
 
 
 
 

              
ot

e 
 te

ch
ni

ca
l n

ot
e 

  t
ec

hn
 

 

 

   
 
 

Evaluation of Parameter 
Adjustments to the En Route 
Automation Modernization’s 
Conflict Probe 
 
 
 
 

Andrew Crowell, FAA ANG-C41  

Andrew Fabian, FAA ANG-C41 

Christina Young, Ph.D., CSSI Inc. 

Ben Musialek, General Dynamics Information Technology 

Mike Paglione, FAA ANG-C41 
 
 

 
 
 
December 2011 
 
 
 
DOT.FAA/TC-TN12/2 
 
 
 
 

Document is available to the public 
through the National Technical Information 
Service, Springfield, Virginia 22161 
 
 
 
 

 
 
U.S. Department of Transportation 

Federal Aviation Administration 
 
William J. Hughes Technical Center 
Atlantic City International Airport, NJ 08405 
 



 ii

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[THIS PAGE IS INTENTIONALLY LEFT BLANK] 

 



 iii

 
NOTICE 

 
This document is disseminated under the sponsorship of the U.S. 
Department of Transportation in the interest of information exchange. The 
United States Government assumes no liability for the contents or use 
thereof. The United States Government does not endorse products or 
manufacturers. Trade or manufacturer's names appear herein solely 
because they are considered essential to the objective of this report. This 
document does not constitute FAA certification policy. Consult your local 
FAA aircraft certification office as to its use. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This report is available at the Federal Aviation Administration William J. 
Hughes Technical Center’s Full-Text Technical Reports page: 
actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF). 



 iv

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[THIS PAGE IS INTENTIONALLY LEFT BLANK] 

 



 v

 Technical Report Documentation Page 
1.  Report No. 
DOT.FAA/TC-TN12/2 

2.  Government Accession No. 3.  Recipient’s Catalog No. 

5.  Report Date 
September 2011 

4.  Title and Subtitle  

Evaluation of Parameter Adjustments to the En Route Automation Modernization’s Conflict 
Probe 6.  Performing Organization Code 

ANG-C41 

7.  Author(s)   
Andrew Crowell, Andrew Fabian, Christina Young, Ph.D., Ben Musialek, and Mike Paglione 
 
 

8.  Performing Organization Report No. 
DOT.FAA/TC-TN12/2 

10.  Work Unit No.  (TRAIS) 
 
 

9.  Performing Organization Name and Address 
U.  S.  Department of Transportation 
Federal Aviation Administration, William J.  Hughes Technical Center 
Atlantic City International Airport, NJ  08405 

11.  Contract or Grant No. 
 

13.  Type of Report and Period Covered 
 
Technical Note 

12.  Sponsoring Agency Name and Address 
U.  S.  Department of Transportation 
Separation Management Modern Procedures Program Office, AJE 
Conflict Probe/URET Product Team 
Washington, D. C.  20590 

14.  Sponsoring Agency Code 
 
 

15.  Supplementary Notes  
The authors identified above represent the following organizations:  Andrew Crowell, Andrew Fabian, and Mike Paglione with FAA 
ANG-C41, Christina Young, Ph.D. with CSSI Inc, and Ben Musialek with General Dynamics Information Technology. 
 
16.  Abstract 

The Federal Aviation Administration (FAA) is currently implementing a number of improvements to the National Airspace 
System (NAS) in the United States under a multi-agency initiative called the Next Generation Air Transportation System 
(NextGen) Program. The Separation Management and Modern Procedures Project is one of these NextGen initiatives. The 
FAA’s Air Traffic Organization’s En Route Program Office (ATO-E) has employed the FAA’s Concept Analysis Branch 
(ANG-C41) to conduct a series of independent evaluations on the performance enhancements to the En Route Automation 
Modernization (ERAM) Trajectory Modeling (TM) and Conflict Probe (CP) sub-systems. ATO-E contracted the prime 
contractor of ERAM, Lockheed Martin under FAA Task Orders 45 and 51, to develop these prototypes within the actual 
ERAM architecture, so the FAA could evaluate their efficacy. Before analyzing the initial prototype enhancements being 
developed, an initial experiment was performed that altered parameters of ERAM to determine if improvement can be 
achieved from the current version of ERAM without additional upgrades. This report describes the metrics and methods 
developed and results of this initial experiment. 
 
 

17.  Key Words 
Separation Management, Conflict Probe, ERAM, En Route, Automation 

18.  Distribution Statement 

This report is approved for public release and is on file 
at the William J.  Hughes Technical Center, Aviation 
Security Research and Development Library, Atlantic 
City International Airport, New Jersey 08405. 
 
This document is available to the public through  
the National Technical Information Service,  
Springfield, Virginia, 22161. 

19.  Security Classif.  (of this report) 
Unclassified 

20.  Security Classif.  (of this page) 
Unclassified 

21.  No.  of Pages 
125 

22.  Price 

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized   



 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

[THIS PAGE IS INTENTIONALLY LEFT BLANK] 

 vi



Executive Summary 
The Federal Aviation Administration (FAA) is currently implementing a number of 
improvements to the National Airspace System (NAS) in the United States under a multi-agency 
initiative called the Next Generation Air Transportation System (NextGen) Program. The 
Separation Management and Modern Procedures Project is one of these NextGen initiatives. The 
FAA’s Air Traffic Organization’s En Route Program Office (ATO-E) has employed the FAA’s 
Concept Analysis Branch (ANG-C41) to conduct a series of independent evaluations on 
performance enhancements to the En Route Automation Modernization (ERAM) Trajectory 
Modeling (TM) and Conflict Probe (CP) sub-systems. This work is motivated by a Separation 
Management and Modern Procedures Project’s objective of implementing the ERAM strategic 
conflict probe on the radar controller’s display. The strategic conflict probe utilizes the TM and 
CP sub-systems to notify air traffic controllers when aircraft will violate separation standards as 
much as 20 minutes in the future. Furthermore, NextGen operational concept envisions a future 
air traffic environment managed by aircraft trajectory with advances in ground automation like 
the conflict probe. Thus, ATO-E contracted the ERAM prime contractor under FAA Task Orders 
45 and 51 to develop these prototypes within the actual ERAM architecture, so the FAA could 
evaluate their efficacy.  
 
This report describes two key evaluations. First, it describes an initial improvement to the ERAM 
TM function. This evaluation found that the initial trajectory prototype improved both the 
trajectory position accuracy and conflict probe performance.  Second, it presents an initial 
experiment that altered configurable parameters in ERAM. This determines if improvement can 
be achieved from the current version of ERAM without additional upgrades. In addition, 
automation experts expect the prototype enhancements will require these same altered parameters 
to realize their improvements. This report describes the metrics and methods developed and 
results of this initial experiment. 
 
The three parameters changed in this experiment are the lateral and longitudinal adherence 
bounds and the likelihood function. The adherence bounds are a buffer zone surrounding the 
aircraft and the aircraft prediction. The lateral bound is the distance of this buffer to the left and 
right of the aircraft, whereas the longitudinal adherence bound is the buffer to the front and back. 
This buffer is used for two purposes. If the reported position of the aircraft is outside of the buffer 
zone surrounding the predicted position of the aircraft, it triggers a new trajectory prediction. 
Also, if the buffer zones surrounding the predicted positions of two aircraft come within the 
minimum separation requirement (traditionally 5 nautical miles in En Route airspace), then this 
triggers the generation of an alert by the Conflict Probe. Lastly, the likelihood function assesses 
each conflict prediction and depending on its confidence estimate, may delay the alert notification 
until the estimate is improved or prediction is more imminent.  
 
Longitudinal and lateral adherence bound thresholds were altered from the current operational 
levels of 1.5 nautical miles and 2.5 nautical miles, respectively, to 0.5 nautical miles. The current 
ERAM operational system bypasses the likelihood calculation for all alerts predicted to begin 
within the next 10 minutes and applies the likelihood function for conflict detections beyond 10 
minutes only. The two other levels examined in this experiment reduced this minimum threshold 
from 10 minutes to 3 minutes and changed other parameters associated with the function. For one 
level, it reduced the upper bound to 10 minutes and for the other left this setting at 20 minutes. As 
a result, these three factors, including longitudinal adherence bounds, lateral adherence bounds, 
and likelihood function, were simultaneously altered using experimental design techniques and 
ERAM was run at twelve different treatment and two baseline runs. 
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Even though this initial study was limited to one air traffic scenario, the experiment produced a 
number of interesting results and motivated ANG-C41 to develop a number of new metrics and 
evaluation techniques. The longitudinal adherence bound was found to significantly increase the 
Late Alerts (i.e. ERAM conflict notifications presented with less than the required strategic 
minimum warning time, 3 minutes) when reduced too far from its original setting. The lateral 
adherence bound was determined to cause a significant decrease in False Alerts (i.e. ERAM 
conflict notifications that do not manifest into actual violation of separations, a.k.a. nuisance 
alerts) without causing a major negative impact on Late Alerts. This occurred when the lateral 
bound was reduced to the minimum parameter setting of 0.5 nm. Though there is some 
interaction of these two settings with the likelihood, the interactions seen were minimal, so 
recommendations can be made independent of the likelihood function. 
 
Likelihood was determined to have a major effect on False Alerts, Late Alerts, and warning time. 
Unfortunately, it is not as easy to make a recommendation for a setting of likelihood. The three 
different settings of likelihood used in this study provided some insight to how the function 
affects the performance of the probe, but it is still not completely understood. There were two 
main findings in this study. The first is that likelihood alone can have a major effect on the 
performance of the probe. The second is that, because of the longitudinal inaccuracy of the probe, 
setting the minimum time of the likelihood function to the same as the minimum warning time 
requirement causes extra Late Alerts that should not have been. In order to further understand the 
likelihood and additional experiments are recommended.  
 
Overall, the study provides important insights into the three factors examined. It developed a 
number of metrics, including traditional counts and rates of false and late detections as well as 
implementation of fuzzy detection theory that extracted even more information out of the data. 
The study also implemented advanced experimental design techniques that both maximized use 
of the ERAM runs and examined the potential of interactions between factors. The study provides 
a strong foundation from which a number of additional experiments are being planned and 
underway. 
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1 Introduction 
The Federal Aviation Administration (FAA) is currently implementing a number of 
improvements to the National Airspace System (NAS) in the United States under a multi-agency 
initiative called the Next Generation Air Transportation System (NextGen) Program. The 
Separation Management and Modern Procedures Project is one of these NextGen initiatives. The 
FAA’s Air Traffic Organization’s En Route Program Office (ATO-E) has employed the FAA’s 
Concept Analysis Branch (ANG-C41) to conduct a series of independent evaluations on the 
performance enhancements to the En Route Automation Modernization (ERAM) Trajectory 
Modeling (TM) and Conflict Probe (CP) sub-systems. These ERAM enhancements are required 
by the Separation Management and Modern Procedures Project. ATO-E contracted the prime 
contractor of ERAM, Lockheed Martin under FAA Task Orders 45 and 51, to develop these 
prototypes within the actual ERAM architecture so the FAA could evaluate their efficacy. 
 
Before analyzing the initial prototype enhancements being developed, an initial experiment was 
performed that altered parameters of ERAM to determine if improvement can be achieved from 
the current version of ERAM without additional upgrades. This report describes this experiment 
and results. 

1.1 Background to Study 
The FAA created the NAS to provide a safe and efficient airspace environment for the air 
transportation system in the United States. This includes all commercial, general civilian and 
military aviation. The NAS is composed of a network of air navigation facilities, air traffic 
control facilities, and airports, along with the technologies and the rules and regulations to operate 
the system. As the air transportation system in the United States has grown, the NAS has evolved 
by incorporating new procedures and new technologies. The projected increases in demand could 
lead to a greater stress and perhaps to decreased quality of service for NAS users. In response to 
this the United States Congress created the multi-agency Joint Planning and Development Office 
(JPDO) in 2003 as a part of the "Vision-100" legislation (Public Law 108-176). The mission of 
the JPDO is to design and deploy an air transportation system meeting the nation's air 
transportation system's anticipated needs in 2025. Since its creation the JPDO has published an 
integrated plan [Federal Aviation Administration, 2004] and documented a concept of operations 
[Federal Aviation Administration, 2007] that establish a vision for the Next Generation Air 
Transportation System (NextGen). An integral part of this vision is Trajectory Based Operations 
(TBO), which represents a paradigm shift from clearance-based air traffic control to 
trajectory-based air traffic control. With TBO it is envisioned aircraft will fly negotiated 
trajectories and the air traffic control functions will move to trajectory management. 
 
In the United States, the FAA is the single Air Navigation Service Provider (ANSP) that operates 
the key components of the NAS, such as Air Route Traffic Control Centers (ARTCCs) and 
Terminal Radar Approach Control (TRACON) centers. A key function provided by an ANSP is 
to ensure the safe separation of aircraft within the air transportation system. This separation 
management function remains much as it was when radar was first introduced to civil aviation in 
the late 1950s. Aircraft-to-aircraft separation is managed by human air traffic controllers who 
make strategic and tactical decisions using radar displays to visualize aircraft positions and flight 
paths. These decisions are then provided to the pilots through voice communications via very 
high frequency (VHF) radio. Although more recent automated decision support tools (DSTs) 
have been made available to controllers that predict potential loss of separation (i.e., conflicts) 
and aid in their evaluation, the effectiveness of the DSTs is limited by airspace complexity, 
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controller workload, and the use of voice communications. 
 
NextGen envisions trajectory-based separation management that will provide precise 
management of the current and future positions of all controlled aircraft in the air transportation 
system. This will require enhanced DSTs that not only predict future conflicts, but also provide 
conflict resolution that is communicated directly to the aircraft from the ANSP through digital 
Data Comm*. This planned separation management capability will be able to handle the 
anticipated increase in traffic demand and aircraft diversity with minimal impact to user-desired 
performance profiles and to the environment, while retaining the existing strict safety standards. 
 
A specific separation management problem is an aircraft-to-aircraft conflict, which can be 
defined as a situation where two or more aircraft violate minimum separation criteria. The 
separation criteria depends on the aircraft's navigational equipment and the airspace (e.g., En 
Route, Terminal, or Oceanic) in which they are flying. For example, in En Route airspace the 
separation criteria may be five nautical miles horizontally and 1,000 feet vertically. A Conflict 
Probe (CP) is a DST that predicts when conflict situations may occur by continuously comparing 
projected aircraft positions over a user-specified look-ahead time.  
 

Sector B Sector A

T=14:18 UTC
BBB002 crosses 

into Sector B

T=14:00 UTC
Position of AAA001 
when CP predicts 

conflict with BBB002 

T=14:20 UTC
Position of AAA001 

when CP conflict with 
BBB002 occurs

AAA001

BBB002

T=14:00 UTC
Position of BBB002 
when CP predicts 

conflict with AAA001 
T=14:16 UTC

Sector B hands off 
BBB002 to Sector A

T=14:20 UTC
Position of BBB002 

when CP conflict with 
AAA001 occurs

 

Figure 1. Illustrative Example of a Conflict 

Figure 1 presents a horizontal view of an example conflict situation in which an aircraft, 
identified as AAA001, is flying southbound under the control of the Sector A controller. Another 
aircraft, identified as BBB002, is flying eastbound at the same altitude under the control of the 
Sector B controller. In this figure the airplane icons represent the positions of these aircraft at 
14:00 UTC†, when a CP might predict a conflict in Sector A where their paths cross. The two 
aircraft are predicted to violate their separation criteria at 14:20 UTC, indicating a look-ahead 
time of 20 minutes. The situation is further complicated by the proximity of the aircraft to the 
sector boundary, in that the anticipated hand-off between the air traffic controllers would occur at 
about 14:16 UTC. This figure shows a typical separation management problem in which the flight 
path of the affected aircraft must be changed by heading, altitude, or speed changes.  

                                                      
* Data Comm refers to the program and technology required to digitally communicate air traffic and weather information between the individual aircraft and the 

responsible ground air traffic control automation. 
† UTC refers to Coordinated Universal Time, which within this study is equivalent to Greenwich Mean Time 
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It must be emphasized, that this figure is presented for illustrative purposes only in order to 
provide a touchstone for describing how conflicts are resolved. The separation of aircraft is 
complex because each situation presents unique circumstances, where numerous variables such as 
other air traffic, special use airspace that must be avoided, proximity of one of the aircraft to its 
destination, weather, and controller workload influence the action selected by the air traffic 
controllers. For this reason a number of assumptions are made to simplify this example. First, it is 
assumed both AAA001 and BBB002 are mid-flight and at their cruise altitude and AAA001 is 
flying at a slower rate of speed than BBB002. Secondly, it is assumed there are no thunderstorms 
or other abnormal weather conditions nor any other aircraft in the area. 
 
Lastly, it is assumed the CP presents the potential conflict to the Sector A controller. Given these 
assumptions, this is a simple conflict with few complicating factors that can be used in this Study 
Plan to illustrate approaches to conflict resolution. With this in mind, here is a comparison of the 
current and envisioned future ways that this conflict might be resolved:  

 Current Resolution of Conflicts. In today's NAS there are a number of alternative ways 
to solve this illustrative conflict; none of which would be considered the "right" way to 
resolve the conflict. For example, since the Sector A controller is notified of the potential 
conflict by the CP he/she would typically call the Sector B controller and request an early 
hand-off of aircraft BBB002. Once the hand-off has occurred and BBB002 has 
established voice communications with the Sector A controller, the Sector A controller 
would notify the pilot of the heading change and the conflict would be avoided. 
Alternatively, the Sector A controller could contact the Sector B air traffic controller and 
have him/her initiate a heading change to BBB002 to resolve the conflict in a timelier 
manner. On the other hand, if the Sector A controller's workload was heavy, he/she might 
request AAA001 to change their altitude, thus avoiding the time consuming coordination 
with Sector B. With each of these alternatives there is much time lost due to coordination 
between sector controllers and voice communications with the affected pilots. 

 Future Resolution of Conflicts. Since NextGen is currently in the process of defining 
the alternatives that will exist in the future NAS, it cannot be stated with certainty how 
this example conflict will be handled in the future. But it is anticipated the function of the 
CP will be enhanced in several fundamental ways. First, it will not only exist at the 
associate controllers display like today but will be integrated within the radar controller’s 
display as well. The data block will contain alert data and additional pullout menus will 
contain time ordered listings of these notifications. Next, these enhanced alerts will 
automatically take into account user preferences and aircraft capabilities to generate a 
rank-ordered set of resolutions that both resolve the conflict and meet metering 
constraints. The enhanced CP will then notify the Sector A controller of the predicted 
conflict and present a menu of recommended resolutions. The Sector A controller will 
select the best resolution to the DST. If the best resolution involved maneuvering 
AAA001, automation would send the clearance directly to AAA001 via Data Comm. 
However, if the best resolution involved maneuvering BBB002, the Sector B controller 
would be notified of the conflict and recommended resolution, and if the Sector B 
controller concurs, automation would send the clearance directly to BBB002 via Data 
Comm. 

 
The current CP used in the NAS is very effective at detecting potential aircraft-to-aircraft 
conflicts that are of real concern and providing controllers with enough time to properly separate 
the aircraft. However, the current CP of ERAM is not effective at filtering out those events that 
will not become conflicts without any controller interaction. These additional alerts that are not of 
interest to the controller are called nuisance alerts, because they detract from the events that are of 
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real concern. Before this CP can be used effectively by the radar controller or even by conflict 
resolution automation, the nuisance alert rate must be reduced to a level that is acceptable by Air 
Traffic Control (ATC) subject matter experts (SME). Likewise, in the process of reducing the 
nuisance alert rate, the rate of detecting the events that are of a real concern should not be 
adversely affected. 
 
Thus, the motivation of this work is in support of the NextGen project titled, Separation 
Management and Modern Procedures. This particular project is charged with enhancing and then 
implementing a strategic conflict probe into the radar controller’s display, required for the future 
NAS envisioned by NextGen. The prototype performance enhancements are required to present 
accurate and timely conflict predictions to the radar controller and support other NextGen 
advanced functions as they are implemented later. This paper presents results of an initial 
experiment limited to adjusting a few key parameters within the TM and CP functions. The 
details of this experiment and the analysis methodology will be presented in the Section 2. 

1.2 Scope 
This document reports on the results of an initial experiment limited to one large six hour traffic 
sample collected in May 2005 from the Washington Air Route Traffic Control Center (ARTCC). 
To induce conflicts between aircraft for evaluation purposes, the data sample was time shifted 
using a methodology documented in [Paglione, 2003]. This same scenario was originally 
developed and used for the formal testing of the En Route Automation Modernization (ERAM) 
system [Ryan, 2008]. It is envisioned that this study is an initial analysis with initial 
recommendations, but further experiments and analysis will follow that will confirm the results 
presented. Additional scenarios from other airspace regions and traffic days will expand the scope 
of these results. Being the first in a series of experiments, the methodology and metrics are 
explained in detail in this document. The descriptions provided will serve as a reference for 
subsequent experiments. 

1.3 Document organization 
Section 2 presents the analysis metrics and methodology employed to perform this experiment, 
including a description of the experiment itself. Section 3 presents the evaluation results of the 
experiment. Section 4 presents final conclusions and recommendations. 
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2 Analysis Metrics and Methodology 
This section provides a detailed description of the metrics and methodology employed in this 
study. As introduced in Section 1.1, a key outcome of the authors’ support for the Separation 
Management and Modern Procedures Project is to provide a detailed list of recommended 
enhancements to ERAM to support the subsequent implementation of a strategic conflict probe in 
the en route radar controller’s display. Table 1 provides a comprehensive list of the various 
prototyping activities as defined by current ERAM development contractor’s delivery schedule 
(i.e. Lockheed Martin). The prototypes are delineated by functional areas. The two key functional 
areas are: 
 

1. Functional Area 32 which targets improvements to the aircraft trajectory modeling sub-
systems and algorithms, and 

2. Functional Area 18 which is focused on improvements of the conflict prediction 
algorithms within the ERAM Conflict Probe Tool (CPT) sub-system. 

 
The FAA’s Concept Analysis Branch (ANG-C41) is charged with the task of providing an 
independent engineering evaluation of these prototypes. The evaluation is limited to the 
laboratory performance of the ERAM’s trajectory and conflict probe’s prediction capability. It 
expands on the accuracy requirements used in the formal ERAM testing program as described in 
detail in [Ryan, 2008]. 
 

Table 1. Summary of Prototyping Activities 

# Functional Area Description of Prototyping Effort Estimated 
LM 

Delivery‡ 

Evaluation 
Strategy 

1 FA32 Enhance initial point and lateral rejoin logic 6/17/2011 Integrated 
Experiment 

2 FA32 Enhance turn modeling 2/14/2011 Individual 
Evaluation 

3 FA32 Vertical Profile Modeling Enhancement 1/28/2011 Individual 
Evaluation 

4 FA32 Enhance Restriction Modeling 8/31/2011 Individual 
Evaluation 

5 FA32 Enhance modeling in terminal area (RNAV STARs to 
runway) 

6/21/2011 N/A 

6 FA18 Trajectory Monitoring (TM) and Conflict Detection 
(CD) adherence bounds (functionally separate 

adherence bounds) 

9/30/2011 Integrated 
Experiment 

7 FA18 Application of CD forced trajectory re-builds (FTR) 9/30/2011 Integrated 
Experiment 

8 FA18 Application of growth adherence bounds (GAB) for 
“near-time” encounters 

9/30/2011 Integrated 
Experiment 

9 FA18 Application of conflict post-processing based on 
conflict geometry parameters 

9/30/2011 Integrated 
Experiment 

10 FA18 Application of tailored warning times based on conflict 
parameters 

9/30/2011 Integrated 
Experiment 

11 FA18 Application of new red/yellow criticality concept 9/30/2011 Integrated 
Experiment 

12 FA18 Application of specific designated notification sector 
changes 

9/30/2011 Individual 
Evaluation 

13 FA18a 3nm strategic separation 6/30/2011 Individual 
Evaluation 

 

                                                      
‡ Based on slide # 6 from the presentation listed in  
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However, the evaluation is not limited to these accuracy requirements but significantly expands 
upon them by modifying and adding dozens of additional metrics. The objective of the evaluation 
is to answer the following question with a certain level of confidence based on the sample traffic 
data utilized. 
 

Has the prototype software listed in Table 1 in red and labeled “Integrated Experiment” 
installed in the ERAM subsystem, the Conflict Probe Tool (CPT), improved or degraded 
its trajectory (FA32) and conflict (FA18) prediction’s performance? 

