute for ZMA 2018 
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Figure 49: Percent of Alerts with Duration Exceeding One Minute for ZMA 2025 

 

 

Figure 50: Percent of Alerts with Duration Exceeding One Minute for ZNY 2018 
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Figure 51: Percent of Alerts with Duration Exceeding One Minute for ZNY 2025 
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Appendix E 
This appendix provides additional tables with conflict alert statistics for the various scenarios as described 

in Section 3.2. Table 15 - Table 18 contain similar information as Table 6. 

 

Table 15: Alert Statistics for ZDV Scenarios 

Intent Level Year N 
Q1 of Predicted Warning Time 

(seconds) 
% Alerts w/ Duration > 1 min. 

FL 
2018 1059 320 12.7 

2025 1456 321 13.5 

HI 
2018 1122 310 18.4 

2025 1560 313 19.8 

MD 
2018 1179 303 23.5 

2025 1652 298 25.2 

LO 
2018 1829 295 20.3 

2025 1710 290 29.8 

NN 
2018 1397 280 33.9 

2025 1892 282 34.3 

 

Table 16: Alert Statistics for ZLA Scenarios 

Intent Level Year N 
Q1 of Predicted Warning Time 

(seconds) 
% Alerts w/ Duration > 1 min. 

FL 
2018 1376 297 8.5 

2025 1848 298 9.6 

HI 
2018 1489 291 12.2 

2025 2073 287 15.8 

MD 
2018 1676 282 17.6 

2025 2210 281 19.3 

LO 
2018 1810 275 22.7 

2025 2446 270 23.0 

NN 
2018 2158 241 29.5 

2025 2978 222 29.9 
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Table 17: Alert Statistics for ZMA Scenarios 

Intent Level Year N 
Q1 of Predicted Warning Time 

(seconds) 
% Alerts w/ Duration > 1 min. 

FL 
2018 1043 288 12.2 

2025 1346 287 13.2 

HI 
2018 1107 280 16.1 

2025 1434 282 17.4 

MD 
2018 1208 275 20.9 

2025 1601 273 21.6 

LO 
2018 1332 268 24.2 

2025 1794 263 26.3 

NN 
2018 1429 261 28.2 

2025 2032 242 31.1 

 

Table 18: Alert Statistics for ZNY Scenarios 

Intent Level Year N 
Q1 of Predicted Warning Time 

(seconds) 
% Alerts w/ Duration > 1 min. 

FL 
2018 1051 293 11.0 

2025 1360 293 10.7 

HI 
2018 1140 283 15.6 

2025 1511 284 14.0 

MD 
2018 1267 269 19.9 

2025 1736 269 19.4 

LO 
2018 1445 246 23.5 

2025 2001 247 23.2 

NN 
2018 1717 208 28.0 

2025 2281 209 27.0 
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