 
The hypothesis therefore is that the upgraded CPT software performs equivalent to baseline CPT 
in terms of the trajectory and conflict prediction metrics. These metrics are defined by the authors 
in collaboration with system engineers from the ERAM development contractor and MITRE’s 
Center for Advanced Aviation System Development (CAASD). A set of experiments test whether 
this claim can be rejected and whether the performance improved. Since the CPT installed with 
the prototypes cannot be accepted if they degrade the system, the performance must be greater 
than the existing baseline performance. The amount of improvement required to be operationally 
significant will remain unknown for this phase of analyses. Only with the later consultation with 
subject matter experts (e.g. air traffic personnel) or through further evaluation using a human in 
the loop experiment proposed in [Willems, 2011] can this determination be made. The analysis 
objective is to first determine if the hypothesis can be rejected statistically (i.e. CPT improved) 
for each key metric and then synthesizes the results from the multitude of competing metrics. For 
example, the three key metrics for the conflict predictions are the: 
 

 Measure of aircraft-to-aircraft conflict events that indeed should have been predicted in a 
timely manner and were not – missed alerts, 

 Measure of nuisance aircraft-to-aircraft conflict notifications that should not have been 
presented but were – false alerts, 

 Measure of lead time provided when aircraft-to-aircraft conflict event is presented when 
it should have been – warning time. 

 
One challenge is these metrics could be inversely proportional. In particular, as missed alerts 
decrease false alerts tend to increase, thus the evaluation will need to balance these competing 
response variables and assess the overall performance of the CPT sub-system under various 
conditions. Another challenge is the various prototypes may interact with one another so these 
interactions must be taken into account. For example, if a reduction in the conflict detection 
bounds protects for less airspace inducing less alerts overall, it could leave in-trail overtake 
situations with less warning time. However, the Conflict Geometric Separation (CGS) prototype§ 
that inhibits in-trail alerts but predicts overtake cases would address this issue, allowing the 
overall benefit of the reduced conflict detection bound to prevail. 
 
Several methods will be brought to bear to address these challenges. Experimental design is well 
suited to help integrate the need to assess all the factors involved and their interactions, while 
examining the multitude of competing response metrics. It is defined as a “test or series of tests in 
which purposeful changes are made to input variables of a process or system so that we may 
observe and identify the reasons for changes in the output response.”** Initially two experiments 
are being implemented. The first test examines the factors involved that simply change CPT’s 
parameters (e.g. TM and CD adherence bounds and predicted notification time thresholds). The 

                                                      
§CGS prototype is an implementation of the software described as “conflict post-processing based on 
conflict geometry parameters” listed in Table 1. 
**See introductory chapter in [Montgomery, 2009] 
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second larger experiment is designed to assess the performance of several CPT prototypes (e.g. 
growth adherence bounds or GAB, forced reconformance or FTR). By utilizing experimental 
design techniques, an optimal design algorithm calculates the minimal number of ERAM CPT 
runs required to extract the maximum amount of information. These techniques were applied by 
the authors in similar contexts as described in both [Paglione, 2008] and [Santiago, 2010]. 
 
A second advanced analysis method employed was development of the metrics themselves by 
applying what is referred to as black box and white box testing. Black box testing is employed 
when applying the author’s traditional crisp metrics considering minimal details inside the 
process under study but more on its input and output. For example, the system generates N alerts 
and it is partitioned as correct predictions (valid) and nuisance or false alerts. This is illustrated in 
the general model of a process in Figure 2, adapted from [Montgomery, 2009]. 
 

  
Figure 2. Black Box – Crisp Metrics Figure 3. White Box – Fuzzy Metrics 

Illustrated in Figure 3, the white box view of the same process takes additional knowledge from 
the process itself and calculates fuzzy or more sensitive weighted metrics for the same events 
[Parasuraman, 2000]. Thus, the same nuisance or false alert event from the crisp analysis could be 
partially valid and partially false depending on additional factors related to the signal (i.e. the 
encounter event itself) and the response (i.e. alert color or warning time). For example, an 
encounter between two aircraft that is 5.1 nautical miles is a near conflict and typically of interest 
to the air traffic controller if formed from the crossing paths of the flights. Under the white box – 
fuzzy metric approach, an alert predicted for this event would receive a high valid assessment, 
while the black box – crisp metric would determine it is not a legal conflict based on its 
separation so label it as a false alert. 
 
In summary, the experimental design technique is being employed to plan and implement a set of 
experiments to evaluate the prototypes listed in Table 1. Extended from the ERAM Formal Test 
Program, a set of advanced metrics are being employed using both crisp and fuzzy measurement 
methods to fully test the hypothesis that these prototypes improved the ERAM CPT compared to 
a baseline without them. The evaluation will provide a statistical assessment that can be handed-
off to the next level of evaluation. This next phase is the operational assessment focused at 
answering the question: is the prototypes’ performance improvement significant enough to be 
operationally acceptable for the intended function, namely implementation of CPT functionality 
on the radar controller’s console. 
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The metrics and methodology will be applied to all the designated prototypes in Table 1 (i.e. in 
red). However, this particular study reports on the initial experiment and focused only item 
number 6 in Table 1. This includes evaluating the impact of changing the TM and CP bounds††. It 
also includes changes to the CPT conflict likelihood parameters. Thus, the experiment evaluates 
the impact of altering existing configurable parameters within ERAM, offering NextGen the 
option of first enhancing the performance of the ERAM strategic conflict probe without actually 
making costly software changes. The study includes results of the first trajectory modeling 
enhancement, item number 1 from Table 1. It is expected that the other prototypes will require 
both changes in these parameters as well as the FA 32 (item number 1) enhancements, so 
logically the initial experiment focused on these items first. 
 
The following sub-sections will first present the evaluation metrics for both trajectory and 
conflict predictions in Section 2.1. Next in Section 2.2, the methodology of the designed 
experiment will be described including details on the model used to fit the experimental results. 

2.1 Evaluation Metrics 
The metrics used for evaluating the performance of the conflict probe in this experiment differed 
slightly from those used in previous studies. While most of the metrics used in previous studies 
are also used in this study, some additional metrics have been implemented as well. As stated 
above, two basic grouping of conflict prediction metrics are employed, including the traditional 
crisp and newer fuzzy metrics. The trajectory prediction accuracy metrics are also utilized and 
presented first. 

2.1.1 Trajectory Modeling Metrics 
As noted in previous work [Crowell, 2011, A], trajectory error metrics provide a statistical 
method to measure the accuracy of trajectories in multiple dimensions with respect to actual flight 
position. Correct implementation of these metrics allows for comparison and validation of 
trajectory predictors. Sampling methods and definitions of these metrics along with related 
analysis techniques are presented in the following sections. 

2.1.1.1 Trajectory Sampling 
The Interval Based Sampling Technique (IBST) is the trajectory accuracy sampling method 
developed by the FAA’s Concept Analysis Branch. It has been previously documented in 
[Paglione, 2007] and has been used in a number of FAA studies and test programs. As early as 
1999, the Trajectory Predictors (TP) within the operational DSTs of the User Request Evaluation 
Tool (URET) and the Center TRACON Automation System were evaluated using this technique. 
More recently, it is being employed to evaluate the TP in the En Route Automation 
Modernization (ERAM) system, which will replace the en route operational systems such as 
URET and the Host Computer System. IBST is a two-step process that pairs the track and 
trajectory points to measure the prediction errors for an entire flight. This sampling technique 
takes the perspective of the DST user, the air traffic controller. The active trajectory at the time 
the controller is looking at the display may be several minutes old and in error. Consequently, in 
the IBST the trajectories are sampled at the current time for a look-ahead time of 0 seconds and at 
a number of parameter times in the future (e.g., 300, 900, and 1200 seconds). This is contrasted 

                                                      
†† The prototype enhancement listed in Table 1 item number 6 refers to the software change of decoupling 
the TM and CP adherence bounds. The experiment described in this report examines the impact of reducing 
the bounds without decoupling them.  Future experiments will need to test the impact of setting the TM and 
CP bounds at different thresholds. 
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with a sampling technique that uses the internal build time of the trajectory to start the sampling 
[Brudniki, 1998] [Paielli, 1999]. 

2.1.1.2 Definition of Metrics 
The four basic metrics defined in [Paglione, 2007] are horizontal error, vertical error, along track 
error, and cross track error. Figure 4 provides a notional illustration of these errors. The 
horizontal error is the time coincident difference in nm between the predicted position on the 
trajectory and the actual position calculated from surveillance radar reports. Cross track error 
(nm) is the perpendicular distance between the actual position of an aircraft and its projection 
onto the trajectory. Along track error (nm) is the longitudinal distance along the trajectory 
between the same projection and the time coincident predicted position of the aircraft. The 
vertical error (not illustrated in the figure) is the altitude difference in feet between the predicted 
trajectory position and the time coincident actual position. For further details on these definitions 
and how they are calculated see [Paglione, 2007]. 
 

 

Figure 4. Diagram of Trajectory Errors 

Following these definitions, horizontal error is unsigned while the other three are signed. For 
most analyses involving these metrics, it is desirable to consider absolute values because the 
distance from zero is of interest. Therefore the absolute value is taken before calculating average 
values. Finally, the average metrics comprise only relevant data points by considering error 
values for trajectory points where a clearance or route amendment has not been received within a 
specified time period (as that may have altered the trajectory) and the flight remains within 
control of the center. 

2.1.1.3 Statistical Techniques 
A common application of trajectory accuracy error metrics is in evaluating flight scenarios with 
both trajectory data and aircraft position data, often simulated. In the case where two scenarios 
containing data for the same set of flights are to be compared, it is possible to match up the 
performance of trajectories for the same flight in each scenario and get more information about 
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how the two scenarios compare. For example, the average error value is calculated for the same 
flight in two scenario runs; these values may be collected and compared for many flights to 
illustrate any underlying differences between the runs. This is similar to taking multiple 
measurements from the same test subject in different treatments, and is referred to as a “matched 
pairs” or “paired difference” test in statistics. 
 
A matched pair analysis is performed for each of the four metrics using the average absolute error 
per flight. The analysis includes a paired t-test, which examines the distribution of differences in 
error between the two scenarios and tests if the mean of the differences is statistically different 
from zero. The results from the paired t-tests are provided in tables. The mean differences 
indicate which run has less error on average, and the p-value indicates whether or not this 
difference is statistically significant. The t-ratio is a statistical test parameter which is calculated 
as the mean difference over the standard error. Large negative values of the t-ratio produce small 
p-values and indicate that the mean difference is of statistical significance. The presented p-value 
is the probability of observing a discrepancy in means at least as large as that observed in the data 
set, even if there is no underlying difference in the means. A p-value less than 0.05 is typically 
considered to indicate statistical significance.  
 
The results of the matched pair analysis may be presented graphically by plotting the difference 
in average trajectory error per flight between two runs against the average over these runs, where 
each data point represents one flight. The flight’s average error in the first run minus the 
respective mean in the second run is plotted on the vertical axis, while the horizontal axis 
represents the average of these two measurements (calculated by taking the sum of the mean error 
in each run and dividing this sum by 2 for each matched flight). The resulting plot indicates net 
trends between runs. For example, if the errors are predominantly above a zero line in the middle 
of the plot, this indicates the error is larger in the first run more often. If the errors are below this 
line, they indicate the error is larger in the second run. Appendix C provides a detailed description 
of the matched pair analysis and graphical output from the commercial statistical software 
package JMP® , which is used for the analyses presented in this document. 

2.1.2 Conflict Probe Metrics 
This section will describe the conflict prediction metrics that gauge the performance of an aircraft 
conflict probe directly. There are two sub-sections – Section 2.1.2.1 presenting the “crisp” 
conflict prediction metrics and Section 0 the “fuzzy” conflict prediction metrics. 

2.1.2.1 Conflict Prediction “Crisp” Metrics 
This section provides a detailed description of the traditional crisp conflict prediction metrics. 

2.1.2.1.1 Definition of Basic Conflict Prediction Metrics 
A conflict probe predicts when two aircraft will violate separation standards some time in the 
future. A violation of separation standards is typically called a conflict. An event where two 
aircraft pass near each other but not close enough to violate separation standards is labeled an 
encounter in this study. As documented in [Paglione, 1999], [Bilimoria, 2001], [Brudnicki, 1998], 
and [Cale, 1998], the conflict probe is not perfect and does make mistakes. For example, it can 
miss a conflict (Missed Alert) or it can predict a conflict that never occurs (False or Nuisance 
Alert). The four possible situations are shown in Table 5.  
 
For a real time system, it is important that an alert be given sufficiently earlier in time of the 
actual conflict so corrective action can be taken. In other words, an alert must be timely as well as 
accurate. To ensure timeliness in conflict predictions, a conflict probe is often required to have 
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some lead-time or actual warning time. This Minimum Warning Time (MWT) ranges from 1 to 5 
minutes depending on the particular type of conflict probe being evaluated. For this study, 
specified notification lead time is required unless the conflict was determined to be a pop-up 
event. A pop-up conflict occurs when the probe is not provided with MWT threshold of 
continuous surveillance data or prediction for either of the associated flights. Detailed 
descriptions of the different situations that cause this to occur are described in [Paglione, 1999]. 

Table 2. CP Alert and Conflict Event Combinations (adapted from [Paglione, 1999]) 

 CONFLICT OCCURS CONFLICT DOES NOT OCCUR 
ALERT CP predicts conflict and it occurs 

 
 
(VA – valid alert) 

CP predicts conflict and it does not 
occur 
 
(FA -- false alert) 

NO ALERT CP does not predict conflict and it 
occurs 
 
(MA -- missed alert) 

CP does not predict conflict and it does 
not occur 
 
(NC -- correct no-calls) 

Total Number 
of Alerts 

Total Number of Conflicts Total Number of Non-Conflicts  
(i.e. encounters without conflicts) 

  
For this study, the conflict prediction accuracy crisp metrics consist of counts of the error events, 
including the false alerts (FA) and missed alerts (MA) in context of the correctly predicted events 
of valid alerts (VA) and correct no-calls (NC). The Conflict Probe metrics used in this study were 
described in detail in [Paglione, 2004] and [Crowell, 2009]. Thus, three main metrics used in the 
past are the VA, MA, and FA counts. There are also Missed Alert Rate (MAR) and False Alert 
Rate (FAR) that use ratios of the main metrics counts. The following Eq. 1 and Eq. 2 describe 
these ratios as the number of missed alerts over the total missed and valid alert counts and 
number of false alerts over the number of false alerts and correct no-calls, respectively. 
 

)(

)(

VAMA

MA
MAR


  Eq. 1

where, 
MA is total number of missed alerts 
VA is the total number of valid alerts 

 

)(

)(

NCFA

FA
FAR


  Eq. 2

where, 
FA is total number of false alerts 
NC is the total number of non-conflict 
encounters without associated alerts 

 
In this study, we split what previously were called Missed Alerts into two categories called Late 
Alerts (LA) and Missed Alerts (MA). Late Alerts occur when an alert is not posted within the 
minimum warning time of a conflict, but is still posted earlier than 40 seconds prior to the start of 
the actual conflict. Missed Alerts are all conflicts in which an alert is not posted until within 40 
seconds of the start of the conflict. This includes conflicts which have no alert posting prior to the 
start of the conflict, sometimes referred to as no-call missed alerts. In the past, the minimum 
warning time requirement used for analysis of a strategic conflict probe was typically five 
minutes. However, after discussions with Air Traffic Controller (ATC) Subject Matter Experts 
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(SMEs), it was determined the use of a three minute minimum warning time provides a better 
measure of what should be considered a Late Alert. Thus, another rate is required and used in the 
analysis that focuses only on these Late Alerts and does not include the excused popup conflict 
events. It is summarized in the following Eq. 3. 
 

)(

)(
*VAMALA

MALA
LAR




  Eq. 3

where, 
LA is total number of late alerts, that are missed due to warning 
time less than MWT but greater than 40 seconds warning time, 
MA is the total number of missed alerts that are missing 
completely or due to a warning time less than 40 seconds, and 

*VA  is the total number of standard valid alert conflicts (excludes 
valid alerts‡‡ with less than threshold MWT of warning time 
associated to pop-up conflicts) 

2.1.2.1.2 Comparison of Conflict Prediction Results 
The typical approach of comparing an improvement or change in the CP is to assume the baseline 
performance as the role of the requirement and test the improved system against the baseline’s 
performance. There are two main limitations to this approach. If the MAR and FAR of the legacy 
system is compared to the new “prototype” system, these metrics are themselves random 
variables. The test tends to under estimate this random variation. Second and more importantly, 
this approach summarizes the errors for both systems into a ratio and only net effects are 
compared. For example, if the ERAM system had a total of two more missed alerts than the 
legacy URET system; it is only considering the net difference. In reality, ERAM had four missed 
alerts that the legacy system had correctly predicted, yet two more missed alerts were generated 
by the legacy system that ERAM correctly predicted. The test only compared the net quantities of 
missed alert events. A more sensitive test would compare the same conflict and alert events, 
reporting all mismatches. Furthermore, it is necessary to identify all the specific error events from 
a practical standpoint, so software corrections can be made. This section will present a method to 
identify and statistically compare these events. 
 
Before discussing this comparison, Table 3 lists the individual reason codes for each run’s 
conflict prediction results. The alert type falls into four categories. First, the missed alert and false 
alerts are the two errors being measured. Next, the valid alerts are the correct prediction of a 
conflict and discards are the events excused due to out of adherence situations or other artifacts of 
the traffic sample being used. The alert types and reason codes are generated by a software 
program written by ANG-C41. It matches the ground truth conflict and non-conflict encounter 
events and produces a data base table with these codes. It is titled the StrategicAlertEvaluator or 
SAE. 
 
 
 
 
 
 
 

                                                      
‡‡ This will be defined as late valid alerts defined in the next section and listed in Table 3 as LATE_VA. 
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Table 3. Conflict Prediction Result’s Main Reason Codes§§ 

REASON CODE ALERT TYPE REASON DESCRIPTION 
STD_VA Valid Alert Standard Valid Alert 

LATE_VA Valid Alert 
Late Valid Alert, Valid since conflict was 
determined a pop-up 

NO_CALL_MA Missed Alert 
Missed Alert due to no call (no alert at all 
before the actual conflict start time) 

LATE_MA Missed Alert 
Late alert – alert presented with less than the 
minimum required warning time 

SHRT_NO_CALL_DISCARD Discard Alert 
Missed Alert no call discarded because conflict 
duration below a threshold time 

NO_CALL_DISCARD Discard Alert 
Missed Alert no call discarded since out of 
adherence 

SHRT_LATE_DISCARD 
Discard Alert Late alert discard because conflict duration 

below a threshold time 
LATE_DISCARD Discard Alert Late alert discard since out of adherence 

NO_TRK_FA_DISCARD 
Discard Alert No post processed track at predicted conflict 

start time so discard 

NO_ADHER_FA_DISCARD 
Discard Alert Out of adherence at predicted conflict start time 

so discard 

CLR_FA_DISCARD 
Discard Alert Retracted False Alert assigned by an ATC 

clearance so discard 

CFL_FA_DISCARD 
Discard Alert False Alert notified beyond last conflict actual 

start time so discard 
STD_FA False Alert Standard False Alert 

RETRACT_FA False Alert 
Retracted False Alert, notification end time 
earlier than predicted conflict start time 

IN_APDIA_FA False Alert 

False alert generated but predicted conflict start 
time determined to be inside an automated 
problem detection inhibited area 

 
The sets of conflict predictions generated by the legacy system run (e.g. Run A) and a new 
system (e.g. Run B) are first evaluated separately. The analysis results in a database table with 
records labeled with the reason codes defined in Table 3. The resulting paired evaluations of the 
two runs are listed in Table 4, but for this version it is assumed both runs are provided the same 
input traffic scenario. The first column in Table 4 lists all combinations of intersection and union 
of the events from Table 3. As in Table 4 and throughout this section, the first run compared will 
be referred to as Run A and the second as Run B. For example, Run A may generate a missed 
alert that is either a missed alert or valid alert in Run B and vice versa. Of particular interest is 
when Run A makes an incorrect prediction and Run B makes a correct prediction and vice versa. 
This is highlighted by the light orange shaded rows. It indicates one run has a VA and the other 
an MA for the same conflict event. The light green shading highlights where one run has an FA 
and the other a correct no-call for the same encounter. 
 
 
 

                                                      
§§ This table summarizes the reason codes into 15 types that capture the essence of the processing involved.  
The actual processing software produces a total of 19 reason codes. 
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Table 4. Comparison of Two Run's Resulting Alert and Conflict Event Combinations*** 

 CONFLICT OCCURS CONFLICT DOES NOT OCCUR 
ALERT by  

both Runs A 
and B 

Both predicts conflict and it occurs 
(VA & VB -- valid alerts both) 

Both predicts conflict and it does not occur 
(FA & FB -- false alert both) 

A predicts conflict and it occurs 
(VA -- valid alerts by A only) 

A predicts conflict and it does not occur 
(FA -- false alert by A only) ALERT by A 

and not B B does not predict conflict and it occurs 
(MB -- missed alert by B only) 

B does not predict conflict and it does not 
occur 
(NCB – B correct no-call) 

A predicts conflict and it occurs 
(VA -- valid alerts by A only) 

A predicts conflict and it does not occur 
( ** FA Continued **) 

ALERT by A 
and B ALERT 
or non-ALERT 

is discarded 

B does not predict conflict correctly but is 
discarded  
(DiscardMB -- B discard an MA) 

B does not predict conflict correctly  
but is discarded 
(DiscardFB – B discard an FA) 

B predicts conflict and it occurs 
 
(VB -- valid alerts by B only) 

B predicts conflict and it does  
not occur 
(FB -- false alert by B only) ALERT by B 

and not A A does not predict conflict and  
it occurs 

A does not predict conflict and  

(MA -- missed alert by A only) 
it does not occur 
(NCA – A correct no-call) 

B predicts conflict and it occurs 
(VB -- valid alerts by B only) 

B predicts conflict and it does not occur 
( ** FB Continued **) 

ALERT by B 
and A ALERT 
or non-ALERT 

is discarded 

A does not predict conflict correctly but is 
discarded  
(DiscardMA -- A discard an MA) 

A does not predict conflict correctly but is 
discarded 
(DiscardFA – A discard an FA) 

NO ALERT by 
both Runs A 

and B 

Both do not predict conflict and it occurs 
(MA& MB -- missed alert by both) 

Both do not predict conflict and it does not 
occur 
(NC -- correct no-calls by both) 

Total Number 
of Alerts for 

each/both 

Total Number of Conflicts 
(Same for both Runs!) 

Total Number of Non-Conflicts  
(Encounters that did not have conflicts; 
 Same for both Runs!) 

 
To determine the various combinations of comparative events as defined in Table 4, ANG-C41 
wrote a software tool to identify them from the conflict prediction results for a pair of conflict 
probe runs. The program is titled the StrategicAlertComparer (SAC) or newer version called 
AlertComparerEnhanced. The program produces a database table of entries with evaluation codes 
for each of these events. A listing of these combinations and their corresponding codes are listed 
in the following Table 5. Because of limitations in the fidelity of the ERAM simulation platform, 
there are small differences in the input scenarios from run to run (e.g. slight time deviations in the 
radar track reports). Thus, an advanced matching algorithm was developed and presented in 
[Crowell, 2009] that matches the events in an efficient and fair manner. Table 5 delineates the 
events for equivalent ground truth input scenarios or when the scenarios are slightly different. 
Thus, if the codes are labeled false in the column “Same Ground Truth Only,” the event will only 
occur if the scenarios were different in some way. 
 
 
 
 

                                                      
*** These events are for comparison of Run A and Run B input with the same exact ground truth scenario. 
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Table 5. Conflict Prediction Comparison Program Evaluation Codes††† 

Event 
Evaluation 

(Labels from 
Table 4) 

Code 

Same 
Ground 
Truth 
Only 

Description 

VA and VB SAME_VA True Both runs have valid alerts for the 
same conflict 

MA and MA SAME_MA True Both runs have missed alerts for the 
same conflict 

FA and FB SAME_FA True Both runs have false alerts for the 
same encounter 

VA and MB VA_MA True Run A has a valid alert and Run B has 
a missed alert for the same conflict 

MA and VB MA_VA True Run A has a missed alert and Run B 
has a valid alert for the same conflict 

VA and DiscardMB VA_DISCARD True Run A has a valid alert while Run B 
discards the conflict 

DiscardMA and VB DISCARD_VA True Run A discards the conflict while Run 
B has a valid alert 

DiscardMA and M B DISCARD_MA True Run A discards the conflict while Run 
B has a missed alert 

MA and DiscardMB MA_DISCARD True Run A has a missed alert while Run B 
discards the conflict 

FA and NCB FA_NC True Run A has a false alert while Run B 
has no prediction to match 

NCA and FB NC_FA True Run A has no prediction to match 
while Run B has a false alert for the 
same encounter 

FA and VB FA_VA False Run A has a false alert while Run B 
has a valid alert 

VA and FB VA_FA False Run A has a valid alert while Run B 
has a false alert 

FA and MB FA_MA False Run A has a false alert while Run B 
has a missed alert 

MA and FB MA_FA False Run A has a missed alert while Run B 
has a false alert 

VA and no match in B VA_NOMATCH False Run A has a valid alert while Run B 
has no event to match 

No match in A and VB NOMATCH_VA False Run A has no event to match while 
Run B has a valid alert 

MA and no match in B MA_NOMATCH False Run A has a missed alert while Run B 
has no event to match 

No match in A and MB 
 

NOMATCH_MA False Run A has no event to match while 
Run B has a missed alert 

FA and DiscardFB FA_DISCARD True Run A has a false alert while Run B 
discards the event 

DiscardFA and FB DISCARD_FA True Run A discard the event while Run B 
has a false alert 

DiscardA and no match B DISCARD_NOMATCH False Run A discard the conflict while Run 
B has no event to match 

No match A and 
DiscardB 

NOMATCH_DISCARD False Run A has no event to match while 
Run B discards the conflict 

DiscardA and correct no 
call B 

DISCARD_NC True Run A discards the event while Run 
B has no prediction to match 

Correct no call A and 
DiscardB 

NC_DISCARD True Run A has no prediction to match 
while Run B discards the event 

 
                                                      
††† These are a roll-up of the evaluation codes from SAC for when the scenario input of the Run A and B is 
the same and is not exactly the same, delineated by “Same Ground Truth Only” column. Also, assume MA 
is the sum of LA and MA events. 
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There are two additional comparison metrics used in this document that help to summarize the 
results of the comparison. These are % FA Improvement and % LA Improvement. These metrics 
should not be confused with FA% or LA%, which are not comparison metrics. Eq. 4 shows the 
formula for calculating % FA Improvement. Note that only the FA_NC and NC_FA counts are 
used. Any False Alerts in either run that match to Discards in the other run are intentionally not 
used in this metric. This metric is intended to show the differences between the two runs when 
both runs had the best chances of being correct. Since Discards usually mean something was 
wrong with the track or the trajectory, these counts are not included in this metric. 
 

A
IMP FA

FANCNCFA
FA

__
%


  Eq. 4

where, 
FA_NC is the count of FA_NC events in the comparison 
NC_FA is the count of NC_FA events in the comparison 
FAA is the count of FA events in the Run A of the comparison 
%FAIMP is the percentage of improvement of Run B over Run A 

 
Eq. 5 shows the formula for calculating % LA Improvement. Once again, no Discard events are 
used because the metric is intended to show the differences between the two runs when they both 
had the best chance of correctly predicting the alert. 
 

A
IMP LA

LAVAVALA
LA

__
%


  Eq. 5

where, 
LA_VA‡‡‡ is the count of LA_VA events in the comparison 
VA_LA§§§ is the count of VA_LA events in the comparison 
LAA is the count of LA events in the Run A of the comparison 
%LAIMP is the percentage of improvement of Run B over Run A 

2.1.2.1.3 Statistical Approach of Comparing Conflict Predictions 
As implied in equations presented in Section 2.1.2.1.1 and the shading in Table 4, the most 
critical quantities to detect a statistical difference between runs are when one run correctly 
predicts an event and the other does not. Comparison of the MAR, LAR, and the FAR metrics 
will indicate the net magnitude of these differences. One approach to determine if the difference 
is statistically significance is to utilize a binomial distribution and perform a hypothesis test 
concerning the difference between population proportions [Devore, 2000]. However, this 
technique assumes that the respective runs are independent. For this study, each run is not 
independent, since the system is run with the same air traffic scenario and weather files. 
 
An alternative technique is presented in [Kachigan, 1986], utilizing categorical data analysis 
techniques. For categorical data analysis, we examine the difference in frequencies not 
proportions. For this study, the frequencies directly relating the missed and false alert rates 
include the counts of these events. Paired counts that are mutually exclusive and exhaustive, 
which is required for this test, occur when the error event occurs in one run and the correct event 
occurs in the other. 

                                                      
‡‡‡Eq. 5 is assuming LA is the sum of LA and MA events. In Table 5, MA is used to refer to this same sum, 
both the LA and MA events. Thus, LA_VA from Eq. 5 is equivalent to MA_VA from Table 5. 
§§§Same as previous footnote, VA_LA is equivalent to VA_MA and refers to all LA and MA events. 
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For the missed alert analysis, the count of interest is the missed alert count in Run A when 
simultaneously getting a valid alert in Run B or vice versa for the opposite case. These include 
the counts VA2 or MB2 compared to the VB2 or MA2. Therefore, the count of valid alerts in Run A 
and simultaneous missed alerts in Run B is statistically compared to the count of valid alerts in 
Run B and simultaneous missed alerts in Run A. These counts should be equally likely if the two 
runs are statistically equivalent. Calculating the ratio of the squared difference between the 
expected value of each run and the observed value can test this hypothesis. If the hypothesis is 

true, this ratio will follow a chi-squared distribution or with one degree of freedom. The test 

statistic is as follows: 

 2
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where 
 

  

categories ofnumber   total theis 

icategory in frequency  expected  theis 

icategory in frequency  observed  theis 

k

E

O

i
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For this study, k is always two, since only paired runs are compared. For example, the observed 
frequencies are the extracted VA2/MB2 and VB2/MA2 counts for the two runs. Since the null 
hypothesis assumes both events are equally likely, both expected frequencies are equal and 
calculated from the following equation: 
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k

j
j
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Eq. 7

 
 
The resulting test statistic in Eq. 6 can be expressed as a probability or P-value**** by assuming a 
chi-squared distribution with one degree of freedom. For example, let’s say we observe a 
VA2/MB2 = 8 and a VB2/MA2 = 22. The expected frequency from Eq. 7 is 15 for both values, and 
the resulting test statistic from Eq. 6 is 6.53. Therefore for this example exercise, the P-value is 
0.011. This expresses that the hypothesis that these runs have equivalent missed alerts is only 
about one percent likely and provides evidence to reject the null hypothesis. For this test in the 
study, a P-value, which is less than 0.10, is considered sufficient to reject the hypothesis. 
 
False alert probabilities can be analyzed in an analogous way. For the false alert counts, the 
observed frequency of FA2/NCB and FB2/NCA are compared. 
 
The preferred method and further simplification to the test above was presented in [Agresti, 
2002]. The test is referred to as the McNemar’s test and is specifically designed for testing two 

                                                      
**** In [Devore, 2000], the P-value is defined as the “smallest level of significance at which the null 
hypothesis would be rejected when a specified test procedure is used on a given data set.”  Thus, the P-
value is the probability of the null hypothesis has occurred, so a small P-value (less than 0.10) would 
indicate the null hypothesis unlikely and should be rejected and if large should be assumed correct.   
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data sets that are not independent. This is clearly the case in this study where the same flights are 
examined between two runs of ERAM. An example is illustrated in the following Table 6. 
 

Table 6. Example Application of the McNemar’s test 

Encounters in Legacy ERAM System  Encounters in  
Treatment ERAM 

System With False Alert Without False Alert Total 

With False Alert 47 11 58 

Without False Alert 37 63 100 

Total 84 74 158 

 =14.083, df=1; p-value=0.000 

 

The test statistic, , is defined generically as follows: 2
 

)(

)(

1221

2
12212

nn
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  Eq. 8

where, 
n21 is the quantity of flights in the second row, first column of the table 
n12 is the quantity of flights in the first row, second column of the table 

 
Under assumed conditions, the test statistic assumes a Chi-Squared Distribution. The test statistic 
can be applied directly to the evaluation code quantities listed in Table 5. The following Eq. 9 and 
Eq. 10 both apply the generic Eq. 8 to these evaluation codes first for missed alert processing and 
then false alert, respectively. 
 

)__(

)__( 2
2

MAVAVAMA

MAVAVAMA
MA 


  Eq. 9

where, 
MA_VA is quantity of Run A missed alerts with matching Run B valid alerts 
VA_MA is quantity of Run A valid alerts with matching Run B missed alerts 

 

)__(

)__( 2
2

FANCNCFA

FANCNCFA
FA 


  Eq. 10

where, 
 FA_NC is quantity of Run A false alerts with matching Run B correct no-calls 
 NC_FA is quantity of Run A correct no-calls with matching Run B false alerts 

 
Note, it can be shown that the methods in Eq. 6 and Eq. 7 will produce equivalent results as those 
in Eq. 8 through Eq. 10. Also, for the test statistics above to assume a Chi-Squared Distribution 
the sum of  in 1221 nn 

21n

Eq. 8 or equivalently (MA_VA + VA_MA) and (FA_NC + NC_FA) must 
all be greater than 25. If their sum is less, an exact test can be used to utilize the Binomial 
Distribution with size parameter and 0.5 for the probability of success. Details are 
provided in 

12n
[Agresti, 2002]. 
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2.1.2.1.4 Additional Crisp Metrics 
Other than the counts and rates discussed above, the single scenario metrics include the Sharpness 
and Sharpness Bias metrics described in [Paglione, 1999]. Also, point statistics describing the 
distribution of the warning time (WT) of the predicted conflicts provide an overview of the 
timeliness of the conflict notifications. Warning time is the lead time provided by the predicted 
notification. It is measured by the following Eq. 11. 
 

iii NSTACSTWT   Eq. 11

where, 
   is warning time for ith valid alert conflict prediction iWT

   is actual conflict start time for ith valid alert conflict prediction iACST

   is the notification start time for ith valid alert conflict prediction iNST
 
The warning time is calculated on all the valid alerts and late alerts not associated to a popup 
conflict event (i.e. STD_VA and LATE_MA events from Table 3). There are a number of point 
statistics calculated including average, median, maximum, minimum, standard deviation, 25th 
percentile, 75th percentile, and inter-quartile range which is the difference between the 75th and 
25th percentiles. The warning time statistic that exhibits an important insight into the warning 
time distribution is the 25th percentile. It provides reasonably sensitive measure of the lower end 
of the distribution indicating how close this tail is to the MWT threshold (3 minutes in this study) 
and the tactical threshold of 40 seconds. The greater the 25th percentile more warning time is 
provided by the CP overall. The smaller the value and closer to the tactical threshold indicates the 
particular run is less suitable for strategic operations. 
 
Another useful CP performance metric is called sharpness which involves two metrics including a 
measure of sensitivity and bias. It was developed by the authors in 1999 and is described in detail 
in [Paglione, 1999]. The sharpness metric indicates the sensitivity of the probe as a function of 
the unit-less metric min-max-ratio. Min-max-ratio is the measure of the separation between a pair 
of aircraft. It is calculated for all aircraft with encounters of a large separation distance 
simultaneously in both vertical and horizontal dimensions. For this study, it is aircraft that 
simultaneously penetrate the horizontal separation distance of 30 nautical miles and vertical 
separation of 4000 feet. The min-max-ratio is defined by the following Eq. 12. 
 

  ii
k
i  ,maxmin  Eq. 12

  Where 
 i = current ith radar track position report 
 k = total number of track points 

i = horizontal separation ratio of ith radar track position report 

i = vertical separation ratio of ith radar track position report 

 
The i  and i  sub-ratios are expressed in the following two equations. First for horizontal 

separation Eq. 13 expresses the i  as the instantaneous ratio of horizontal separation versus the 

horizontal separation standard. Next, vertical separation is illustrated in Eq. 14, which is the 
vertical separation distance versus the vertical separation standard. For this study, the horizontal 
separation standard is 5 nautical miles and vertical is 1000 feet. 
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Eq. 13

  Where 

i = horizontal separation standard for the ith synchronized track point 
a
ix = x position of the ith track point of aircraft a in nautical miles 
b
ix = x position of the ith track point of aircraft b in nautical miles 

and , are the corresponding y positions a
iy b

iy
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Eq. 14

  Where 

i = vertical separation standard for the ith synchronized track point 
a
iz = altitude position of the ith track point of aircraft a in feet 
b
iz = altitude position of the ith track point of aircraft b in feet 

 
The maximum of these two ratios is calculated for each synchronized track position and 
minimum of this value for the entire overlapping flight times is expressed in Eq. 12.  
 
The sharpness metric is calculated by measuring the min-max-ratio distance from the fitted alert 
probability (quartic fit) from 0.99 to 0.1. The smaller the measured sharpness metric the more 
sensitive the CP is as a function of separation distance. In other words if the sharpness is smaller, 
the probe is more sensitive to detecting aircraft-to-aircraft conflicts with smaller separations than 
a probe that has a larger sharpness. 
 
The sharpness bias metric is the distance (positive/negative) that the alert probability of 0.5 is 
from a min-max-ratio of one (at target separation, e.g. legal separation 5nm/1000ft). A CP could 
be perfect in terms of sharpness with a zero value, but if the sharpness bias is 1.0 it will have 
100% false alerts (see Fig. 7 in [Paglione, 1999]). 
 
An excellent way to illustrate the mechanics of sharpness is by example. For illustrative purposes 
three runs were compared, including runs 3, 7, and 11 from the FA18 Interim Report 2. It 
compares three runs of different adherence bounds including 2.5, 3.5, and 1.5 nautical miles (nm), 
respectively. Figure 5 illustrates the three alert probability curves as a function of the min-max-
ratio metric and Table 7 summarizes the metric results. Therefore, the 1.5 nm adherence bound 
run produces the best results in terms of the smallest sharpness metric and smallest sharpness 
bias. The 3.5 nm probed adherence box produces the next best performance, while 2.5 nm run 
produces the least performance. 
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Figure 5. Example Alert Probability Illustrating Sharpness and Sharpness Bias 

From the sharpness metrics listed in  
Table 7, even though the best results are as expected with run 1.5 nm, the results also indicate that 
the 3.5 nm adherence bound run outperforms the 2.5 nm run. This occurs because one missed 
alert reduces the 2.5 nm curve to a max alert probability of 0.98 and thus calculation of sharpness 
defaults to 2.5's max (never reaches 0.99) and thus increases the sharpness curve. This is 
reasonable and makes sense. An effect to the left of 1.0 min-max-ratio has a larger effect on the 
sharpness metric (missed/valid alert impacts) versus the area to the right of 1.0 (false alert 
impacts) which is stretched out to 3.0 min-max-ratio (has double the relative distance). Finally, it 
is not clear why missed alerts are being generated under the 2.5 nm run and correctly detected for 
the 1.5 and 3.5 runs. This warrants further investigation. However, the example illustrates how 
sharpness and sharpness bias are calculated, and how they model the sensitivity and bias of the 
conflict probe’s prediction process. 

Table 7. Example of Sharpness Metric Summary 

Adherence 
Sharpness 

Bound 
Distance 

Metric 

Sharpness 
Bias 

Metric 
1.5 1.98528 0.21912 
2.5 2.16854 0.22647 
3.5 2.11261 0.21996 

 
There are three main metrics used throughout this technical note that are a variation of those 
described in the paragraphs above. These are labeled in the figures as FA%, LA%, and WT%. 
These metrics correspond to the False Alert, Late Alert, and Warning Time metrics discussed 
previously, but normalizes them by the results of the baseline for easier comparison of the 
performance among different runs. These three metrics are summarized in Equations 15, 16, and 
17. 
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where, 
FAR is the number of False Alerts in the treatment run. 
FABL is the number of False Alerts in the baseline run. 
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where, 
LAR is the total number of Missed and Late Alerts in the treatment run. 
LABL is the total number of Missed and Late Alerts in the baseline run. 
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WT  Eq. 17

where, 
WTR is the 25th percentile of Warning Time in the treatment run. 
WTBL is the 25th percentile of Warning Time in the baseline run. 

2.1.2.2 Conflict Prediction “Fuzzy” Metrics 
The fuzzy metrics offer a way to re-evaluate the classifications made by the SAE by accounting 
for uncertainties when classifying alerts. This uncertainty allows for any event, being an alert 
posting, encounter with no alerts, conflict with no alerts, or early alert deletion, to represent 
several event categories. For example, an encounter with no alerts would traditionally be counted 
as a no-call, but one would consider a well-separated encounter to be better than one that came 
close to minimum separation and generated no alert. The fuzzy metrics attempt to represent this 
subjective nature. A well-separated encounter will score very high for a no-call and next to 
nothing in the other categories, but as the encounter gets closer to being a conflict the score for 
no-call will decrease as the score for a late alert increases. A score of 0.2 for no-call and 0.8 for 
late alert would be a possible score for such an encounter, encoding more information than simply 
being a no-call event. Here the situation may have warranted attention since the no-call event in 
the new metric scored much closer to being a late alert. 
 
The fuzzy metric is an application of the fuzzy signal detection theory discussed in [Parasuraman, 
2000]. Given that the metric here is used to rank conflict prediction performance, the natural 
source of signal is the true aircraft-pair geometry during the duration of the event. This gives a 
ranking from 0 (certainly not conflict-like) to 1 (certainly conflict-like) of how conflict-like the 
situation actually became while the event occurred. The response is a measure of perceived utility 
of the event from 0 (no perceived utility) to 1 (perceived to be of the utmost importance). The 
signal and response are designed to scale to each other, so that low-signal merits low-response 
and vice versa. After the involved task of finding appropriate functions for signal and response, 
they are easily combined to produce scores for the four classic event ratings: 
 

True Positive = Valid Alert  VA = min (r, s) 
False Negative = Late Alert  LA = max (s-r, 0) 

 False Positive = False Alert  FA = max (r-s, 0) 
True Negative = No-Call  NC = min (1-r, 1-s) 
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In fact, the classic system can be derived for these equations given that the response and signal 
are strictly binary: 
 

True Positive = Valid Alert  VA = min (r, s)  = 1, r = s = 1 
False Negative = Late Alert  LA = max (s-r, 0) = 1, r = 0 and s = 1 

 False Positive = False Alert  FA = max (r-s, 0) = 1, r = 1 and s = 0 
 True Negative = No-Call  NC = min (1-r, 1-s) = 1, r = s = 0 
 
The metric’s computation is described in detail in the next several paragraphs. 
 
Given the collection of alerts generated by the conflict prediction process, if they have no 
associated flight pair, a track is missing during the duration of an alert, or the entirety of a track 
occurred within an Automated Problem Detection Inhibited Area (APDIA) during this time, the 
signal is zero. At any time there is missing data or a point is inside an APDIA, that data is 
excluded. If any point occurred within an APDIA, a flag is set to alert that at least one of the 
flights entered an APDIA for at least a moment while the signal was computed. This flag informs 
an analyst that some care is needed in determining performance for these events. Also, if an alert 
was originally discarded, was not late, and not a no-call, it is re-included as a false alert. 
If the alert is a false alert (whether originally false or a re-included discard), a time buffer is 
computed after the alert duration. This buffer tb is the minimum of some buffer time t and the 
time between the end of the current alert and the beginning of the next alert for a flight pair. If 
this alert is the last, tb = t. The min-max ratio for the flight pair is calculated for the duration of 
the event and the duration of the buffer. To calculate the min-max ratio, the maximum of the 
horizontal and vertical separations in ratio to their minimum separation standards are measured, 
then the minimum of these values over the duration of the event is returned. This value indicates 
whether a flight pair violated minimum separation standards by being less than unity for in 
conflict, unity for at minimum separation, and greater than unity for not conflicted. For example, 
a value of 2 would represent aircraft separated in one of their separation standards by twice the 
minimum whereas 0.5 would represent aircraft separated by half of their separation standards. 

 
Given that the min-max ratio is smaller inside the alert or tb = 0, it is assumed that the alert was 
not an early-deletion event. The signal is computed for some time window about the min-max 
ratio, and allowed to extend outside the bounds of the event duration. The signal for the buffer 
region sb is also calculated. early_del = 1 – sb is reported only for this type of event. early_del 
gives an indication of the stability of the alert when it was removed. A high early_del indicates to 
an analyst that the end time was very stable, as very little signal actually occurred for some time 
after the end time. A low early_del indicates to an analyst that the end time was unstable. There 
was a high signal after the alert was removed. early_del = 1 when tb = 0 since another action was 
immediately taken. 

 
If the min-max ratio is smaller in the buffer zone (tb > 0), it is assumed that the alert was an early-
deletion event. The signal is computed for some time window about the min-max ratio, and 
allowed to extend outside the bounds of the event duration. A second event is created to account 
for the alert being removed even though the signal increases past the deletion time. This event is 
marked as an early-deletion miss event and the signal for the buffer region is set to its signal. 

 
All other alerts require no special treatment. They and all encounters with no associated alerts 
have a signal computed around their min-max ratio times. 

 
To get a value for signal around the min-max ratio time, the following values are computed for an 
aircraft pair: 
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 hmin = minimum horizontal separation standard 
 vmin = minimum vertical separation standard 
 h = horizontal separation at the min-max ratio time 
 v = signed vertical separation from cleaned vertical profile at the min-max ratio time, 

where negative denotes object below subject and vice versa 
   = average encounter angle about the min-max ratio time 

   = standard deviation of the encounter angle about the min-max ratio time 

 w  = average horizontal geometry weighting about the min-max ratio time, discussed 
in detail later 

 n  = average number of incidents about the min-max ratio time in which the object 
had a relative angle to the subject within 15 degrees of 0 or 360 

 vcr  = average vertical closure rate about the min-max ratio time 

 hcr  = average horizontal closure rate before the min-max ratio time 
 clr_sep = flag stating whether the aircraft are both within 300ft of their clearances 

and are separated by at least the minimum vertical separation standard at min-max 
ratio time 

 
If clr_sep is true, the aircraft are considered well-separated and the signal is zero, or else the 
vertical component of signal is calculated as follows. 
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v

vcr
vict   Eq.20

 
vict is the vertical inverse closure time, which is the inverse of the time elapsed before the aircraft 
would meet vertically if continuing at the same vertical closure rate. Negative values indicate 
divergence. Large values are desirable for closure time meaning small values are desirable in the 
inverse. Since the function of vict needs to be close to zero for desirable values the inverse of the 
vertical closure time is used. The same argument is made for hict, the horizontal inverse closure 
time used later. 
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Figure 6. Function of vertical inverse closure time. 

If 7.0n , 45 , and 15 , then the subject and object were consistently in-line with a 

persistent and similar heading. The flights are categorized as in-trail and the horizontal 
component of the signal comprises horizontal separation and closure rate only. If this is not true, 
the horizontal component of the signal comprises horizontal separation and average encounter 
angle weighting. 
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  Eq.24

 
See the earlier definition for vict, the vertical inverse closure time, to understand the rationale for 
hict, the horizontal inverse closure time. 
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Figure 7. Function of horizontal separation re-centered so that zero represents the 
minimum horizontal separation standard. 
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Figure 8. Function of horizontal inverse closure time. 
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Where: 

 difference in object’s heading from subject’s heading 

 longitudinal distance to object from subject 
 lateral distance to object from subject 

 
See Appendix A for additional information on the geometric weighting function w. 
 

 

Figure 9. Top: Gaussian distribution altered by Head-on horz. geometry weighting.       
Bot: Same altered by Left-To-Right Perp. Crossing horz. geometry weighting instead. 

 27



In Figure 9, the signal is represented by a Gaussian distribution for illustrative purposes. Let the 
arrow in the middle indicate the subject aircraft. The longitudinal direction and lateral direction 
are labeled where negative indicates behind and left respectively. Choosing a position on the grid, 
imagine the object aircraft is located there. In the top situation, the object is facing the completely 
opposite direction as the subject. In the bottom situation, the object is facing perpendicular to the 
subject traveling toward the right. In the top situation of Figure 9, if the object is behind the 
subject, they are diverging and the signal is sharply decreased. In the bottom situation, if the 
object is already to the left of the subject, they are diverging, more so if the object is also behind 
the subject, which is why the signal is most impacted in the (-long., +lat.) region. The head-on 
situation is symmetric on the lateral axis since a parallel case is identical on either side of the 
subject. The highest signal is when the object is directly in front of the subject, the highest chance 
of a conflict occurring. The crossing case has largest signal to the left and in front of the subject 
since the aircraft will be most rapidly converging in this case if they stay to course. 
 
The splines are created using the Fritsch-Carlson method to ensure weak monotonicity. The ends 
of the splines are required to be flat so that they smoothly connect to the areas where the 
functions are constantly either zero or one. The splines are defined by their control points and can 
be seen in Figure 6, Figure 7, and Figure 8. 
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Finally, the signal is found to be the product of the horizontal and vertical components. 

VH ffs   Eq.26

 
As for the response, if the event was classified as an early-deletion miss event, the response is 
automatically zero, since this is a no-action event. Also, if the encounter has no associated alerts, 
no action was taken so the response is also zero in this case. The actual warning time is the first 
part of the response. It is used to devalue alerts that are presented after the minimum warning 
time, which are late alerts and no-calls (since the alert was never made). If the alert was an FA, 
including the discards now marked as FAs, then the actual warning time is not computable, 
though this part of the response is set to 1 since there is no computable warning time to devalue 
the event. The warning time for computable events is the actual conflict start time minus the 
event start time. If for some reason the warning time is less than zero or the event is a no-call then 
the warning time is set to zero, having the effect of setting this portion of the response to zero. 
After this, the warning time is divided by the minimum warning time standard to get a unitless 
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value t. If t < 1, the warning time did not meet the standard, and this part of the response takes the 
value r1 = t2. 
 
The second part of the response is based on predicted horizontal separation of the flights (Figure 
10). The predicted horizontal separation is divided by the minimum horizontal separation 
standard to get a unitless ratio q. If this value is less than 1, the perceived utility of the response is 
high and this part of the response takes the value of 1. If q is at least 13, then the perceived utility 
is very low and this part of the response takes the value of 0. The values in-between are computed 
by a spline of the same type as in the signal. This spline is defined by its control points as 
follows: 
 

  
)00.0,00.13(),05.0,00.3(),25.0,00.2(),85.0,40.1(),00.1,00.1(

:Dspline

 

Figure 10. Function of predicted horizontal separation. 

 
The final value of the response is 

r = r1 r2 Eq.27

2.2 Description of the Experimental Plan 
One of the most powerful inferential statistical approaches is the design, implementation, and 
synthesis of experiments. Experiments are performed by most researchers and scientists in 
practically all disciplines. An input stimulus is entered into a process with a set of controllable 
factors. These processes were already illustrated in the Figure 2 and Figure 3, which contrasted 
the black and white box testing approaches. For both processes and for application of both the 
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crisp and fuzzy metrics, these are the factors or independent variables in the experiment are 
manipulated to study the output or response variables. The uncontrollable factors are not easily 
manipulated, but through experimental design techniques such as blocking and randomization can 
be removed from the experiment. The output response variables are the dependent variables of 
the experiment. They are often determined by application of a metric or measured by a sensor 
device. 

Table 8. Processing Steps for the Experimental Analysis 

Step Description Section 
1 – Problem Definition Define the problem statement 2.2.1 
2 – Design of Experiment Design the experiment – The factors, levels of the factors, 

response variables to be run, and the model to be used for 
analysis are defined. 

2.2.2 

3 – Execute Experiment Execute the experiment and prepare output data – The 
system is configured for the experimental runs defined by 
the design, runs executed, and resulting output data is 
processed for input into model  

3.2 

4 – Implement Model Implement statistical model defined by the experiment. 3.2.2.2.1 
5 – Model Results Examine the results of the model and discuss factor effects 3.2.2.2.2 

and 
3.2.2.2.3 

6 – Synthesize Impact Synthesize overall results from the model and publish 
conclusions. 

4 

 
There are many purposes for performing an experiment. For this study, the objective of designing 
and executing an experiment is to determine (1) which pre-determined factors and interactions of 
these factors show a statistically significant effect on the ERAM system’s performance, and (2) 
the relative sizes of the determined significant effects. From designing the experiment to 
concluding on its results, a series of processing steps should be performed as identified in Table 
8. The first two steps presented in Table 8 are described in this section, which documents the plan 
for the experimental analysis. The last four steps are described in Section 3.2 and Section 4, 
which presents the results by documenting the actual execution and analysis of the experiment. 
 
This initial integrated experiment is the main focus of this study. Various runs at different settings 
allowed a model to be developed that can estimate performance of the conflict probe at any 
settings between those chosen for the experimental levels. This will be discussed in detail in the 
subsequent Section 2.2.2. 
 
In the introduction to Section 2 and listed in Table 1 (item #1), an enhanced trajectory modeling 
feature was listed that improved the initial point and lateral rejoin logic. This prototype activity is 
organized under Functional Area 32 (FA32) Trajectory Modeling (TM) Enhancements. In Section 
3.1, this prototype will be compared against the initial-baseline (IBL) ERAM run with no 
enhancements and parameter levels set to operational levels. For the remainder of this study, this 
FA32 scenario, referred to as baseline run (BL), with parameters equal to IBL settings is treated 
as the baseline scenario against which the scenarios with varying parameter settings (also referred 
to as treatment runs) are compared. This experimental plan applies only to the second task of the 
two presented in this paper. Thus, the first task compares the FA32 prototype run to the IBL 
ERAM run and subject of the analysis presented in Section 3.1. The second task and main focus 
of this paper uses the FA32 run as its baseline comparing it to the various parameter treatment 
runs, which are presented in the next sub-sections. 
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2.2.1 Definition of the Problem Statement 
As stated in the introduction to Section 2, the objective of this study is to examine prototype 
enhancements and parameter changes to ERAM to recommend these changes for implementation 
in the operational ERAM trajectory modeling (TM) and CPT sub-systems. The motivation is to 
provide air traffic control users a conflict probe functionality on the radar display and without the 
improvements envisioned the current instantiation will not be suitable. Thus, this study 
documents an initial experiment. Several other experiments are either implemented or planned for 
the near future that expands upon this work. This initial experiment is limited to the parameter 
changes of the TM and CD adherence bounds and settings of the conflict likelihood function. The 
following problem statement captures the objective of this initial experiment. 
 

Through a set of purposeful runs of ERAM, input with the legacy ZDC time-
shifted test traffic scenario, the experiment shall determine the statistically 
significant impact that the TM/CD adherence bound changes longitudinally 
and laterally, and likelihood function parameter changes has in terms of 
trajectory and conflict prediction accuracy performance. 

2.2.2 Design of the Experiment 
In order to develop the model without running a full factorial, which would have been 27 runs, a 
fractional design of experiment (DOE) was done using the JMP [SAS, 2010, B] software tool, 
which resulted in an experiment with only 12 runs.  

2.2.2.1 Factors 
The factors used in the experiment included only settings of ERAM that can be changed in the 
current version without any prototype upgrades or code changes. The factors of this particular 
experiment are simply parameters within ERAM’s configuration files and do not require any new 
software enhancements. 
 
The lateral and longitudinal bounds of the conformance box were varied independently from each 
other. This variance did not include the prototype changes in FA18 Interim 2 [Crowell, 2011, C] 
that decoupled the TM bounds from the CP bounds. Instead all changes to the conformance 
bounds affected both the TM and CP bounds. Both of these factors are continuous factors, 
modeled using a quadratic equation. The ranges of two continuous factors are listed in Table 9. 

Table 9. Continuous factors of the Integrated Experiment 

Factor Min Max 
Lateral Bound 0.5 nm 2.5 nm 
Longitudinal Bound 0.5 nm 1.5 nm 

 
In some initial experiments, likelihood appeared to be a significant factor. In order to further 
understand the effects of likelihood, it was varied among three discrete values. Effects of 
likelihood cannot easily be modeled as a continuous function because the likelihood parameter is 
a function in itself. The functions used for likelihood contain either two or three parameters. 
When two parameters are used, the first one is the maximum time in minutes at which a 
likelihood value of 0.0 will generate an alert. The second parameter is the minimum at which a 
likelihood value of 1.0 is required in order to generate an alert. This creates a linear function 
similar to that shown in Figure 11. The white area above the line is where the likelihood must fall 
in order for an alert to be generated. When three parameters are used, it becomes a piecewise 
linear function, with the first parameter being the maximum time at which a likelihood value of 
0.0 will generate an alert. The last parameter is the minimum time in minutes at which a 

 31



likelihood value of 1.0 is required in order to generate an alert, and the center parameter is the 
time in minutes at which a chosen value is required in order to generate an alert. In the case of the 
3-parameter settings used in this experiment, this chosen value is set to 0.8. This results in a 
function like the one shown in Figure 12. The settings used for likelihood are shown in Table 10. 

Table 10. Nominal factors of the Integrated Experiment 

Factor Settings 
Likelihood Function 10/20 3/8/20 3/8/10 

 

 

Figure 11. Linear likelihood function for 10/20 setting 

 

 32



 

Figure 12. Piecewise linear likelihood function for 3/8/20 setting 

These settings resulted in the 12 runs shown in Table 11. Also shown in this table are the settings 
used currently in the deployed version of ERAM. This run is referred to as the baseline (BL) run 
or in some cases the FA32 Baseline (32BL). 

Table 11. Twelve runs for the integrated experiment and the baseline run 

Run Lateral Longitudinal Likelihood 
1 0.5 0.5 10/20 
2 2.5 1.5 3/8/10 
3 0.5 1.5 10/20 
4 1.5 0.5 3/8/20 
5 1.5 1.0 10/20 
6 0.5 1.5 3/8/10 
7 1.5 1.5 3/8/20 
8 2.5 0.5 10/20 
9 2.5 1.0 3/8/20 

10 2.5 0.5 3/8/10 
11 0.5 0.5 3/8/10 
12 0.5 1.0 3/8/20 

BL 2.5 1.5 10/20 

2.2.2.2 Model 
The initial model allowed both continuous factors to have at most a quadratic effect. It was 
assumed all factors could interact with each other only in pairs (two-way interactions only). The 
constant or overall mean effect is represented in the model as μ, and εn(ijk) represents the 
assumption of independently normally distributed random error with a zero mean. All factors are 
assumed additive. The model is defined as in Eq.28. 
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 Eq.28

 Where: 

  Lati = lateral conformance bounds in nautical miles, i = 0.5, 1.5, 2.5 
  Longj = longitudinal conformance bounds in nautical miles, j = 0.5, 1.0, 1.5 
  Likek = likelihood, k = “10/20”, “3/8/10”, “3/8/20” 
  εn(ijk) = random error, n = 1, 2, … for all i, j, k 
 
There are five response variables, all of which are addressed by this model. Rijk will represent the 
percentage improvement in traditional and fuzzy false alert counts, traditional and fuzzy late alert 
counts, or the 25th percentile of warning time from the baseline depending on context. 
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3 Performance Evaluation 
There were two major evaluation tasks of this study. The first task was the analysis of Function 
Area 32 (FA32) Trajectory Modeling (TM) Enhancements. This analysis was presented in 
[Young, 2011] and compares the performance of the IBL scenario to a scenario including the 
trajectory modeling enhancements defined in FA32. This comparison was done independent of 
and prior to other analyses because all of the following runs include the enhancements. 
 
The next task was an integrated experiment that uses 12 runs of ERAM at different CP and TM 
settings from which a model is built that allows estimations to be performed within a continuous 
range of CP and TM settings. The factors defined for this experiment are parameters in the 
currently deployed version of ERAM whose settings can be adjusted without requiring 
modifications to the system. 
 
In all the analyses included in this document, the performance evaluations are performed on a test 
scenario and should not be taken out of context. The scenario used for the evaluation has had 
conflicts injected into it intentionally, some of which are particularly difficult for ERAM to 
detect. The numbers presented in this document are for purposes of comparison to other numbers 
within this document only. The purpose of this analysis is not to determine if the CP meets some 
numerical performance requirement, but rather to determine if an improvement can be gained 
when compared to the same scenario run through the CP with different settings. 

3.1 Trajectory Modeling Enhancements 
This chapter provides the analytical results from the evaluation of algorithmic enhancements to 
the aircraft trajectory modeling that has been implemented in the En Route Automation 
Modernization (ERAM) prototyping effort that was presented in [Young, 2011]. The algorithmic 
details of the planned prototype effort can be found in the Lockheed Martin report [McKay, 2011] 
delivered as part of the Separation Management Task Order 51 activity for Functional Area 32 
(FA32) –trajectory modeling improvement. 
 
In earlier ERAM releases, trajectory modeling only begins at the track position on a lateral re-
adherence of the trajectory, or change of track control. Otherwise, the initial point is taken to be 
the track projection onto the previous trajectory. On some trajectory rebuilds, the trajectory initial 
point could be up to 2.5nm from the latest track reported position. 
 
This prototype effort changes the aircraft trajectory algorithm to always start at the latest track 
position, and investigates different lateral rejoin enhancements. It provides for risk reduction, 
firming up of algorithmic changes, an associated accuracy benefit, and accelerated software 
development and implementation strategy. 
 
These changes to the trajectory modeling were included in all the treatment runs for this 
experiment. Since this technical note is concerned only with the effects of altering the parameters 
of the ERAM Conflict Probe, a new baseline is needed to compare the treatment runs to. The new 
baseline must be run at the baseline settings, but contain the FA32 trajectory modeling 
enhancements. This chapter provides a comparison of this new FA32 Baseline (32BL) to the 
Initial Baseline (IBL) run, to provide a perspective for the treatment run analyses. 
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3.1.1 Analysis Description 
The Initial Baseline (IBL) is detailed in [Crowell, 2011, A] and used to gain an understanding of 
the performance differences of the FA32 Baseline (32BL). The FA32 update introduces an 
enhanced method of trajectory modeling, and a new scenario was generated using this method. 
The purpose of this chapter is to analyze the effect of the trajectory modeling enhancements by 
comparing the 32BL to the IBL in terms of trajectory accuracy and conflict probe performance. 
Specifically, the accuracy of the trajectories generated in each scenario is calculated using the 
simulated track data as a baseline. 
 
FA32 scenario data was provided by LM and run through CPAT tools, using the same process as 
in the initial baseline scenario. The conformance bounds and likelihood parameter were set to 
match the values in the IBL run, which were 2.5 nm lateral, 1.5 nm longitudinal and 10/20 
likelihood. The only difference between the two runs is the FA32 trajectory modeling 
enhancement. 

3.1.2 Results 
The two parts of the analysis results—accuracy of trajectory prediction and performance of 
conflict probe—are presented in the following two sections respectively.  

3.1.2.1 Trajectory Accuracy 
Average error values are calculated for the same flight in the IBL and 32BL runs; these values are 
collected and compared over many flights to illustrate any underlying differences between the 
runs. A matched pair analysis is performed for each of the four metrics using the average error 
per flight between the IBL and 32BL with the trajectory modeling enhancements. The analysis 
includes a paired t-test, which examines the distribution of differences in error between the two 
scenarios and tests if the mean of the differences is statistically different from zero. The results 
from the paired t-tests are provided in Table 12. In each of the four graphs in Figure 13 the 
difference in average trajectory error per flight from the IBL to the 32BL is plotted against the 
mean of the two errors. 
 
Appendix C provides a detailed description of the matched pair analysis and graphical output. 
Positive mean differences indicate the baseline has more error on average than the prototype run. 

Table 12. Statistical Results for Trajectory Error. 

Error Mean Diff  Std Error p-value  
Horizontal (nm)  0.1153 0.0082 < 0.0001 
Abs. Vertical (ft)  2.1481 1.5954 0.1783 
Abs. Cross Track (nm)  0.1237 0.0066 < 0.0001 
Abs. Along Track (nm)  0.0268 0.0058 < 0.0001 

 
From the results in Table 12, the 32BL has less average error per flight for all four types of error. 
Each p-value presented in Table 12 is the probability of observing a discrepancy in means at least 
as large as that observed, even if there is no underlying difference in the means. A p-value less 
than 0.05 is typically considered statistically significant. For this analysis the mean difference is 
statistically significant for horizontal, absolute cross track, and absolute along track errors. For 
absolute vertical error, the new run has less mean error but the difference is not statistically 
significant. 
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Figure 13. Matched Pair Analyses for Trajectory Error Metrics. 

 
Figure 13 illustrates the same results of the matched pair analysis graphically. It presents the 
measurements for each metric using a special plot from the commercial statistical software 
package called JMP®. It plots each paired difference, with the vertical axis being the difference 
of the flight’s average error in the IBL run minus the respective mean in the treatment run. The 
horizontal axis is the average of these two measurements††††. The resulting plot normalizes the 
error differences indicating net trends between runs. For example, if the errors are predominantly 
above the red line at zero in the middle of the plot, this indicates the error is larger in the baseline 
run more often. If the errors are below this line, they indicate the error is larger in the treatment 
run (in this case the 32BL run). Supporting the same conclusion as drawn from the results of 
Table 12, Figure 13 illustrates a trend of most error differences being above the zero line, 
indicating the net benefit of FA32. 

                                                      
†††† The average of the two metrics used on the horizontal axis of the matched pair plot is calculated by 
taking the sum of the mean error of the IBL and mean of the FA32 treatment run and dividing this sum by 2 
for each matched flight. 
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It is helpful to know how accurate the trajectories are under certain conditions, such as when the 
flight is considered to be adhering to its known flight path (including clearances entered into the 
trajectory predictor automation) within specified parameters‡‡‡‡. This is the focus of the second 
stage of trajectory analysis. The data is filtered to include only data from a sample of points along 
the trajectory where the flight is in adherence. See [Pankok, 2011] for further details of the 
parameters determining adherence status. The matched pair analysis is repeated on this filtered 
data set. The results from the paired t-tests are provided in Table 13, while the graphical results 
are presented in Figure 14. 
 

Table 13. Statistical Results for Trajectory Error of In-Adherence Data. 

Error Mean Diff  Std Error p-value  
Horizontal (nm)  0.0899 0.0072 < 0.0001 
Abs. Vertical (ft)  5.3179 1.9219 0.0057 
Abs. Cross Track (nm)  0.0991 0.0062 < 0.0001 
Abs. Along Track (nm)  0.0197 0.0057 0.0005 

 
From the results in Table 13, the FA32 baseline run has less average error per flight for all four 
types of error when only data from in adherence track points are considered. This difference is 
statistically significant for all error types: horizontal, absolute vertical, absolute cross track and 
absolute along track errors. However, the mean differences are less than in Table 12 for overall 
data, thus the positive impact from the trajectory modeling enhancements on trajectory accuracy 
is observed in all error types when considering flights that are adhering to the known flight path. 
Compared to the unfiltered data results, this impact is more consistent for vertical errors but 
overall is reduced in magnitude. This is expected because the prototype affects re-adherence 
trajectories for flights out of lateral route adherence, and the filtered data only considers flights in 
lateral route adherence. 
 
 
 
 
 

                                                      
‡‡‡‡ Adherence for this study is measured at each radar track position. Position reports are flagged as out or 
in a maximum threshold of 2.5 nautical miles simultaneously returning to route by 30 degrees track course 
heading and within 300 feet of the flight’s vertical clearance during cruise. 
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Figure 14. Matched Pair Analyses for Trajectory Error Metrics for In-Adherence Data. 

3.1.2.2 Conflict Probe Accuracy 
A simulated conflict probe is run on both baselines. Since the underlying ground truth is 
theoretically the same, individual conflicts and encounters can be matched between the two 
scenarios and the conflict probe response in each scenario can be compared to demonstrate the 
impact of FA32 changes. It should be noted that there may be some small differences in track 
position data due to randomness in the radar signal generation process. These differences may 
affect the trajectory prediction process and even the designation of conflicts, so much so that a 
pair of flights designated in-conflict in one scenario may exhibit track positions in the other that 
are separated just enough to avoid being in conflict. 
 
Unlike the other analyses performed in this study, all alerts generated by ERAM were considered 
in this conflict probe analysis. No filtering by predicted separation or conflict duration was done, 
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whereas the other analyses in this study filtered out conflicts with less than 10 second duration. 
One exception is that this analysis, like the other analyses, does not consider muted alerts, which 
are alerts for conflicts that are predicted to occur outside of the current cleared altitude. An 
interim clearance, for example, may be assigned to a flight during a climb to its intended cruise 
level. Meanwhile, the simulated trajectory prediction engine uses the flight plan clearance as 
input, which may generate muted alerts. The decision to exclude muted alerts was made based on 
input from ATC SMEs. 
 
Software applications developed by the Conflict Probe Assessment Team (CPAT) were used to 
evaluate the results of the conflict probe and compare the performance of the FA32 run to the 
baseline by matching encounter pairs. The Strategic Alert Evaluator and Strategic Alert 
Comparer applications are described in [Paglione, 1999] and [Crowell, 2009] respectively. Table 
14 presents the results of the comparison. The shaded rows represent cases where the slight 
differences in ground truth between the two scenarios caused some events that were near the 
threshold of being defined as a conflict to be recorded as conflicts in one scenario and not the 
other. The last three rows represent cases where the conflict probe’s performance in two scenarios 
matched perfectly. The first three rows represent the more interesting cases, and they are 
discussed here. 

Table 14. Conflict Probe Comparison Results. 

IBL FA32 Count 
LA VA 3
FA N/A 220
N/A FA 140
LA N/A 1
N/A VA 9
VA N/A 3
FA FA 1167
LA LA 26
VA VA 160

 
From Table 14, there are three cases where a Late Alert in the IBL changed to a Valid Alert in the 
32BL, which demonstrates that the trajectory modeling enhancements had a positive impact on 
the performance of the conflict probe. These cases will be explored in further detail and the 
results reported in a final version of this analysis. There are no instances of a Valid Alert in the 
IBL changing to a Late Alert in the 32BL. Therefore, the improvement in Late Alerts can be 
stated as the count of Late Alerts that changed to Valid Alerts divided by the number of Late 
Alerts common to both. This is calculated as LA_VA / LA_LA = 3/26 = 11.5%. These alerts do 
not comprise a large enough sample to test for statistical significance in this improvement. 
 
There are 220 cases where a False Alert in the IBL changed to a correct No Call in the 32BL, and 
only 140 cases where the opposite occurred. Decreasing the false alert rate this way is an 
important objective for trajectory prediction improvements. The improvement in False Alerts can 
be stated as the count of False Alerts that changed to correct No Calls (FA_NC) minus the count 
of correct No Calls in the IBL that changed to False Alerts (NC_FA), divided by the number of 
False Alerts common to both (FA_FA). This is calculated as (FA_NC – NC_FA)/FA_FA = (220-
140) / 1167 = 6.85%. 
 
The false alert results were tested for significance using the chi-squared test presented in [Vivona, 
2010]. The null hypothesis being tested is that the incidence of false alerts is statistically 
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equivalent for the two runs. The test calculates the squared difference between the counts of 
FA_NC and NC_FA and divides by their sum. The test statistic is defined as: 

 
 FANCNCFA

FANCNCFA

__

__ 2
2




  

and the calculated value is 17.77. With one degree of freedom the corresponding probability is 
less than 3E-5, so the null hypothesis can be rejected [Agresti, 2002]. This indicates that the 
reduction in false alerts in the FA32 scenario is statistically significant. 
 
It is useful to know how the conflict probe performs when the adherence of flights to their known 
flight paths is considered as a factor in categorizing conflicts and alert responses. For more 
information on how adherence age is used in the evaluation of the conflict probe please refer to 
[Crowell, 2011, A]. When the length of time in adherence is considered, many more alerts will be 
categorized as discards. This can be seen in Table 15, which presents the results of the conflict 
probe on the same two scenarios when considering adherence age in the evaluation of alert 
responses. Similar to Table 14, the first two rows represent the cases of most interest to this 
analysis. 

Table 15. Adherence Conflict Probe Comparison Results. 

IBL FA32 Count 
FA N/A 59 
N/A FA 45 
N/A VA 9 
VA N/A 3 
FA FA 429 
LA LA 1 
VA VA 160 

 
When adherence is used, there are 59 cases where a False Alert in the IBL changed to a correct 
No Call in the 32BL, and 45 cases where the opposite happened. The improvement in False 
Alerts can be stated as above, (FA_NC – NC_FA)/FA_FA = (59-45) / 429 = 3.26%. 
 
Another chi-squared test is formulated to test whether the incidence of false alerts is statistically 
equivalent for these results. The calculated value of the test statistic is 1.88. With one degree of 
freedom the corresponding probability is 0.17, so the null hypothesis cannot be rejected. This 
indicates that the reduction in false alarms in the FA32 scenario cannot be said to be statistically 
significant. The reason for this may be similar to the reason that the observed improvement in 
trajectory metric accuracy was less for in-adherence data. 
 
The analysis shows that the FA32 trajectory modeling enhancements did provide a net 
improvement in both trajectory and conflict prediction accuracy. Most importantly, FA32 
prototype was observed to have an overall net improvement in reducing both late and false alerts. 
Typically it is difficult to reduce both simultaneously; generally one can be reduced with 
degradation to the other. This was not the case for the FA32 trajectory modeling enhancements. 
The evidence showed that the false alert rate was reduced while the late alert rate was not 
degraded. 

3.2 Integrated Experiment Analysis 
The main experiment of this study was the integrated experiment that is defined in Section 2.2. 
Trajectory modeling and conflict probe performance were analyzed in detail using several 
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approaches, including data exploration using discrete results from the treatment runs and analysis 
of effects using the least squares fit model created with the d-optimal design. 

3.2.1 Trajectory Modeling Analysis 
This section analyzes the effect of the three defined factors on the trajectory accuracy in the 
scenario runs. The trajectories generated in each scenario are compared to the simulated track 
data—which should be very similar but not identical across runs—and three trajectory metrics are 
calculated as described in Section 2.1.2. The null hypothesis for this trajectory modeling analysis 
is the following: 
 

A significant decrease in trajectory modeling errors cannot be gained by altering the 
lateral or longitudinal adherence bounds or the likelihood function of the current probe.  

 
To test this hypothesis, the trajectory error in a treatment run is compared to the error in the FA32 
baseline scenario (32BL) using a matched pair test. This statistical test is carried out for all three 
error types and for each of the 12 treatment runs. For the matched pair analysis, the average error 
is calculated for each individual flight in the baseline and treatment run scenarios. The values are 
compared for every flight, and the mean difference is calculated to illustrate any underlying 
differences between the scenarios. The matched pair analysis includes a paired t-test, which 
examines the distribution of differences in per flight error between the two scenarios and tests if 
the mean of the differences is statistically different from zero. The results from the paired t-tests 
for cross track, along track, and vertical errors are provided in Table 16, Table 17, and Table 18 
respectively. The likelihood parameter has no effect on the trajectory modeling, so it is left out of 
these tables. 

Table 16. Statistical Results for Trajectory Cross Track Error 

Lat 
bound 

Long 
bound 

Mean by 
flight (nm) 

Run 
t-ratio 

vs. 32BL 
p-value 

vs. 32BL 
1 0.5 0.5 0.72941 -23.0753 <.0001 
2 2.5 1.5 0.85348 0.449675 0.653 
3 0.5 1.5 0.73571 -22.0115 <.0001 
4 1.5 0.5 0.78731 -14.5896 <.0001 
5 1.5 1.0 0.79885 -11.9374 <.0001 
6 0.5 1.5 0.73486 -22.2937 <.0001 
7 1.5 1.5 0.80568 -10.5545 <.0001 
8 2.5 0.5 0.81791 -16.0585 <.0001 
9 2.5 1.0 0.84138 -7.23434 <.0001 

10 2.5 0.5 0.81917 -15.6695 <.0001 
11 0.5 0.5 0.72927 -23.2975 <.0001 
12 0.5 1.0 0.73328 -22.5304 <.0001 

32BL 2.5 1.5 0.85316 - - 
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Table 17. Statistical Results for Trajectory Along Track Error 

Lat 
bound 

Long 
bound 

Mean by 
flight (nm) 

Run 
t-ratio 

vs. 32BL 
p-value 

vs. 32BL 
1 0.5 0.5 1.03443 -37.7576 <.0001 
2 2.5 1.5 1.32823 1.154313 0.2485 
3 0.5 1.5 1.24105 -9.89563 <.0001 
4 1.5 0.5 1.05273 -34.3245 <.0001 
5 1.5 1.0 1.17805 -19.1516 <.0001 
6 0.5 1.5 1.2426 -9.74754 <.0001 
7 1.5 1.5 1.29028 -1.95322 0.0509 
8 2.5 0.5 1.05834 -38.539 <.0001 
9 2.5 1.0 1.19206 -21.4522 <.0001 

10 2.5 0.5 1.05846 -38.5739 <.0001 
11 0.5 0.5 1.03259 -38.6468 <.0001 
12 0.5 1.0 1.14615 -23.7055 <.0001 

32BL 2.5 1.5 1.3008 - - 

 

Table 18. Statistical Results for Trajectory Vertical Error 

Run 
Lat 

bound 
Long 

bound 
Mean by 
flight (ft) 

t-ratio 
vs. 32BL 

p-value 
vs. 32BL 

1 0.5 0.5 340.985 -7.77013 <.0001 
2 2.5 1.5 359.383 0.419611 0.6748 
3 0.5 1.5 350.159 -4.52418 <.0001 
4 1.5 0.5 343.959 -7.53102 <.0001 
5 1.5 1.0 352.234 -4.06503 <.0001 
6 0.5 1.5 349.732 -4.75879 <.0001 
7 1.5 1.5 354.995 -2.79515 0.0052 
8 2.5 0.5 346.388 -7.9294 <.0001 
9 2.5 1.0 355.486 -2.9365 0.0034 

10 2.5 0.5 346.958 -6.94365 <.0001 
11 0.5 0.5 341.066 -7.85201 <.0001 
12 0.5 1.0 349.432 -4.75783 <.0001 

32BL 2.5 1.5 358.964 - - 

 
When the mean error in the baseline is greater than that in the treatment run, the mean difference 
is negative. The t-ratio is a statistical test parameter which is calculated as the mean difference 
over the standard error. Large negative values of the t-ratio produce small p-values and indicate 
that the mean difference is of statistical significance. 
 
From the results in Table 16 for cross track error, the low p-values for almost all runs indicate 
there is a statistically significant difference in error for every treatment run except one. Run 2 
uses the same lateral and longitudinal bounds as the baseline and it is intuitive that it would be an 
exception, because the trajectory modeling process in this treatment run would behave similar to 
that in the baseline. In all the other treatment runs, it can be observed that reducing the lateral or 
longitudinal bounds resulted in lower average error. 
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In Table 17, the results for along track error also include low p-values for many runs, with 
exceptions in Run 2 and Run 7. The reasoning for Run 2 is the same as above. Noting that the 
lateral and longitudinal bounds for Run 7 are 1.5 each (compared to 2.5 and 1.5, respectively, in 
the baseline) it can be surmised that the slightly smaller lateral bound resulted in decreased errors, 
similar to the other treatment runs, and that in this case the effect was just under the threshold of 
statistical significance. 
 
The results for vertical error in Table 18 also include statistically§§§§ significant p-values for all 
runs except Run 2. However, the t-ratio values overall are less negative, which implies less 
drastic effects than in the previous two tables. This may be explained by the fact that while 
changes in lateral and longitudinal bounds directly affect cross and along track errors, 
respectively, their impact on vertical error is much less straightforward. 
 
These impacts are further explored using a statistical model of the factors’ effects on the error 
metrics. Average error values were taken over all valid data points and entered into a model of 
treatment effects. The prediction profiler is a tool from JMP [SAS, 2010, B] that graphically 
presents the results of the model by plotting average error versus the lateral, longitudinal, and 
likelihood factors. A screenshot of this tool is shown in Figure 15. Note that for the matched pair 
tests, the average error value was calculated by individual flights first and then the average over 
these per flight values was taken. Those values differ from the overall average values of all 
sampled error data points, which is what was used in the model. 
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Figure 15. Prediction Profiler of TM Model with Baseline Parameter Settings 

                                                      
§§§§ It should be noted that the maximum decrease in error is 18ft, which is a practically insignificant 
change for vertical error. 
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Figure 15 profiles some of the treatment effects from the statistical model, and a few important 
patterns can be discerned. As the lateral bound is reduced, the average cross track error decreases 
sharply, thereby increasing the trajectory accuracy in this dimension. Next, as the longitudinal 
bound is reduced, the average along track error decreases sharply, increasing trajectory accuracy 
in the longitudinal dimension as well. Average vertical error is also affected by reducing either 
bound, however the error is measured in feet so the practical effect is much less in comparison to 
the other errors in nm. In other words, the effect is statistically significant but not practically 
significant. 

3.2.2 Conflict Probe Analysis 
Using the integrated experiment, each effect of the conflict probe performance can be evaluated 
at many different settings. This allows the analyst to understand the effects of each of the three 
factors on the conflict probe performance. The purpose of this integrated experiment is not to 
determine the optimal settings, but rather to understand the effects of each of the settings and 
determine if a significant improvement to performance can be gained by altering these settings of 
the conflict probe. The null hypothesis for the conflict probe evaluation is the following: 
 

A significant Conflict Probe performance improvement cannot be gained by altering the 
lateral or longitudinal adherence bounds or the likelihood function of the current probe. 

 
The purpose of this section is to prove this null hypothesis false. In order to do this we are 
looking for a significant decrease in False Alert Rate as well as either a decrease in Late Alert 
Rate or no significant increase in Late Alert Rate. Furthermore, a desirable result would include 
no significant decrease in warning time. 
 
In the following analysis the 32BL is the baseline scenario that includes the FA32 trajectory 
modeling upgrades described in Section 3.1. IBL is the initial baseline that was described in 
[Crowell, 2011, A], and does not include the FA32 upgrades. In this chapter, the main analysis 
performed compares the results of the twelve treatment runs to the 32BL, since the purpose of 
this technical note is to determine the performance that can be gained by altering the three 
settings described in Section 2.2.2.1, and these three settings are the only differences between 
32BL and each of the treatment runs. The comparison to the IBL is included since the conclusion 
of the FA32 analysis was that the upgrades should be implemented, so this information shows the 
overall performance gained through just that upgrade with several different settings. 
 
In Table 19, the alert type counts of each of the treatment runs and the two baseline runs are 
shown. It can be seen from this table, that although all runs decrease the FA count from both 
baselines, they also increase the LA count. This table also shows that all runs do not significantly 
affect MA count. Although there are four runs that decrease the MA count from 4 to 3, this 
decrease is not significant and can likely be attributed to the noise inherent among runs of 
ERAM. Likewise, the three that show an increase to 5 MAs do not show a significant change. 
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Table 19. Alert type counts for each of the treatment runs and the two baselines. 

Run 
STD 
VA VA LA MA FA 

1 155 125 19 4 878 
2 159 131 15 4 1148 
3 160 131 15 3 1013 
4 151 120 24 3 814 
5 160 130 15 3 1066 
6 161 132 13 4 774 
7 156 127 18 4 994 
8 156 126 17 5 1288 
9 157 128 17 3 1092 

10 154 123 19 5 981 
11 150 119 23 5 633 
12 158 129 16 4 718 

32BL 163 135 11 4 1394 
IBL 158 134 12 4 1470 

 
During the development of the fuzzy metrics defined in Section 0, a new metric was discovered 
that weights the value of each Late Alert or Missed Alert by the amount of time by which it was 
late. This metric is less susceptible to the noise inherent among runs, since a small shift in time 
will be represented by a small difference in the value, instead of a difference between counting as 
a LA or not. The values of each alert are summed for the run and this value is called Adjusted 
LA. In Table 20 this value is shown for each run and compared to the sum of Late Alerts and 
Missed Alerts. An example of the differences between the two metrics can be seen by comparing 
Runs 6 and 7. Using the LA+MA metric, Run 7 seems to have a significant degradation in 
performance, with a value of 22 compared to the 17 of Run 6. However, looking at the Adjusted 
LA metric, it can be seen that there is no significant difference between the two runs, since their 
scores differ by a value of only 0.04. 
 
Similar to the LA metric, the Adjusted LA metric shows a significant degradation in late alert 
performance for all of the treatment runs, when compared to either of the two baseline scenarios. 
Those that have the highest values of LA count, particularly Runs 4 and 11, also have the highest 
values of Adjusted LA. The lowest values of Adjusted LA are from Runs 2 and 3, with Run 5 
close behind. Runs 6, 7, and 9 are only slightly further degraded in performance. These initial 
findings are interesting in that Runs 2, 3, 6, and 7 are run with a longitudinal setting of 1.5 nm, 
whereas Runs 5 and 9 are run with a longitudinal setting of 1.0 nm with lateral settings of 1.5 and 
2.5 nm respectively. The only run with a longitudinal bound of 1.0 nm or greater not included in 
this list is Run 12, with a longitudinal of 1.0 and lateral of 0.5 nm. These initial findings indicate 
that longitudinal conformance bound may be the most significant factor affecting LAs, and there 
is a small interaction with the lateral conformance bound that becomes most prominent when the 
lateral bounds are set to the smallest value. This is an important finding and will be analyzed 
further later. 
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Table 20. Late Alert plus Missed Alert count and Adjusted Late Alert value for each of the 
treatment runs and the two baselines. 

Run LA+MA Adj LA 
1 23 14.58 
2 19 10.46 
3 18 10.64 
4 27 16.45 
5 18 11.13 
6 17 11.78 
7 22 11.74 
8 22 12.90 
9 20 11.64 

10 24 12.57 
11 28 16.32 
12 20 13.26 

32BL 15 8.95 
IBL 16 8.79 

 
Next, we look at the LA and FA Rates in Table 21. LA Rate is calculated by summing the 
number of LAs and MAs and dividing by the total number of conflict events. FA Rate is 
calculated by dividing the number of FAs by the number of non-conflict events. Non-conflict 
events are encounters that do not result in a conflict. The overall rates are shown on the left, and 
then the FA Rate is broken down into bins based on the horizontal and vertical separation of the 
encounter event at the minimum max-ratio time. 

Table 21. Overall Alert Rates and False Alert Rates by separation category. 

   FA Rate 

   Horz <5 <5 
5 ≤ h 
< 8 

5 ≤ h 
< 8 

8 ≤ h 
≤ 13 

8 ≤ h 
≤ 13 >13 >13 

Run LA Rate FA Rate Vert <1000 ≥1000 <1000 ≥1000 <1000 ≥1000 <1000 ≥1000 

1 0.155 0.051   1.000 0.119 0.805 0.244 0.225 0.036 0.076 0.024 

2 0.127 0.068   1.000 0.107 1.000 0.365 0.600 0.185 0.037 0.013 

3 0.121 0.059   1.000 0.109 0.921 0.347 0.319 0.060 0.061 0.024 

4 0.184 0.048   1.000 0.122 0.931 0.328 0.241 0.059 0.046 0.011 

5 0.122 0.063   1.000 0.119 0.978 0.372 0.338 0.085 0.045 0.024 

6 0.114 0.045   1.000 0.102 0.916 0.334 0.292 0.055 0.036 0.009 

7 0.148 0.058   1.000 0.117 0.977 0.378 0.413 0.120 0.038 0.011 

8 0.149 0.076   1.000 0.123 0.973 0.365 0.494 0.135 0.069 0.029 

9 0.135 0.064   1.000 0.106 0.967 0.364 0.523 0.152 0.044 0.014 

10 0.163 0.058   1.000 0.121 0.951 0.346 0.416 0.126 0.038 0.011 

11 0.190 0.037   1.000 0.119 0.759 0.234 0.168 0.033 0.033 0.011 

12 0.134 0.042   1.000 0.118 0.862 0.307 0.177 0.034 0.043 0.010 

32BL 0.100 0.082   1.000 0.113 0.994 0.365 0.648 0.192 0.058 0.031 

IBL 0.107 0.087  1.000 0.114 1.000 0.381 0.650 0.206 0.053 0.033 

 
The first bin is a horizontal separation of less than 5 nm and a vertical separation of less than 
1000 ft. This column includes all events that are conflicts, and since there are no non-conflict 
events in this bin, all rates are a value of 1, because the denominator becomes only the number of 
FAs. Looking at these false alert rates, it can clearly be seen that false alerts are far less likely 
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when the flights remain separated vertically. Every column shows a higher FA Rate in both 
baseline scenarios than in all runs, which is exactly what was expected, so there are no real 
surprises to be investigated in this table. 
 
In Figure 16 the Hit Rate is graphed versus the False Alert Rate for each of the treatment runs and 
the two baselines. The FA Rates are the same values from Table 21, whereas Hit Rate is 1 – LA 
Rate from the same table. The top-left corner of the plot is the most desirable, since the most 
desired performance is high Hit Rate and low FA Rate. From this plot we can see that both 
baselines have a high FA Rate but a desirable LA Rate, whereas all of the treatment runs sacrifice 
Hit Rate in order to reduce the FA Rate. Looking at this plot, of the twelve treatment runs, Run 6 
seems to provide the best balance of Hit Rate versus FA Rate, since it greatly reduces the FA 
Rate when compared to the baselines, but barely reduces the Hit Rate. Assuming no other 
metrics, all runs to the right of and below Run 6 can be eliminated, since they degrade in 
performance of both FA Rate and Hit Rate. This leaves only Runs 6, 11, and 12 as the top 
contenders, but another important metric to observe is Warning Time. 
 

 

Figure 16. Hit Rate vs. False Alert Rate colored by Warning Time. The top-left corner of 
the graph is the most desirable. 

The warning time of alerts is an important metric because it tells not only how correct the probe 
is, but how much workload it puts on the controller. Less warning time before the conflict 
requires quicker reaction times from the controllers and therefore increases controller workload. 
 
Table 22 shows several statistics of warning time for each of the treatment runs and the two 
baselines. The statistics used are the median, inter-quartile range (IQR), and 25th percentile. The 
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graph shown next to the columns is the 25th percentile. The 25th percentile is the main metric we 
want to look at, since this tells us the low end of the warning times of alerts. Raising this low end 
is more desirable than raising the median, since the median is almost always well above the 
required warning time, which in this case is 180 seconds. Back in Figure 16, each point 
representing a run has been colored based on its warning time value. The exact metric used for 
this coloring is the percentage difference of the 25th percentile of warning time from the FA32 
Baseline, where deep blue is no reduction and deep red is the maximum reduction of 22.5%. 
Looking at the graph, we can see that warning time is consistently reduced as the FA Rate is 
reduced. 

Table 22. Median, inter-quartile range, and 25th percentile of conflict warning time. 

Run Median IQR 25th %  

1 397.0 374.0 264.0 

2 409.0 264.0 307.5 

3 445.5 399.0 305.0 

4 387.5 306.0 266.0 

5 443.0 414.0 311.0 

6 379.0 232.5 275.0 

7 389.0 292.0 279.0 

8 436.0 432.0 312.0 

9 406.0 271.0 303.0 

10 391.5 273.0 278.0 

11 361.5 212.0 256.0 

12 376.5 241.0 265.0 

32BL 492.0 440.0 331.5 

IBL 460.0 378.5 320.5  
 
Run 6 that was previously deemed as the best run, can clearly be seen to have a significant 
reduction in warning time. Now, from the graph, we can eliminate 4 runs: Runs 1, 2, 4, and 9. 
Runs 1, and 4 can be eliminated since they are to the right and below Run 6, which they are also 
darker than. Runs 2 and 9 can be eliminated because it is to the right, below, and darker than Run 
5. Table 23 shows the settings of these four runs, but nothing immediately stands out as a 
common factor. However, if they are split into the two sets of eliminations, as signified by the red 
and green color coding, we can see that the two reds were eliminated because of their longitudinal 
conformance bounds which we have earlier determined to be a major factor in LA Rate. The blue 
runs have the default 2.5 nm lateral conformance bound, with no change or little change to 
longitudinal bound. These two runs performed well with warning time but had little reduction to 
FA Rate when compared to other runs. This is another important finding that will continue to be 
investigated further in this paper. 

Table 23. The runs that can be eliminated based on Hit Rate, FA Rate and 25th percentile 
Warning Time. 

Run Lateral Longitudinal Likelihood 
1 0.5 0.5 10/20 
2 2.5 1.5 3/8/10 
4 1.5 0.5 3/8/20 
9 2.5 1.0 3/8/20 

 
Another analysis used to help validate our previous findings is the Conflict Probe Comparison 
that compares the results of each of the treatment runs’ conflict probes to the baseline conflict 
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probes. Table 24 shows the results of each comparison to the FA32 Baseline run. The table 
contains a lot of information, but the main focus points are the VA-LA, LA-VA, FA-N/A, and 
N/A-FA. These fields are wrapped into the two fields at the bottom of the table: % FA 
Improvement and % LA Improvement. The percent FA improvement metric is the N/A-FA count 
subtracted from the FA-N/A count, divided by the number of FAs in the baseline run. Similarly 
percent LA improvement is the VA-LA count subtracted from the LA-VA count, divided by the 
number of LAs in the baseline run. LAs in this table include Late Alerts as well as Missed Alerts. 
A positive percentage is an improvement over the baseline whereas a negative percentage is 
degradation. 

Table 24. Results of comparisons of each of the treatment runs to the FA32 Baseline run. 

 0.5 2.5 Lat 0.5 1.5 1.5 0.5 1.5 2.5 2.5 2.5 0.5 0.5 

 Lon 0.5 1.5 1.5 0.5 1 1.5 1.5 0.5 1 0.5 0.5 1 

 Like 10/20 3/8/10 10/20 3/8/20 10/20 3/8/10 3/8/20 10/20 3/8/20 3/8/10 3/8/10 3/8/20 

BL Proto 1 2 3 4 5 6 7 8 9 10 11 12 

FA FA 597 1107 772 645 864 629 851 1010 948 813 473 551 

FA N/A 718 276 548 687 449 701 491 310 408 516 858 779 

N/A FA 189 24 166 111 131 95 92 194 92 116 99 104 

LA LA 13 15 13 14 13 12 14 15 14 14 14 13 

LA VA 2 0 2 1 2 3 1  0 1 1 1 2 

VA LA 10 4 5 13 5 5 8 7 6 10 14 7 

VA VA 153 159 158 150 158 158 155 156 156 153 149 156 

VA N/A 0 0 0 0 0 0 0 0 1 0 0 0 

DSC DSC 625 696 783 446 838 455 565 901 588 490 362 431 

DSC FA 92 17 75 58 71 50 51 84 52 52 61 63 

FA DSC 79 11 74 62 81 64 52 74 38 65 63 64 

DSC N/A 555 559 414 768 363 767 656 287 632 730 849 778 

N/A DSC 133 10 92 65 107 40 39 130 59 53 67 65 

% FA Imp 38% 18% 27% 41% 23% 43% 29% 8% 23% 29% 54% 48% 

% LA Imp -53% -27% -20% -80% -20% -13% -47% -47% -33% -60% -87% -33% 

 
The results seen in this table are similar to those seen in the previous analyses performed in this 
technical note. Each of the treatment runs improves the FA performance but degrades in LA 
performance when compared to the baseline. Figure 17 shows the two improvement metrics 
plotted against each other. Once again the points are colored by the warning time. The plot is 
essentially the mirror image of Figure 16. It is mirrored because that figure plotted Hit Rate vs. 
FA Rate, where Hit Rate is 1 – LA Rate. 
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Figure 17. Graph of % FA Improvement vs. % LA Improvement compared to the FA32 
Baseline. Top right corner is the most improved. 

To give an idea of how these results compare to the Initial Baseline, Table 25 shows the results of 
the conflict probe comparison of each of the treatment runs to the IBL. Once again, looking at the 
percent improvements, we notice that all runs significantly improve upon the False Alert 
performance, but not in the LA performance. However, unlike in the comparison to the FA32 
Baseline, Run 6 does not degrade in LA performance at all.  
 
Figure 18 plots the percent improvement of the FA versus the LA. This figure looks almost 
exactly the same as Figure 17, only the LA degradation is smaller. This table and figure only 
confirm that any findings when analyzed against the FA32 Baseline will hold true against the 
Initial Baseline. 
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Table 25. Results of comparisons of each of the treatment runs to the Initial Baseline run. 

 0.5 2.5 Lat 0.5 1.5 1.5 0.5 1.5 2.5 2.5 2.5 0.5 0.5 

 Lon 0.5 1.5 1.5 0.5 1 1.5 1.5 0.5 1 0.5 0.5 1 

 Like 10/20 3/8/10 10/20 3/8/20 10/20 3/8/10 3/8/20 10/20 3/8/20 3/8/10 3/8/10 3/8/20 

BL Proto 1 2 3 4 5 6 7 8 9 10 11 12 

DSC DSC 616 606 758 452 829 446 549 865 559 475 360 433 

DSC FA 100 66 92 71 88 61 68 110 74 76 69 70 

DSC N/A 599 643 465 792 398 808 698 340 682 764 886 812 

FA DSC 86 56 87 61 90 68 60 86 62 71 66 63 

FA FA 602 989 762 634 838 624 840 972 906 784 467 546 

FA N/A 782 425 621 775 542 778 570 412 502 615 937 861 

LA LA 13 15 12 14 13 12 14 15 14 14 14 13 

LA VA 3 1 4 2 3 4 2 1 2 2 2 3 

N/A DSC 135 55 104 60 107 45 47 154 64 62 66 64 

N/A FA 176 93 159 109 140 89 86 206 112 121 97 102 

N.A LA 1 1 1 1 1 1 1 1 1 1 1 1 

N/A VA 5 5 5 5 5 5 5 5 4 5 5 5 

VA LA 9 3 5 12 4 4 7 6 5 9 13 6 

VA N/A 2 2 2 2 2 2 2 2 2 2 2 2 

VA VA 147 153 151 144 152 152 149 150 151 147 143 150 

% FA Imp 41% 23% 31% 45% 27% 47% 33% 14% 27% 34% 57% 52% 

% LA Imp -38% -13% -6% -63% -6% 0% -31% -31% -19% -44% -69% -19% 
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Figure 18. Graph of % FA Improvement vs. % LA Improvement compared to the Initial 
Baseline. Top right corner is the most improved. 

3.2.2.1 Fuzzy Analysis Results 
The fuzzy alert metrics are used in addition to the traditional metrics to provide some insight 
where the traditional metrics cannot. Since the fuzzy metrics use continuous values, they are less 
susceptible to the noise among runs of ERAM, but this is only one advantage provided by these 
metrics. The metrics were developed to capture the severity of an encounter event, rather than a 
simple yes or no of whether the event was a conflict or not, like the traditional metrics do. By 
capturing this severity, many more events are available for analysis that were previously simply 
encounters and are now very severe events. Many of these events were considered False Alerts 
using the traditional metrics and are captured as Valid in the fuzzy metrics. The fuzzy metrics 
attempt to capture the events that should be alerted regardless of whether or not they are an actual 
conflict. 
 
In Table 26 we see the fuzzy alert values for each of the three main metrics. Though the measures 
provide similar numbers to the traditional metrics, it is important to note that, as with all fuzzy 
metrics, these numbers are calculated using a much different method than the traditional metrics 
and are only intended for comparison to fuzzy metrics of other runs. These fuzzy metrics should 
not be compared directly to the traditional metrics.  
 
 

 53



Table 26. Fuzzy Alert values for each of the treatment runs and the baselines. 

Run VA LA FA 

1 261.05 29.57 740.02

2 260.04 20.42 763.46

3 267.02 20.39 815.86

4 266.14 24.01 629.73

5 271.44 18.33 837.26

6 264.99 22.47 594.09

7 268.33 17.31 730.34

8 266.51 23.12 954.01

9 267.22 20.90 748.33

10 264.45 23.13 694.92

11 253.96 33.76 502.16

12 262.68 25.03 570.33

32BL 260.31 20.55 949.11

IBL 257.33 19.08 994.56
 

Table 27. Overall Fuzzy Alert Rates and Fuzzy False Alert Rates by separation category. 

   FA Rate 

   Horz <5 <5 
5 ≤ h 
 < 8 

5 ≤ h  
< 8 

8 ≤ h 
 ≤ 13 

8 ≤ h 
 ≤ 13 >13 >13 

Run 
LA 

Rate 
FA 

Rate Vert <1000 ≥1000 <1000 ≥1000 <1000 ≥1000 <1000 ≥1000 

1 0.102 0.044   0.832 0.342 0.686 0.210 0.224 0.035 0.075 0.023 

2 0.073 0.045   0.822 0.197 0.815 0.300 0.343 0.118 0.030 0.011 

3 0.071 0.048   0.837 0.334 0.775 0.295 0.276 0.055 0.057 0.023 

4 0.083 0.037   0.823 0.210 0.800 0.276 0.216 0.052 0.043 0.011 

5 0.063 0.050   0.809 0.338 0.830 0.316 0.283 0.071 0.041 0.022 

6 0.078 0.035   0.843 0.172 0.772 0.283 0.250 0.051 0.034 0.009 

7 0.061 0.043   0.805 0.202 0.809 0.313 0.314 0.091 0.034 0.010 

8 0.080 0.056   0.755 0.353 0.824 0.302 0.344 0.097 0.058 0.025 

9 0.073 0.044   0.825 0.204 0.803 0.301 0.325 0.101 0.035 0.012 

10 0.080 0.041   0.791 0.201 0.785 0.287 0.278 0.089 0.032 0.010 

11 0.117 0.030   0.815 0.203 0.628 0.198 0.165 0.033 0.033 0.011 

12 0.087 0.034   0.836 0.201 0.740 0.266 0.170 0.033 0.042 0.010 

32BL 0.073 0.057   0.761 0.330 0.798 0.298 0.389 0.124 0.045 0.024 

IBL 0.069 0.059   0.771 0.334 0.817 0.312 0.367 0.130 0.039 0.026 

 
The fuzzy alert values can be analyzed in the same way the traditional alert type counts are. 
Although all of the treatment runs improve the FA value over the Initial Baseline, Run 8 does not 
improve over the FA32 Baseline, indicating that the real improvement in that run was achieved 
by the FA32 prototypes and not by the altered settings. Another thing to note that is very different 
than the traditional metrics is that four of the runs actually reduce the LA value from both 
baseline values. Runs 2, 3, 5, and 7 all reduce the LA value. These are four of the runs that were 
noted to have a low LA count in the traditional metrics. The other two runs that were noted in the 
traditional metrics were Runs 6 and 9. Although these two runs increase the LA value over the 
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baselines, they only increase slightly and have considerably lower values than most other runs. 
These findings with the fuzzy metrics further verify our speculation that lowering the longitudinal 
conformance bounds has a negative impact on the LA performance of the conflict probe. 
 
Table 27 shows the fuzzy alert rates. These are similar to the alert rates shown for the traditional 
metrics, but the numerator and denominator of these metrics use fuzzy values. The LA Rate is the 
LA value from the Table 26 divided by the sum of the LA value and the VA value. The FA Rate 
is the FA value from Table 26 divided by the sum of the FA value and the No-call (NC) value. 
NC Value is not shown in the table above, but the NC value for each event is defined as: 
 

),max(1 RS  
 

The variables S and R are signal and response, respectively, as defined in Section 0. The overall 
NC value for a run is the sum of all NC values for events in that run. 
 
The FA Rate columns on the right of the table are separated into categories by horizontal and 
vertical separation at the minimum max-ratio time. 
 
Figure 19 shows the fuzzy Hit Rate versus FA Rate of each of the treatment runs and the 
baselines, once again colored by percent difference of the warning time from the FA32 Baseline. 
Interestingly, there are quite a few runs that improve over the baseline in fuzzy hit rate, whereas 
all runs degraded in the traditional hit rate.  
 

 

Figure 19. Fuzzy Hit Rate vs. Fuzzy False Alert Rate. 
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3.2.2.2 Model Analysis 
The main analysis performed for this study used an integrated experiment with a D-optimal 
design that was described in Section 2.2.1. The design allows the analyst to model many different 
parameter settings with only the twelve experimental runs of ERAM and the FA32 Baseline. The 
model provides many options for analysis of the three factors. For initial discovery we look at a 
graph called the prediction profiler, which allows the analyst to observe effects of several factors 
on several response variables in one interactive graph. Since the model is a multi-dimensional 
model the graph must be interacted with in order to gain the full perspective of the data. In this 
document we provide several perspectives of the data. 

3.2.2.2.1 Implementation of Statistical Model 
The traditional metrics will be modeled separately from the fuzzy model (using the same warning 
time percentage in both models since it does not change). Using the data collected from the 12 
runs and the baseline, the following leverage plots are obtained (Figure 20). In these plots the 
measured values (y-axis) are plotted against their modeled values (x-axis). Therefore, all points 
that fall on the diagonal are exactly modeled. The horizontal blue line represents the mean value 
of the samples and the red curves indicate the 95% confidence interval. Although the model 
captures between 95% and 100% of the variation in the study, which can be seen from the RSq 
value under each plot (RSq is the coefficient of determination R2), none of the responses are 
statistically significant. The significance is quickly determined in a leverage plot by determining 
if the confidence interval intersects the mean, where no intersection indicates insignificance. 
There are likely more than one interaction terms in the model whose interactions have little 
correlation and can be removed from the model for improvement. 
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Figure 20. Traditional FA %, LA %, and WT % metrics leverage plots 
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The following tables (Table 28, Table 29,) list the effect tests for each interaction of the various 
factors for each of the three responses currently being investigated. Highlighted are those effects 
that have a p-value of at least 0.7000, where p > 0.0500 indicates statistical insignificance. The 
two-way interaction of lateral and longitudinal bounds is highly insignificant for all three 
response variables, indicating that it should be removed from the model. Also, the two-way 
interactions of likelihood are highly insignificant for LA % and WT %. These values are below 
the initial threshold of 0.7000 for FA %, though are still much higher than 0.0500. These three 
interactions will therefore be excluded for the next iteration of the model. 
 
As an aside, removing only Lat and Lat*Likelihood interactions still produces a model with all 
three responses significant, although LA % only has a significance value of 0.0368, the R2 values 
would be 94% for LA %, 97% for WT % and 100% for FA %. The confidence gain of removing 
all three outweighs the degradation of the model fit.  

Table 28. Initial Model Effect Test for the FA % Response Variable 

Source 
Sum of 
Squares DF F Ratio Prob > F 

Lat(0.5,2.5) 1 1644.2036 844.9787 0.0219 
Long(0.5,1.5) 1 265.7555 136.5754 0.0543 
Likelihood 2 869.0968 223.3204 0.0473 
Lat*Long 1 0.0058 0.0030 0.9653 
Lat*Likelihood 2 3.0997 0.7965 0.6210 
Long*Likelihood 2 6.6495 1.7086 0.4758 
Lat*Lat 1 14.0043 7.1970 0.2271 
Long*Long 1 13.2975 6.8338 0.2326 

 

Table 29. Initial Model Effect Test for the LA % Response Variable 

Source 
Sum of 
Squares DF F Ratio Prob > F 

Lat(0.5,2.5) 1 100.0000 0.2813 0.6896 
Long(0.5,1.5) 1 4011.1111 11.2813 0.1842 
Likelihood 2 1247.0588 1.7537 0.4710 
Lat*Long 1 88.8889 0.2500 0.7048 
Lat*Likelihood 2 62.2222 0.0875 0.9225 
Long*Likelihood 2 160.0000 0.2250 0.8305 
Lat*Lat 1 177.7778 0.5000 0.6082 
Long*Long 1 711.1111 2.0000 0.3918 
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Table 30. Initial Model Effect Test for the WT % Response Variable 

Source 
Sum of 
Squares DF F Ratio Prob > F 

Lat(0.5,2.5) 1 239.0125 20.5200 0.1383 
Long(0.5,1.5) 1 103.6527 8.8989 0.2059 
Likelihood 2 193.9714 8.3265 0.2380 
Lat*Long 1 1.3764 0.1182 0.7892 
Lat*Likelihood 2 5.7534 0.2470 0.8181 
Long*Likelihood 2 9.0293 0.3876 0.7505 
Lat*Lat 1 0.5315 0.0456 0.8660 
Long*Long 1 15.1822 1.3034 0.4579 

 
From Figure 21, it can be seen that although R2 has degraded to the range of 91% to 100% (as 
opposed to 95% to 100%), the degradation is acceptable considering the huge impact on the 
confidence intervals of the three responses. Now all three response variables are significant. The 
new model is therefore Eq.29. 
 

Response: 

 ijknkjjiiijk LikeLongLongLatLatR   22  Eq.29

 Where: 

 Lati = lateral conformance bounds in nautical miles, i = 0.5, 1.5, 2.5 
 Longj = longitudinal conformance bounds in nautical miles, j = 0.5, 1.0, 1.5 
 Likek = likelihood, k = “10/20”, “3/8/10”, “3/8/20” 
 εn(ijk) = random error, n = 1, 2, … for all i, j, k 
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Figure 21. Traditional FA %, LA %, and WT % metrics in the refined model 
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The model also relies on the assumption that the random error εn(ijk) is normally distributed. The 
residual errors should therefore be tested for normalcy. Figure 22 shows normal probability plots, 
box plots, and histograms fitted to a normal density curve. Although the data set is sparse, the 
histograms and box plots do trend toward a symmetric distribution. 
 

   
 

 

Model Residuals – LA % Model Residuals – FA % 

 Model Residuals – WT % 

Figure 22. Residual Error Distributions for the Response Variables from the Refined 
Model. 
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Also, the normal probability plots illustrate that for each response, the model errors fall within the 
confidence interval along the diagonal line of the plot, indicating that each residual is at least 
approximately normally distributed. This provides evidence that the model is indeed appropriate. 
 
Table 31 shows that all of the remaining interactions are significant to FA %, so the model cannot 
be further refined by removing interactions. Lateral conformance bounds and their squares are the 
only interactions that are not significant for LA %, although they have low enough p-values to be 
of interest. The two-way interactions are not significant for WT %, though the square of 
longitudinal conformance bounds has a small p-value and is of interest, while the square of the 
lateral conformance bounds is not of much interest for WT %. 

Table 31. Summary of Refined Model Effect Tests for Response Variables. 

Source DF FA % P-Value LA % P-Value WT % P-Value 
Lat(0.5,2.5) 1 <0.0001*              0.2754 0.0003* 

Long(0.5,1.5) 1 <0.0001* 0.0006* 0.0017* 

Likelihood 2 <0.0001* 0.0423* 0.0020* 

Lat*Lat 1 0.0365*              0.2528            0.7464 

Long*Long 1 0.0401* 0.0447*            0.1203 

 
Since it is unknown at this point how the fuzzy counts will interact with the model, the initial 
model will be used for the starting point again. Since WT % is the same as the first model, it is 
already known that it would be insignificant with the initial model, though the fuzzy variables are 
found to both be insignificant as well (Figure 23). Table 32 and Table 33 show the effect tests for 
the fuzzy responses and can be referred to for the WT % values. It seems as one of Lat*Like and 
Long*Like should be removed, which will actually be enough for all effects to be significant, 
though removing both effects greatly improves confidence in WT % for little degradation of the 
other responses, much like the reasoning with the traditional LA %, both interactions will be 
removed. The new model is therefore Eq.30. 
 

Response: 

 ijknkjijjiiijk LikeLongLatLongLongLatLatR   22  Eq.30

 Where: 

 Lati = lateral conformance bounds in nautical miles, i = 0.5, 1.5, 2.5 
 Longj = longitudinal conformance bounds in nautical miles, j = 0.5, 1.0, 1.5 
 Likek = likelihood, k = “10/20”, “3/8/10”, “3/8/20” 
 εn(ijk) = random error, n = 1, 2, … for all i, j, k 
 
In the fuzzy model, it is noticed that the interaction of the lateral and longitudinal conformance 
bounds must now be included in the model. 
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Figure 23. Fuzzy FA %, LA %, and WT % metrics leverage plots. 

 

Table 32. Initial Model Effect Test for the Fuzzy FA % Response Variable. 

Sum of 
Squares Source DF F Ratio Prob > F 

Lat(0.5,2.5) 1 787.4953 172.627 0.0484 
Long(0.5,1.5) 1 129.8698 28.4688 0.1179 
Likelihood 2 1460.3960 160.0668 0.0558 
Lat*Long 1 15.0463 3.2983 0.3204 
Lat*Likelihood 2 0.3091 0.0339 0.9678 
Long*Likelihood 2 19.2427 2.1091 0.4378 
Lat*Lat 1 0.2271 0.0498 0.8602 
Long*Long 1 11.4582 2.5117 0.3583 
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Table 33. Initial Model Effect Test for the Fuzzy LA % Response Variable. 

Source 
Sum of 
Squares DF F Ratio Prob > F 

Lat(0.5,2.5) 1 1098.7736 95.4297 0.0649 
Long(0.5,1.5) 1 2273.4201 197.4491 0.0452 
Likelihood 2 125.8989 5.4672 0.2895 
Lat*Long 1 683.0919 59.3273 0.0822 
Lat*Likelihood 2 124.6678 5.4138 0.2908 
Long*Likelihood 2 15.4549 0.6711 0.6534 
Lat*Lat 1 574.0277 49.8549 0.0896 
Long*Long 1 81.3805 7.068 0.229 

 
The refined fuzzy model gives the leverage plots in Figure 24. 
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Figure 24. Fuzzy FA %, LA %, and WT % metrics in the refined model. 

The fit on the fuzzy metrics is overall better than the fit on the traditional metrics, both with 
similar p-values. It can be seen that the range of the R2 values in Figure 24 is 96% to 99%. Again, 
the random error is tested for normalcy, where it is already known from Figure 22 that the 
residual error for the WT % response has evidence for normalcy. 
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Figure 25. Residual Error Distributions for the Fuzzy Response Variables from the Refined 
Model. 

Figure 25 shows nice distributions on the histograms, especially for Fuzzy LA % and the box 
plots show decent symmetry. The best evidence here is the normal probability plots, which show 
that the fuzzy response variables fit within the confidence interval around the diagonal suggesting 
they approximate normal error, thus the fuzzy responses have good evidence of having normally 
distributed error as well so the refined fuzzy model is claimed to be appropriate. 
 
Table 34 summarizes the p-values for the significance of interaction effect tests on the factors of 
the refined fuzzy model. For fuzzy FA %, the effect of squared lateral conformance bounds is 
insignificant, also the rest of the two-way interactions are not significant but have small enough 
p-values to be interesting. The squared longitudinal conformance bounds and the main effect of 
likelihood are not significant for fuzzy LA % although have small enough p-values to be 
interesting. None of the two-way interactions are significant for WT % and only the square of 
longitudinal conformance bounds has a small enough p-value to be interesting. Long*Long is the 
only effect that is not significant for any of the responses, but has a small enough p-value that 
there is not enough justification to remove it from the model. 

Table 34. Summary of Refined Fuzzy Model Effect Tests for Fuzzy Response Variables. 

Source DF Fz FA % P-Value Fz LA % P-Value WT % P-Value 
Lat(0.5,2.5) 1 <0.0001* 0.0013* 0.0010* 

Long(0.5,1.5) 1 0.0040* 0.0003* 0.0039* 

Likelihood 2 <0.0001*                0.2207 0.0050* 

Lat*Long 1                0.1376 0.0051*             0.6316 

Lat*Lat 1                0.8368 0.0074*             0.7640 

Long*Long 1                0.1839                0.1623             0.1509 
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3.2.2.2.2 Examine Model Results 
Figure 26 shows the prediction profiler with the parameters set to the baseline values. This figure 
provides an idea of the model accuracy and trends in responses from each factor. By investigating 
the tails of the histograms in Figure 22, it can be shown that the maximum unsigned residuals are 
2.08 for FA %, 15.33 for LA %, and 3.08 for WT %. These were caused by Runs 8, 6, and 1 
respectively. These percentages convert into approximately 29.0 FAs, 2.3 LAs, and 10.2 seconds 
of warning time. These bounds are considered acceptable since we are already aware of the large 
uncertainty associated with the LA % response and the most this error will cause is an error of 2.3 
LAs. We are also willing to accept an uncertainty of 29 FAs and 10 seconds of warning time for 
the purposes of this study. 
 

 

Figure 26. Prediction profiler of the model with baseline parameter settings. 

The metrics used in the prediction profiler are the percent differences from the FA32 baseline of 
warning time (WT %), Late Alert count (LA %), and False Alert count (FA %). These should not 
be confused with the “%FA” and “%LA” metrics from Table 24 and Table 25. The metrics here 
are calculated with the following formula: 
 

100
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Where r is the FA count, LA count, or 25th percentile of warning time for one of the treatment 
runs, and b is the respective value for the FA32 baseline. The desire of the model is to decrease 
FA and LA count and increase warning time, so smaller values of FA % and LA % are desirable, 
whereas a larger value of WT % is desirable. 
 
Typically in an integrated experiment, the model is used in operations research in order to 
determine the optimal settings of the factors defined in the model. In this experiment, there is no 
simple definition of what is optimal since all responses cannot be optimized together. We instead 
try to determine the effects of the different settings in order to make recommendations. The first 
step is to determine the optimal settings for each metric independent of the other metrics. 
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Figure 27. Optimal settings of the conflict probe to minimize the LA count ignoring all 
other response variables. 

Figure 27 shows the optimal parameter settings of the conflict probe in order to minimize Late 
Alerts, without considering any other response variables. As expected, given the earlier analysis, 
there is very little change in the parameters from the baseline settings. The model does suggest a 
small reduction in the longitudinal conformance bounds to 1.275 nm. This may be due only to 
error in the model, since it is only a decrease of 0.0075, which is within the error of the model 
that we know to be at most 2.3. The part of the model between 1.0 and 1.5 longitudinal shows 
very little change in the effect on LAs and could use some further investigation to determine if 
that is truly the case. 
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The optimal settings to decrease the LA % show a decrease of -0.05%. Compare this value to the 
modeled baseline at 4.00%. There also is a slight decrease shown in the FA % by -3.48%. Finally, 
there is an increase in WT % by 0.54%. These parameter settings improve upon all responses, 
though the effects are very slight compared to those by other settings.  
 

 

Figure 28. Optimal settings of the conflict probe to minimize the FA count ignoring all other 
response variables. 

Figure 28 shows the optimal settings of the CP to minimize FA % ignoring the effects on all other 
response variables. These settings are the opposite extreme of what the original baseline settings 
are. Lateral and longitudinal conformance bounds are both set to 0.5 nm, and the likelihood is set 
to 3/8/10, which was considered to be the most extreme change from the default 10/20 setting. 
 
In contrast to the settings for optimizing LA %, these settings for optimizing FA % have a major 
effect on all response variables, though a negative effect on LA % and WT %. False Alerts are 
decreased by a very significant 55% with these settings, but Late Alerts are increased by 73% and 
warning time is decreased by nearly 25%. 
 
Figure 29 shows the optimal settings to increase the Warning Time. This is not the goal of these 
parameter changes, but rather the goal is to not adversely affect the warning time while improving 
the FA and LA performance. This figure is included simply to show the effects of the parameters 
on the warning time. 
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Figure 29. Optimal settings of the conflict probe to maximize the warning time. 

The parameter settings for optimal warning time are not too different from the baseline settings 
nor are they very different from the settings for optimal LA %. This is understandable since a 
higher warning time usually coincides with less Late Alerts. 
 
These three different settings give an idea of how the factors affect the three responses being 
analyzed. The False Alerts are affected positively by reducing the lateral or longitudinal, and by 
changing to either of the new likelihood settings. The Late Alerts and warning time follow the 
same trends and are affected negatively by reducing the lateral or by changing the likelihood. 
They are also affected negatively when the longitudinal is reduced too far. 
 
Next we want to look at the interactions of the factors in regards to each of the response variables. 
The interaction profiler plot will give an idea of how changing the value of each factor affects 
how the other factors affect the response. 
 
Figure 30 shows the interactions of the factors’ effects on the FA % response variable. Each cell 
of this plot is a graph of the response by the factor listed in its respective column. The multiple 
curves in each cell represent the different settings of the factor listed in its respective row. Each of 
the curves is labeled by which setting it is. The two continuous factors have curves for the 
minimum and maximum settings used, whereas likelihood has a curve for each of the three 
nominal values it was set to. If there is no interaction between the factors listed in the respective 
row and column of the cell, then each of the curves will be the same shape, only shifted up or 
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down. If the curves cross or change shape, this indicates there is some interaction between the 
two factors. 
 

 

Figure 30. Interaction profile of the factors effects on the FA % response variable. 

In Figure 30 we can see there is no interaction between any two factors. We expect this since we 
removed all two-way interactions from the model. Having no major interactions for this response 
gives the advantage of being able to change the setting of a single parameter to reduce the False 
Alerts without being concerned about the settings of the other parameters. 
 
Figure 31 shows the interaction profile of the factors’ effects on the LA % response variable. 
Again there is no interaction as expected. 
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Figure 31. Interaction profile of the factors’ effects on the LA % response variable. 
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Figure 32. Interaction profile of the factors’ effects on the WT % response variable. 

Finally, Figure 32 shows the interaction profile of the factors’ effects on the WT % response 
variable. Still the interactions are not existent as expected since no two-way interactions remain 
in our model. 
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Figure 33. Prediction profiler with settings that are a combination of the optimal values for 
each response. 

Now that the optimal settings for each of the responses have been found and determined to be 
very different from one another, the prediction profiler can be used to vary the settings based on 
what has been learned so far. Figure 33 shows one option of combining what has been learned to 
generate parameter settings. The lateral and likelihood were determined to have a major effect on 
the False Alerts whereas the longitudinal was determined to have a major effect on the Late 
Alerts and warning time. These settings combine the optimal longitudinal for warning time, 
which was also very close to the optimal for the Late Alerts, with the optimal lateral and 
likelihood for the False Alerts. The settings provide an over 48% decrease to false alerts, with a 
nearly 25% increase to Late Alerts and over 16% decrease in warning time. The absolute optimal 
settings for False Alerts only provided less than an 8% higher decrease to False Alerts, but cost 
50% more Late Alerts and 8% less warning time. 
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Figure 34. Prediction profiler with a combination of optimal settings of the responses. 

Figure 34 shows the prediction profiler with changing the lateral and longitudinal based on what 
has been learned, but leaving the likelihood at the baseline setting of 10/20. These settings do not 
provide as large a decrease to the False Alerts, but also do not increase the Late Alerts or decrease 
the warning time as much. These settings also would provide a performance increase without 
changing the likelihood, which may be a desirable result, since the likelihood may need to be 
investigated further before it should be changed. 
 
The prediction profiler is also applied to the fuzzy metrics with the expectation of similar findings 
to the prediction profiler of the traditional metrics. Figure 35 shows the prediction profiler at 
baseline configuration. Decreasing the fuzzy FA percentage (FzFA%) and fuzzy LA percentage 
(FzLA%) is desirable, whereas increasing the warning time percentage (WT%) is desirable. 

 72



 

Figure 35. Prediction profiler of the model with baseline parameter settings. 

Figure 36 gives optimal settings for late alert reduction only. These settings are different because 
the late alerts curve by lateral conformance bounds has changed in the fuzzy metrics significantly. 
The prediction does suggest that decreasing only the lateral conformance bounds will positively 
influence the conflict probe’s late alerts count down to about 1.5 nautical miles. 

 

Figure 36. Optimal settings of the conflict probe to minimize the LA count ignoring all 
other response variables. 
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Figure 37 gives optimal settings for false alert reduction only. These settings are the same ones 
suggested by the traditional metrics, and comparing the trending of the false alert curves, it is 
apparent that the fuzzy metrics provide a similar prediction of false alerts compared to the 
traditional metrics. Figure 38 gives optimal settings for warning time maximization only. The 
same warning times are being used here (giving the same optimal settings). The optimal settings 
of warning time show very little change in fuzzy late alerts although the false alerts are still 
inversely correlated with the late alerts. 
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Figure 37. Optimal settings of the conflict probe to minimize the FA count ignoring all other 
response variables. 
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Figure 38. Optimal settings of the conflict probe to maximize the warning time. 

Figure 39 still gives 3/8/10 as the best likelihood setting for reducing false alerts sacrificing 
warning, but not having as great an impact on late alerts. 1.35 nautical mile longitudinal 
conformance bounds are still optimal giving a benefit to both warning time percentage and fuzzy 
late alerts for a smaller reduction in fuzzy false alerts. Finally the 0.5 nautical mile setting for 
lateral conformance bounds now has the largest negative impact on fuzzy late alerts and warning 
time percentage, whereas 2.5 nautical mile conformance bounds have the best warning time 
percentage and very little impact on fuzzy late alerts. This setting was chosen since the total 
setting gives a 23% improvement to fuzzy false alerts for 6% loss of warning time and 2% loss of 
late alert performance. Sacrificing more warning time will improve both alert performances to 1.5 
nautical miles (32% improvement to FA, 11% improvement to LA, and 12% loss of warning 
time) then late alert performance degrades quickly below 0.65 nautical miles (39% improvement 
to FA, 6% loss to LA, 16% loss of warning time). 
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Figure 39. Prediction profiler with settings that are a combination of the optimal values for 
each response. 

3.2.2.2.3 Factor Effects 
In the previous sections, many discoveries were made as to the effects of each of the factors on 
each of the responses. Several of these effects were seen from many different perspectives 
through the model and through analysis of the discrete values. 
 
A recurring theme through each analysis has been the effect of the longitudinal conformance 
bound. Early in the analysis it was determined that longitudinal had a major effect on the Late 
Alerts and warning time, and each subsequent analysis further confirmed this suspicion. 
Something that was discovered later, when looking at the results of the model, was that the 
longitudinal bound does not have nearly as large an effect on the False Alerts as it does the Late 
Alerts. Finally, the conformance bound has the largest effect on False Alerts between 1.5 and 
about 1.0 nm, and then the slope of the tangents to the curve become much flatter between 1.0 
and 0.5 nm. Likewise, the effect of the longitudinal conformance bound on the False Alerts is not 
nearly as large as the lateral conformance bound’s is. 
 
The lateral conformance bound was determined to have a major effect on the False Alerts, 
decreasing them by over 26% when no changes are made to the other parameters. The lateral has 
almost no effect on the Late Alerts, increasing them by only 12% at the most, as opposed to the 
longitudinal that can increase them by up to 48%. Lateral does have a significant effect on the 
warning time, decreasing it by less than 10%, which is slightly higher than the 7% decrease 
caused by the longitudinal. 
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Finally, the likelihood can have a major effect on all responses. By changing only the likelihood 
the FAs can be decreased by 18%, the LAs can be increased by up to 27% and the warning time 
can be decreased by up to 9%. There are still many open questions with likelihood since only 
three different parameter settings were used. Both of the changes from the default decreased the 
minimum notification time to three minutes, which is also the required minimum warning time. 
Having this value right on the edge of the requirement may have caused many more Late Alerts 
than it reduced False Alerts, so it may be best to have a larger minimum in the likelihood 
function. 
 
It is important to note the three factors’ effects on the warning time. Although each of them 
significantly impact the warning time, the highest decrease by any single factor is only 10%, and 
the highest decrease overall is not more than 26%. This 26% is a significant decrease, but the 
baseline settings of ERAM were strategically chosen to increase the warning time above what 
was then the requirement of five minutes. So, although the warning time is decreased 
significantly at the lowered settings, the 25th percentile of warning time is still far above the three 
minute minimum warning time that was used as the requirement in this study. 

3.3 Example Flights 
A detailed statistical analysis has been provided in the previous sub-sections of Section 3 on the 
entire sample scenario of air traffic. This section is dedicated to an in depth description of a set of 
selected example flights, their flight plans in the NAS, their ERAM trajectory and conflict 
predictions, and their accuracy results. It illustrates how the performance evaluation is being 
applied on these individual flights and how the prediction errors manifest themselves in the 
metric calculations. 

3.3.1 Flight Example 1 
Flight A (red) is a McDonnell Douglas MD-83 equipped with RNP and RVSM (Code /Q) flying 
from Dallas/Fort Worth International Airport (KDFW) to Bradley International Airport (KBDL). 
In each figure, it is moving from lower left to upper right. 
 
Flight B (green) is a Boeing 737-800 also with aircraft equipment code /Q flying from Fort 
Lauderdale-Hollywood International Airport (KFLL) to Newark Liberty International Airport 
(KEWR). In each figure it is moving from bottom left to top right. 
 
These flights become sufficiently close to trigger a false alert with baseline settings while both 
are at the same altitude, level, and cruising. The dots represent the actual track points that each 
aircraft are flying. The disks are centered on each aircraft and have a 2.5nm radius (minimum 
separation requirement violated when disks intersect). The line path extending through each disk 
is the predicted trajectory of each flight created by the conflict probe. Finally the boxes (both 
sharp and rounded corners make a box) that are centered at a point along the trajectory, in this 
instance not far from the current time, represent the conformance boxes, which extend from the 
minimum separation box (5nm sides) by 2.5nm on either side laterally and 1.5 nm on either side 
longitudinally. The final dimensions of the boxes are therefore 10nm lateral x 8nm longitudinal. 
The intersection of a conformance box rectangle with sharp corners with a conformance box 
rectangle with rounded corners show pictorially what the conflict probe is measuring. The 
intersection as described gives the conflict probe’s definition of separation violation as long as the 

flights have a horizontal separation not exceeding hseplonglat  222  (e.g. 

83.1055.15.22 22   nautical miles). Keeping this slight limitation of the visualization in 
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mind, these boxes are very useful for understanding how the conformance boxes are interacting in 
each situation. 
 
Figure 40 shows a conflict detection occurring 11 seconds after a trajectory rebuild by Flight B. 
The figure makes sense as being the point of first contact between the rectangle and the rounded-
corner rectangle. The conflict detection ultimately creates a false alert, since Flight B passes 
safely behind Flight A. 
 

 

Figure 40. Baseline conflict detection (2.5 by 1.5 conformance bounds). 

Figure 41 shows the effect on detection when the longitudinal bounds are reduced to the 
minimum tested value of 0.5nm. Here the estimated boxes do not even intersect at the same time. 
In fact no prediction was made because the conformance bounds are never violated here. The 
conflict prediction conformance bounds are coupled to the trajectory adherence bounds in these 
runs so the trajectories will potentially update more often, since speed differences will have a 
larger impact on the system with reduced longitudinal bounds. This can be seen by the more 
current trajectory being used by Flight A as compared to the baseline scenario. 
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Figure 41. Reducing only longitudinal bounds to 0.5. 

In Figure 42 only lateral conformance bounds were tightened, giving conformances boxes of 0.5 
by 1.5 nautical miles. In this situation, the conflict prediction was not made, but it was close to 
being called, remembering that the pictorial conformance boxes intersecting must do so with a 
rectangle and a rounded-corner rectangle. 
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Figure 42. Reducing only lateral bounds to 0.5. 

Figure 43 shows both conformance bounds reduced to mid-level values, being 1.5nm and 1.0nm 
for lateral and longitudinal conformance respectively. No prediction is made at these settings. The 
trajectory of Flight A is significantly older than that in Figure 41 due to the increase of 
longitudinal conformance bounds. 
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Figure 43. Mid-level conformance bounds (1.5 by 1.0). 

Finally, Figure 44 shows the case that the conformance bounds are reduced to the minima being 
tested, 0.5 by 0.5 nautical miles. This of course offers the largest gap between the conformance 
boxes, but since these boxes are so small, one expects a reduction of false alerts to come at the 
price of loss of warning time and increase in missed alerts. 
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Figure 44. Low-level conformance bounds (0.5 by 0.5). 

3.3.2 Flight Example 2 
In the second example, reducing lateral conformance does not deter detection of a valid conflict, 
but reducing longitudinal conformance causes a missed alert. 
 
Flight C (red) is an Airbus A320 with aircraft equipage \Q flying from Orlando International 
Airport (KMCO) to John F. Kennedy International Airport (KJFK). In each figure it is 
approaching the crossing point from the left. 
 
Flight D (green) is an Airbus A310 with aircraft equipage \Q flying from Vilo Acuña Airport in 
Cuba (MUCL) to Montréal-Pierre Elliott Trudeau International Airport in Canada (CYUL). In 
each figure it is approaching the crossing point from the right. 
 
These flights are at the same altitude, level, and cruising. Each figure shows the time of detection 
for each setting of the conflict probe. Figure 45 shows that the valid conflict detection was made 
with ample warning time, and this prediction must have persisted as it did not become a retracted 
false alert. 
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Figure 45. Baseline settings showing a valid conflict detection. 
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Figure 46 shows the effect of reducing the lateral conformance bounds to the minimum setting of 
0.5nm. Here the detection cannot be made until the trajectories become much closer than needed 
in the baseline. However the prediction is made slightly earlier than the baseline. This is 
attributable to better quality trajectories. Here Flight C has just created a new trajectory and 
instead of Flight D being predicted to pass in front of Flight C, as in the baseline, now the 
trajectories predict that the flights will be side-to-side when entering conflict. This has to do with 
the delay caused by likelihood. The baseline actually detected the alert earlier than the case in 
Figure 46, though it waited to notify because of likelihood. In the reduced lateral conformance 
bounds treatment, the prediction was not able to be made until much later and then was 
immediately presented with improved accuracy instead of being held back by the likelihood 
function. 
 

 

Figure 46. Lateral conformance bounds only are reduced to minimum. 
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Finally, Figure 47 shows the result of using conformance bounds where only the longitudinal 
conformance is reduced to minimum. Here the larger lateral conformance bounds allow the 
detection of the conflict in the same manner as in the baseline, but the predictions are being 
retracted by the probe until the final prediction is made below minimum warning time and 
retraction is no longer possible, turning the prediction into a missed alert. Tightening the 
longitudinal bounds translates to a greater confidence in speed profiling, though the conflict probe 
is less certain causing the predictions to be detected and then retracted due to the lack of 
confidence in speed profile. 
 

 

Figure 47. Longitudinal conformance bounds only are reduced to minimum. 
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4 Recommendations and Future Work 
This report documents an initial study on the prototype enhancements required to advance the 
ERAM strategic conflict probe and allow it to be implemented within the radar controller’s 
display. It is an initial study because it focuses mostly on altering parameter settings of 
functionality that already exists in ERAM. It does make use of one prototype enhancement on the 
trajectory modeling subsystem (see item #1, Table 1), but the experiment focuses on three factors 
that can be implemented in ERAM today without any software changes. Being an initial study, 
development of metrics and methodology was accomplished that can be utilized on all sub-
sequent experiments. These metrics and methods are documented in Section 2 of this report. 
Furthermore, the study is limited in its use of a single data set of roughly 6-7 hours of traffic and 
about 2000 recorded flights. However, additional data sets have been collected from other 
facilities and traffic days. These scenarios will be used for follow-up experiments to both verify 
the results of this initial experiment and expand it by examining other factors and prototypes. 
 
As presented in Section 3.1, task one of this report showed that the FA32 trajectory modeling 
prototype did have a significant improvement on both trajectory and conflict prediction 
performance. It was subsequently used for the experiment of task two, which is the main focus of 
this report. As outlined in the experimental plan in Section 2.2 and illustrated in the results in 
Section 3.2, the experiment focused on three key factors: longitudinal and lateral conformance or 
adherence bounds, reducing them for a range of values from operational settings of 1.5 and 2.5 
nm, respectively, to as low as 0.5 nm. The third factor was changes to configurable parameters 
within the likelihood function. This algorithm assesses each conflict prediction and depending on 
its confidence estimate, may delay the alert notification until the estimate is improved or 
prediction is more imminent. The current ERAM operational system bypasses this calculation for 
all alerts predicted to begin within the next 10 minutes and applies the likelihood function for 
conflict detections beyond 10 minutes only. The two other levels examined in this experiment 
reduced this minimum threshold from 10 minutes to 3 minutes and changed other parameters 
associated with the function. For one level, it reduced the upper bound to 10 minutes and for the 
other left this setting at 20 minutes. As a result, these three factors, including longitudinal 
conformance bounds, lateral conformance bounds, and likelihood function, were simultaneously 
altered using experimental design techniques and ERAM run at twelve different treatment and 
two baseline runs. 
 
The longitudinal conformance bound was found to significantly increase the Late Alerts when 
reduced too far from its original setting. The lateral conformance bound was determined to 
produce a significant decrease in False Alerts when reduced to the minimum parameter setting of 
0.5 nm, without causing a major negative impact on Late Alerts. Though there is some interaction 
of these two settings with the likelihood, the interactions seen were minimal, so recommendations 
can be made independent of the likelihood function. 
 
The longitudinal conformance bounds should not be lowered too far from the original setting of 
1.5 nm. At a minimum, it should be set to 1.189 nm. However, to determine the best value of the 
longitudinal, a follow up study should be performed that varies the longitudinal conformance 
bounds between 1.0 and 1.5 nm. The study should be performed as an integrated experiment and 
contain center point runs at 1.25 nm longitudinal setting. Since no interactions were found 
between the lateral and longitudinal bounds, it is not necessary to include the lateral as a factor in 
this experiment. 
 
The lateral conformance bounds were found to almost linearly decrease the False Alerts when 
lowered from 2.5 to 0.5 nm. Though the warning time was impacted, there was not a major 
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impact on Late Alerts when this change was made. It is recommended that the lateral 
conformance bound be lowered significantly from its original setting of 2.5 nm. A setting of 0.5 
nm was found to provide the biggest impact of False Alerts, but more analysis is needed before a 
setting can be recommended. Once again, since no interaction was found with the longitudinal 
bound, it is not necessary to include it as a factor in this experiment. 
 
Likelihood was determined to have a major effect on False Alerts, Late Alerts, and warning time. 
Unfortunately, it is not as easy to make a recommendation for a setting of likelihood. The three 
different settings of likelihood used in this study provided some insight to how the function 
affects the performance of the probe, but it is still not completely understood. There were two 
main findings in this study. The first is that likelihood alone can have a major effect on the 
performance of the probe. The second is that, because of the longitudinal inaccuracy of the probe, 
setting the minimum time of the likelihood function to the same as the minimum warning time 
requirement causes extra Late Alerts that should not have been. In order to further understand the 
likelihood and how the minimum, maximum, and middle setting of the probe affects the 
performance a separate experiment should be performed. This experiment should contain far 
more than only the three settings that were used in this experiment. An experiment is being 
planned in the year following this publication to precisely address these issues. 
 
Overall, the study provides important insights into the three factors examined. It developed a 
number of metrics, including traditional counts and rates of false and late detections as well as 
implementation of fuzzy detection theory that extracted even more information out of the data. 
The study also implemented advanced experimental design techniques that both maximized use 
of the ERAM runs and examined the potential of interactions between factors. The study provides 
a strong foundation from which a number of additional experiments are being planned and 
underway. 



List of Acronyms and Abbreviations 
 

FA32 Baseline Scenario 32BL 
ANG-C41 FAA Concept Analysis Branch 

Air Navigation Service Provider ANSP 
Automated Problem Detection Inhibited Area APDIA 
Air Route Traffic Control Center ARTCC 
Air Traffic Control ATC 

ATO-E Air Traffic Organization's En Route Program Office 
FA32 Baseline Scenario BL 
Center for Advanced Aviation System Development CAASD 
Conflict Detection CD 
Conflict Geometric Separation CGS 
Conflict Probe CP 
Conflict Probe Assessment Team CPAT 
Conflict Probe Tool CPT 
Design of Experiment DOE 
Decision Support Tool DST 
En Route Automation Modernization ERAM 
False Alert FA 
Functional Area 18 FA18 
Functional Area 32 FA32 
Federal Aviation Administration FAA 
False Alert Rate FAR 
Feet ft 
Forced Trajectory Rebuild FTR 
Growth Adherence Bounds GAB 
Initial Baseline Scenario IBL 
Interval Based Sampling Technique IBST 
Inter-quartile Range  IQR 
Joint Planning and Development Office JPDO 
Late Alert LA 
Late Alert Rate LAR 
Likelihood Llh 
Lockheed Martin LM 
Missed Alert MA 
Missed Alert Rate MAR 
The MITRE Corporation MITRE 
Minimum Warning Time MWT 
National Airspace System NAS 
Correct No-Call NC 
Next Generation Air Transportation System NextGen 
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Nautical Miles nm 
Required Navigation Performance RNP 
Reduced Vertical Separation Minimum RVSM 
Strategic Alert Comparer SAC 
Strategic Alert Evaluator SAE 
Subject Matter Expert SME 
Trajectory Based Operations TBO 
Trajectory Modeling TM 
Trajectory Predictor TP 
Terminal Radar Approach Control Center TRACON 
User Request Evaluation Tool URET 
Coordinated Universal Time UTC 
Valid Alert VA 
Very High Frequency VHF 
Warning Time WT 
Washington, DC ARTCC ZDC 
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Appendix A 
This appendix provides more details of the Fuzzy Alert analysis. Section A.1 describes the logic 
used by the Fuzzy Alert Re-Evaluator software application, and Section A.2 provides details of 
computations performed for the Fuzzy Alert analysis. 

A.1 Fuzzy Alert Logic 
The Fuzzy Alert Re-Evaluator (FARE) program assigns fuzzy values to events from the Strategic 
Alert Evaluator (SAE) program. There are two types of events: encounter pairs with no associated 
conflict predictions presented, and encounter pairs with one or more conflict predictions 
presented (alerts). An encounter pair is defined to be a pair of aircraft that passed both spatial and 
temporal gross filters. If two aircraft are found to be an encounter pair more than once, then each 
event is treated as a separate encounter pair. For easier reference, each encounter pair is given a 
unique integer identification number greater than zero called the encounter index. Events marked 
with encounter indexes of zero or negative one are special case events in SAE that will be 
described later in this appendix. 
 
Some information relevant to FARE is the data associated with an alert or encounter pair. For 
each encounter pair the time of closest approach, called the min-max ratio time, is recorded. 
Alerts have a predicted conflict start time (PCST), which is the time at which the conflict probe 
predicts an encounter pair will become a conflict pair (an encounter pair that also is violating 
minimum separation standards), and a predicted conflict end time (PCET). The other times 
recorded in a conflict prediction are the actual conflict start time (ACST) marking the start of the 
conflict duration (if it occurred) in the encounter pair, and the actual conflict end time (ACET) 
marking the end of the conflict duration (if it occurred) in the encounter pair, 
NOTIF_START_TIME marking the beginning time of the alert, and NOTIF_END_TIME 
marking the ending time of the alert. Also associated with alerts are predicted separation values at 
the predicted min-max ratio time.  
 
User-defined parameters include the MAX_LOOK_AHEAD_TIME which defines the maximum 
duration of the BUFFER_TIME used in signal calculation of false alerts. Additionally, 
MIN_WARNING_TIME defines the minimum time before ACST in which the 
NOTIF_START_TIME can occur before becoming a late alert (which needs to match the value 
used by SAE). Finally, the minimum separation values MIN_HORZ_SEP and MIN_VERT_SEP 
are user-defined parameters in FARE which should match those used in SAE. 
 
At the top-level of the flowchart, presented in Figure 48, the program begins by gathering all of 
the conflict predictions and encounter pairs. Each presented conflict prediction made by the 
conflict probe needs to map onto an encounter pair, however SAE does not provide mapping for 
all discarded alerts. In Figure 48, any conflict prediction that is not mapped to an encounter pair is 
matched by finding the encounter pair involving the same aircraft and with the closest min-max 
ratio time to the alert’s PCST, though it is still possible to not have a mapping after this matching, 
which is handled in the subsequent flowcharts. The response for conflict predictions must be 
evaluated using the flowchart shown in Figure 49. Encounter pairs with no associated conflict 
predictions were never presented as potential conflict pairs by the conflict probe, and thus have 
no associated response. Both types of events then have their signal computed using the flowcharts 
in Figure 50 and Figure 51. With both signal and response calculated, the flowchart in Figure 52 
provides the fuzzy classification of the event into the valid alert, late alert, false alert, and correct 
no-call categories. 
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Figure 48. High-level FARE Process Flow 
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Figure 49. Fuzzy Response Computation Process Flow 

Conflict predictions enter the flowchart presented in Figure 49, and are separated into two 
categories. The “yes” branch corresponds to conflict predictions that were determined to be late 
alerts discarded by SAE, or any non-discard that is not a false alert (excluding correct no-call 
events because they are not explicitly created by SAE). The “no” branch then corresponds to the 
remaining discards and false alerts. The reason this split is made is that the latter category does 
not have an intuitive notion of warning time, since no actual conflict occurred. In this case, R1 is 
set to one so that total response is reduced to R2. On the other hand, no-call events fail to 
generate an alert for an actual conflict so warning time is set to zero in this case. For the 
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remaining events, WARNING_TIME is simply ACST – NOTIF_START_TIME, the time 
between when the alert was made and the actual conflict began. WARNING_TIME is forced to 
be no less than zero to reflect the notion that making a prediction after the fact has the same 
perceived utility as making no prediction at all. The ratio of WARNING_TIME to 
MIN_WARNING_TIME is taken and if this ratio is greater than or equal to one, R1 is set to one; 
otherwise R1 is set to the square of the ratio to reflect a lateness penalty. END_TIME is the last 
possible time an alert could update before becoming late, so it is simply ACST – 
MIN_WARNING_TIME for the “yes” branch where a conflict actually occurred. For the “no” 
branch where no conflict actually occurred the END_TIME needs to be interpreted as a perceived 
threshold and is thus PCST-MIN_WARNING_TIME. Once END_TIME is found the last 
amendment to the predicted horizontal separation during the duration of the conflict prediction 
notification set is retrieved up to the END_TIME, after which no amendments could be usefully 
posted. The ratio of this predicted horizontal separation to the MIN_HORZ_SEP is taken and R2 
is calculated by the spline as described in Section 2.1.2.2. Finally, the response is calculated as 
R1*R2. 
 
In the flowchart shown in Figure 50, events are split into three groups: encounter pairs with no 
associated conflict predictions, conflict predictions, and error events. Encounter pairs with no 
associated conflict predictions are labeled with reason code = ENC and their signal is computed 
around their already-recorded min-max ratio time by using the flowchart in Figure 51. ENC 
becomes ENC_A if at any point along either track, an APDIA was encountered when computing 
the signal at min-max ratio time. It is noted that any time the flowchart in Figure 51 is used, ‘_A’ 
will be appended to the reason code label to warn that the computed value may be skewed due to 
the presence of an APDIA. The second category includes any event that has an error code (0 or -
1) encounter index from SAE. For these events, the reason code is set to SIGNAL_0 and the 
signal is set to 0, with warning values (-9999999) recorded instead of actual values such as min-
max ratio, min-max ratio time, etc. The third category, conflict predictions, leads to more 
complex flowchart paths than the other two categories. The simplest path is when a conflict 
prediction cannot be matched to an encounter pair, and the event is processed as if it belonged to 
the SIGNAL_0 category previously discussed. Otherwise, the conflict predictions are again split 
into two categories exactly as in the response calculations. The “yes” branch matches to the “yes” 
branch of the response calculation and represents alerts made about actual conflicts, so these can 
be treated exactly the same as the ENC category. This leaves the “no” branch, corresponding to 
false predictions and the most involved branch. All conflict predictions associated with an 
encounter pair are first sorted by NOTIF_START_TIME so that the duration between the current 
false alert event and its successor can be calculated. BUFFER_TIME is taken to be the minimum 
of this duration and MAX_LOOK_AHEAD_TIME. The min-max ratio and min-max ratio time 
are then computed for the duration of the alert (between NOTIF_START_TIME and 
NOTIF_END_TIME) and for the duration of the buffer (between NOTIF_END_TIME and 
NOTIF_END_TIME+BUFFER_TIME). The encounter pair min-max ratio is not used here since 
the event does not necessarily align with the encounter pair min-max ratio time due to the event 
being a false alert. S1 is set to zero if the min-max calculations fail due to no track data or being 
within an APDIA for the duration of the event. The same is done for S2 if the calculations fail in 
the buffer or the buffer has zero duration. If both fail the reason code is IN_NOTIF_A and 
warning values are set as in SIGNAL_0 meaning the signal is ultimately zero here but is assumed 
to be within the event’s duration (IN_NOTIF) and the assumed reason for failure is the presence 
of an APDIA (_A). Although not necessarily true, these IN_NOTIF_A events are easy to 
distinguish from actual IN_NOTIF_A events due to the warning values set and would require 
further investigation to determine actual cause of failure. If both S1 and S2 do not fail, then there 
are two possible cases. The first case is when S1 is not set, implying a min-max ratio and an 
associated min-max ratio time were successfully computed for the event, and also the calculated 
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min-max ratio is less than or equal to that of the buffer’s, where this condition is assumed true if 
S2 was set, implying a min-max ratio and an associated min-max ratio time were not found in the 
buffer. This case can be restated as determining the aircraft were closer during the duration of the 
event than they were immediately after the event, therefore the signal is potentially stronger 
during the event than immediately after it. This case provides the reason code of IN_NOTIF. The 
second case is the reverse of the first case, where the aircraft were found to be closer after the 
event than during it implying the event would have potentially computed a higher signal if it had 
not been deleted, which means the false alert was most likely an early deletion event. This case 
therefore provides the reason code of ED_NOTIF. In either case, signals S1 and S2 are computed 
for the duration of the event and the buffer respectively if they have not already been set by 
failing to compute min-max ratio and its time. IN_NOTIF events are the only events assigned an 
early deletion value (1 – S2), which provides a score of how “stable” the situation was when the 
false alert was removed. ED_NOTIF events are paired with ED_MISS events, which are the only 
new events that this program creates. ED_MISS events are assigned a response of zero and a 
signal of S2, and these events denote the situation of missing potentially high signal by deleting a 
false alert. In either case the signal for the actual event is given as S1. 
 
The flowchart shown in Figure 51 is used to compute signal at some time. The track data is 
retrieved for the aircraft, as well as their active clearance altitudes. Any track point with altitude 
within 300ft of the ACTIVE_CLEARANCE is said to be in vertical adherence. If the point at 
TIME, the time about which the signal is being calculated, is in vertical adherence all points 
within the computation region are set to their ACTIVE_CLEARANCE if they are within 300ft of 
it, called snapping altitude to clearance. If the point at TIME is out of vertical adherence, the path 
is more complex. First, the number of points out of vertical adherence to both their 
ACTIVE_CLEARANCE and PREVIOUS_CLEARANCE (immediately before active) is 
calculated. If the result is no more than 4 data points and does not represent more than half of the 
sample points, it is said that overall the aircraft is in vertical adherence and the outliers are 
snapped to their respective clearances (either ACTIVE or PREVIOUS). If it is instead found that 
most points are out of adherence, it is checked to see if the vertical separation at TIME is less 
than 1.1*MIN_VERT_SEP and the horizontal separation at TIME is less than MIN_HORZ_SEP, 
indicating the aircraft are either in conflict or near conflict due to vertical separation while out of 
adherence. In case this is due to a spike in the data, the altitude at TIME is set to the middle value 
of the average altitudes before and after the current TIME. After this is done, all points are 
snapped to clearance as was done when the current point was in vertical adherence, and the 
vertical profile is said to be cleaned and ready for use. If it is found that at TIME both aircraft are 
in vertical adherence and separated by at least MIN_VERT_SEP, then by the vertical adherence 
rule it is said that the aircraft are well separated and have signal 0. Otherwise, vertical and 
horizontal separation are calculated at TIME, then HORZ_CLOSURE_RATE (up to TIME), 
ENCOUNTER_ANGLE_WEIGHTING (up to TIME), VERT_CLOSURE_RATE, 
ENCOUNTER_ANGLE, and the number of points with ENCOUNTER_ANGLE within 15 
degrees of 0 or 360 are computed for each point in the signal region. After this, 
HORZ_CLOSURE_RATE, VERT_CLOSURE_RATE, ENCOUNTER_ANGLE, and 
ENCOUNTER_ANGLE_WEIGHTING are averaged, the percentage of points with 
ENCOUNTER_ANGLE within 15 degrees of 0 or 360 is calculated, and the standard deviation 
of ENCOUNTER_ANGLE is calculated. From these values, the signal is computed using the 
formulas in Section 2.1.2.2.



 

Figure 50. High-level Fuzzy Signal Computation Process Flow 
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Figure 51. Process Flow for Computation of Fuzzy Signal at a Point in Time
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Figure 52. Determining Fuzzy Alert Values 

Following the calculation of response and signal, the final values for VALID_ALERT, 
LATE_ALERT, FALSE_ALERT, and CORRECT_NO_CALL are computed in the flowchart, 
presented in Figure 52. 
 

A.2 Additional Computations for Fuzzy Alert Logic 
Eq.22 is a weighting function for flight pair geometry; as such its parameters are relative angle 
and relative position of the object of the pair to the subject of the pair (Figure 9). Certain cases of 
the weighting have been solved in the following to give a better idea as to how it performs. 
 
Metal-to-metal at any relative angle is a certain conflict, thus 10,0, w . 

 
At hmin given any relative angle, the weighting is: 
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The minimum value of the weighting is 0.5. 
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If the object has positive lateral distance from the subject, it is on the right of the subject. If the 
object has negative lateral distance from the subject, it is on the left of the subject. Approaching 
from the right is the mirror of approaching from the left, thus   ,,,, ww . 

 
Flights with the same heading are related by: 
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Flights with the same heading at hmin have exactly the weighting: 
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Flights that are at hmin with only lateral distance separating at 90 degrees have exactly the 
weighting: 
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Flights that are at hmin with only lateral distance approaching at 90 degrees have exactly the 
weighting: 
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Flights that are at hmin with only longitudinal distance with exactly opposite headings directed at 
each other are certainly in conflict. 

10,, hminw  

 
Flights that are at hmin with only longitudinal distance with exactly opposite headings separating 
from each other have a low chance of being in conflict. 
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Appendix B 
The following repeats the work done in Section 3.2.2, but now with adherence settings applied. It 
is expected that performance will improve on the whole from 3.2.2 though the same patterns are 
likely to emerge. In Table 35, the alert type counts of each of the twelve runs and the two baseline 
runs are shown, it is easy to see that the total number of FAs, LAs, and MAs have decreased 
significantly without affecting VAs (except for a slight impact in IBL). Except Run 11, it is 
difficult to say much about the LAs and MAs simply due to there being so few in the new data 
set. It is also seen here that every run has fewer false alerts than each baseline. 

 

Table 35. Alert type counts for each of the twelve runs and the two baselines. 

Run 
STD 
VA 

VA LA MA FA 

1 155 125 2 1 294 
2 159 131 1 1 524 
3 160 131 1 1 365 
4 151 120 2 1 350 
5 160 130 1 1 395 
6 161 132 1 1 325 
7 156 127 1 1 447 
8 156 126 2 1 475 
9 157 128 1 1 475 

10 154 123 2 1 425 
11 150 119 4 1 245 
12 158 129 1 1 299 

32BL 163 135 1 1 540 
IBL 146 134 1 0 535 

 
By only looking at the counts of LAs and MAs it is difficult to make much of a judgment about 
late alert performance, though the adjusted LA metric is of interest (Table 36). Again Run 11 has 
the worst performance by this metric, although now all other runs are comparable to 32BL. IBL 
has a superior score in this metric. 
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Table 36. Late Alert plus Missed Alert count and Adjusted Late Alert value for each of the 
twelve runs and the two baselines. 

Run LA+MA Adj. LA 
1 3 1.21 
2 2 1.17 
3 2 1.17 
4 3 1.21 
5 2 1.17 
6 2 1.17 
7 2 1.17 
8 3 1.21 
9 2 1.17 

10 3 1.21 
11 5 2.41 
12 2 1.17 

32BL 2 1.17 
IBL 1 0.22 

 
 
Table 37 also supports what was found in 3.2.2. There it was found that the baselines had the 
lowest LA Rate and the highest FA Rate and that FA Rate is greatly diminished when aircraft are 
well-separated vertically. It is not fair to focus on LA Rate heavily, though the same pattern has 
emerged, since there are so few samples there, however the FA Rates follow the same pattern, 
with the baseline runs having the highest rates, although now Run 2 is close to having the same 
rate. 

Table 37. Overall Alert Rates and False Alert Rates by separation category. 

FA Rate 
 

Horz < 5 5 ≤ h < 8 < 5 5 ≤ h < 8 8 ≤ h ≤ 13 8 ≤ h ≤ 13 > 13 > 13 

Run LA Rate FA Rate Vert < 1000 ≥ 1000 < 1000 ≥ 1000 < 1000 ≥ 1000 < 1000 ≥ 1000 

1 0.023 0.018 1.000 0.066 0.673 0.140 0.108 0.008 0.028 0.003 

2 0.015 0.032 1.000 0.063 1.000 0.241 0.411 0.089 0.014 0.003 

3 0.015 0.022 1.000 0.059 0.867 0.213 0.169 0.014 0.027 0.003 

4 0.024 0.021 1.000 0.072 0.878 0.204 0.122 0.021 0.016 0.002 

5 0.015 0.024 1.000 0.063 0.960 0.233 0.184 0.029 0.018 0.003 

6 0.015 0.020 1.000 0.054 0.860 0.206 0.137 0.014 0.015 0.001 

7 0.016 0.027 1.000 0.063 0.960 0.245 0.249 0.052 0.018 0.002 

8 0.023 0.029 1.000 0.077 0.950 0.220 0.319 0.060 0.026 0.003 

9 0.015 0.029 1.000 0.063 0.942 0.227 0.331 0.068 0.013 0.003 

10 0.024 0.026 1.000 0.071 0.912 0.212 0.253 0.056 0.009 0.002 

11 0.040 0.015 1.000 0.063 0.620 0.136 0.077 0.007 0.010 0.002 

12 0.015 0.018 1.000 0.069 0.779 0.185 0.073 0.006 0.014 0.002 

32BL 0.015 0.034 1.000 0.063 0.990 0.233 0.447 0.090 0.023 0.005 

IBL 0.008 0.033 

 

1.000 0.059 1.000 0.223 0.423 0.101 0.017 0.004 

 
 

In Table 38, Runs 5 and 8 have the largest 25th percentile of the 12 runs, with the baselines 
outperforming all runs. This supports what was found before. Here Runs 6, 11, and 12 have the 
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worst performance in warning time, though Runs 1, 4, 11, and 12 were the worst in 3.2.2. Runs 
11 and 12 therefore scored the worst in both analyses. 

Table 38. Median, inter-quartile range, and 25th percentile of conflict warning time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Runs 1, 4, 6, 11, and 12 show the most improvement in terms of FAs (Table 39,  
Table 40) when compared to either baseline, which is what was demonstrated in the analysis of 
3.2.2 as well. Using this and the warning time, there is a significant effect between warning time 
and the FA improvement metric, where the runs with the most FA improvement have some of the 
worst scores for the 25th percentile of warning time between the two analyses. Also of note, 
except for Run 4, these runs all have a lateral conformance bound of 0.5. The classic metrics used 
here all support the conclusion that while 0.5 nautical mile lateral conformance bounds have the 
largest effect on reducing FAs, they adversely affect warning time, though it should be noted that 
the median and 25th percentile of warning time are well above the minimum warning time of 180 
seconds. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Run Median IQR 25th %  
1 446.0 367.0 328.0 
2 444.5 282.5 337.0 
3 487.5 389.0 347.0 
4 424.5 322.0 331.0 
5 505.0 393.0 352.0 
6 397.0 211.0 313.5 
7 424.5 296.5 324.0 
8 490.5 436.0 360.0 
9 426.0 323.0 333.5 

10 420.0 289.5 332.5 
11 391.0 196.0 311.0 
12 399.5 231.0 316.0 

32BL 511.5 476.0 369.0 
IBL 564.0 440.0 399.0  
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Table 39. Results of comparisons of each of the twelve runs to the FA32 Baseline run. 

0.5 2.5 Lat 0.5 1.5 1.5 0.5 1.5 2.5 2.5 2.5 0.5 0.5 

Lon 0.5 1.5 1.5 0.5 1 1.5 1.5 0.5 1 0.5 0.5 1  

Like 10/20 3/8/10 10/20 3/8/20 10/20 3/8/10 3/8/20 10/20 3/8/20 3/8/10 3/8/10 3/8/20 

BL Proto 1 2 3 4 5 6 7 8 9 10 11 12 

DSC DSC 1114 1330 1360 877 1464 873 1093 1642 1177 1018 709 819 

DSC FA 43 19 26 39 35 23 34 38 40 38 36 35 

DSC N/A 980 790 751 1222 638 1240 1011 459 921 1082 1393 1283 

DSC VA 2 0 2 1 2 3 1 0 1 1 1 2 

FA DSC 50 6 34 41 42 37 29 41 28 39 50 38 

FA FA 197 489 295 266 324 275 375 361 393 337 176 228 

FA N/A 293 45 211 233 174 228 136 138 119 164 314 274 

LA LA 2 2 2 2 2 2 2 2 2 2 2 2 

N/A DSC 268 18 214 131 202 108 93 248 109 119 133 133 

N/A FA 54 16 44 45 36 27 38 76 42 50 33 36 

VA DSC 9 4 5 12 5 5 8 6 6 9 11 7 

VA LA 1 0 0 1 0 0 0 1 0 1 3 0 

VA N/A 0 0 0 0 0 0 0 0 1 0 0 0 

VA VA 153 159 158 150 158 158 155 156 156 153 149 156 

% FA Imp 44% 5% 31% 35% 26% 37% 18% 11% 14% 21% 52% 44% 

%LA Imp -50% 0% 0% -50% 0% 0% 0% -50% 0% -50% -150% 0% 

 

Table 40. Results of comparisons of each of the twelve runs to the Initial Baseline run. 

0.5 2.5 Lat 0.5 1.5 1.5 0.5 1.5 2.5 2.5 2.5 0.5 0.5 

Lon 0.5 1.5 1.5 0.5 1 1.5 1.5 0.5 1 0.5 0.5 1 

  Like 10/20 3/8/10 10/20 3/8/20 10/20 3/8/10 3/8/20 10/20 3/8/20 3/8/10 3/8/10 3/8/20 

BL Proto 1 2 3 4 5 6 7 8 9 10 11 12 

DSC DSC 1134 1220 1352 886 1460 873 1086 1603 1157 1002 728 829 

DSC FA 45 63 44 53 53 40 63 58 63 61 40 48 

DSC N/A 1086 984 869 1329 754 1351 1119 606 1048 1205 1499 1389 

DSC VA 12 10 12 9 10 13 9 10 9 9 10 11 

FA DSC 44 32 46 44 48 43 36 42 31 41 41 36 

FA FA 195 418 271 252 300 256 349 346 367 319 169 214 

FA N/A 296 85 218 239 187 236 150 147 137 175 325 285 

LA LA 1 1 1 1 1 1 1 1 1 1 1 1 

N/A DSC 257 105 213 124 205 105 98 289 131 138 127 129 

N/A FA 54 43 50 45 42 29 35 71 45 45 36 37 

N/A LA 1 1 1 1 1 1 1 1 1 1 1 1 

N/A VA 5 5 5 5 5 5 5 5 4 5 5 5 

VA DSC 6 1 2 7 0 2 3 3 1 4 7 3 

VA LA 1 0 0 1 0 0 0 1 0 1 3 0 

VA N/A 1 1 1 1 1 1 1 1 1 1 1 1 

VA VA 138 144 143 137 145 143 142 141 144 140 135 142 

% FA Imp 45% 8% 31% 36% 27% 39% 21% 14% 17% 24% 54% 46% 

%LA Imp -100% 0% 0% -100% 0% 0% 0% -100% 0% -100% -300% 0% 
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As for the fuzzy metrics (Table 41), the FA counts still agree that Runs 1, 4, 6, 11, and 12 all 
return the lowest FA counts, yet also return the highest LA counts. 

Table 41. Fuzzy Alert values for each of the 12 runs and the baseline. 

Run VA LA FA 
1 193.46 17.69 223.37 
2 197.41 10.04 340.64 
3 199.67 12.04 272.49 
4 196.22 10.17 254.68 
5 202.14 9.45 286.91 
6 197.51 13.16 239.12 
7 199.02 7.61 318.54 
8 195.71 11.74 331.68 
9 200.65 10.40 313.69 

10 195.82 11.27 287.10 
11 185.91 21.35 177.83 
12 198.76 14.53 221.01 

32BL 198.47 12.31 357.20 
IBL 180.49 7.53 346.84 

 

Again there is agreement in the data (Table 42) that vertically well-separated events have much 
lower FA rates. Here Runs 2 and 8 have similar FA rates to the baselines though all runs improve 
on the FA rates on the whole. 

Table 42. Overall Fuzzy Alert Rates and Fuzzy False Alert Rates by separation category. 

FA Rate 
 

Horz < 5 5 ≤ h < 8 < 5 5 ≤ h < 8 8 ≤ h ≤ 13 8 ≤ h ≤ 13 > 13 > 13 

Run LA Rate FA Rate Vert < 1000 ≥ 1000 < 1000 ≥ 1000 < 1000 ≥ 1000 < 1000 ≥ 1000 

1 0.084 0.014 0.945 0.090 0.505 0.117 0.108 0.008 0.027 0.003 

2 0.048 0.021 0.918 0.080 0.823 0.198 0.215 0.057 0.012 0.002 

3 0.057 0.017 0.905 0.082 0.707 0.179 0.146 0.013 0.026 0.003 

4 0.049 0.015 0.973 0.078 0.721 0.169 0.109 0.018 0.015 0.002 

5 0.045 0.018 0.892 0.084 0.803 0.195 0.153 0.023 0.017 0.003 

6 0.062 0.014 0.928 0.055 0.714 0.175 0.121 0.013 0.014 0.001 

7 0.037 0.019 0.938 0.077 0.797 0.200 0.192 0.039 0.017 0.002 

8 0.057 0.021 0.854 0.098 0.814 0.180 0.211 0.042 0.022 0.003 

9 0.049 0.019 0.907 0.083 0.807 0.183 0.200 0.044 0.011 0.003 

10 0.054 0.018 0.901 0.079 0.757 0.173 0.167 0.038 0.008 0.002 

11 0.103 0.011 0.944 0.069 0.450 0.112 0.077 0.007 0.009 0.002 

12 0.068 0.013 0.962 0.075 0.641 0.160 0.070 0.005 0.014 0.002 

32BL 0.058 0.022 0.811 0.101 0.817 0.189 0.251 0.058 0.020 0.004 

IBL 0.040 0.022 

 

0.852 0.085 0.846 0.186 0.226 0.065 0.015 0.003 
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Appendix C 
The statistical software program JMP, and specifically the Matched Pairs platform was used to 
compare response metrics and reveal any difference between scenarios. The graphical output 
from the Matched Pairs platform is called a Tukey mean-difference plot, which presents the 
paired differences by the paired means. In other words, the value from one set is subtracted from 
the value from the second set and this difference is plotted on the vertical axis, while the average 
of the same two values is plotted on the horizontal axis. If there are points that have no difference 
between the two sets, they will fall exactly on the zero horizontal axis. Points from values that are 
much greater in one set will appear far away from the zero axis, and if the majority of points 
follow this trend it becomes apparent that there is a difference between the two sets. 
 

 

Figure 53. Examples 1 and 2 of Matched Pairs Analysis from JMP 
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Figure 54. Examples 3 and 4 of Matched Pairs Analysis from JMP 

 
A JMP reference book [SAS, 2007] notes that this graph is the same as a scatterplot of the two 
original variables, with a 45 degree rotation and rescaling to turn the original coordinates into a 
difference and a mean. Red horizontal lines are added to the graphs to illustrate the mean of 
differences (solid line) and 95% confidence interval around that value (dotted lines above and 
below). If the confidence interval includes the zero axis then the means are not significantly 
different at the 0.05 level, and it is possible the two sample sets do not have any underlying 
difference that affects the metric. 
 
The statistical method underlying the matched pair approach is the paired t-test, which examines 
the distribution of the differences between two sets and tests if the mean of the differences is 
statistically different from zero. The output p-value is the probability of observing a discrepancy 
in means as large as (or larger than) that observed, even if there is no underlying difference in the 
means. This p-value is compared against a given alpha level (0.05 is commonly used) and if the 
p-value is lower, the difference is determined to be statistically significant. For more information 
on the Matched Pairs platform including its output and statistical tests, please see [13]. 
 
The graphical plots of differences can reveal patterns or correlation in the data, while the 
statistical test will state the difference in means and whether that difference is statistically 
significant. It then remains to decide whether that difference is practically significant, or if it is 
too small to have any practical effect. 
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Appendix D 
The Strategic Alert Evaluator (SAE) software evaluates the alerts generated by a conflict probe in 
order to determine how they match to actual conflicts that occurred in the scenario. SAE provides 
a result for each event in the scenario. The result is whether the event is evaluated as a Valid Alert 
(VA), False Alert (FA), Missed Alert (MA), or Discard. The current version of SAE does not 
support the new definition change to Missed Alerts or the new Late Alert (LA) evaluation. The 
LA/MA determination was performed by separate software for this analysis. 
 
The following flowcharts describe the process flow of SAE and how each evaluation is assigned 
to the event. 
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Figure 55. StrategicAlertEvaluator Process A – Establishing Notification Sets from Alerts 
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Figure 56. StrategicAlertEvaluator Process B – Evaluating Actual Conflict Notification Set 
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Figure 57. StrategicAlertEvaluator Process C – Evaluating False Notification Set 
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	Executive Summary
	The Federal Aviation Administration (FAA) is currently implementing a number of improvements to the National Airspace System (NAS) in the United States under a multi-agency initiative called the Next Generation Air Transportation System (NextGen) Program. The Separation Management and Modern Procedures Project is one of these NextGen initiatives. The FAA’s Air Traffic Organization’s En Route Program Office (ATO-E) has employed the FAA’s Concept Analysis Branch (ANG-C41) to conduct a series of independent evaluations on performance enhancements to the En Route Automation Modernization (ERAM) Trajectory Modeling (TM) and Conflict Probe (CP) sub-systems. This work is motivated by a Separation Management and Modern Procedures Project’s objective of implementing the ERAM strategic conflict probe on the radar controller’s display. The strategic conflict probe utilizes the TM and CP sub-systems to notify air traffic controllers when aircraft will violate separation standards as much as 20 minutes in the future. Furthermore, NextGen operational concept envisions a future air traffic environment managed by aircraft trajectory with advances in ground automation like the conflict probe. Thus, ATO-E contracted the ERAM prime contractor under FAA Task Orders 45 and 51 to develop these prototypes within the actual ERAM architecture, so the FAA could evaluate their efficacy. 
	This report describes two key evaluations. First, it describes an initial improvement to the ERAM TM function. This evaluation found that the initial trajectory prototype improved both the trajectory position accuracy and conflict probe performance.  Second, it presents an initial experiment that altered configurable parameters in ERAM. This determines if improvement can be achieved from the current version of ERAM without additional upgrades. In addition, automation experts expect the prototype enhancements will require these same altered parameters to realize their improvements. This report describes the metrics and methods developed and results of this initial experiment.
	The three parameters changed in this experiment are the lateral and longitudinal adherence bounds and the likelihood function. The adherence bounds are a buffer zone surrounding the aircraft and the aircraft prediction. The lateral bound is the distance of this buffer to the left and right of the aircraft, whereas the longitudinal adherence bound is the buffer to the front and back. This buffer is used for two purposes. If the reported position of the aircraft is outside of the buffer zone surrounding the predicted position of the aircraft, it triggers a new trajectory prediction. Also, if the buffer zones surrounding the predicted positions of two aircraft come within the minimum separation requirement (traditionally 5 nautical miles in En Route airspace), then this triggers the generation of an alert by the Conflict Probe. Lastly, the likelihood function assesses each conflict prediction and depending on its confidence estimate, may delay the alert notification until the estimate is improved or prediction is more imminent. 
	Longitudinal and lateral adherence bound thresholds were altered from the current operational levels of 1.5 nautical miles and 2.5 nautical miles, respectively, to 0.5 nautical miles. The current ERAM operational system bypasses the likelihood calculation for all alerts predicted to begin within the next 10 minutes and applies the likelihood function for conflict detections beyond 10 minutes only. The two other levels examined in this experiment reduced this minimum threshold from 10 minutes to 3 minutes and changed other parameters associated with the function. For one level, it reduced the upper bound to 10 minutes and for the other left this setting at 20 minutes. As a result, these three factors, including longitudinal adherence bounds, lateral adherence bounds, and likelihood function, were simultaneously altered using experimental design techniques and ERAM was run at twelve different treatment and two baseline runs.
	Even though this initial study was limited to one air traffic scenario, the experiment produced a number of interesting results and motivated ANG-C41 to develop a number of new metrics and evaluation techniques. The longitudinal adherence bound was found to significantly increase the Late Alerts (i.e. ERAM conflict notifications presented with less than the required strategic minimum warning time, 3 minutes) when reduced too far from its original setting. The lateral adherence bound was determined to cause a significant decrease in False Alerts (i.e. ERAM conflict notifications that do not manifest into actual violation of separations, a.k.a. nuisance alerts) without causing a major negative impact on Late Alerts. This occurred when the lateral bound was reduced to the minimum parameter setting of 0.5 nm. Though there is some interaction of these two settings with the likelihood, the interactions seen were minimal, so recommendations can be made independent of the likelihood function.
	Likelihood was determined to have a major effect on False Alerts, Late Alerts, and warning time. Unfortunately, it is not as easy to make a recommendation for a setting of likelihood. The three different settings of likelihood used in this study provided some insight to how the function affects the performance of the probe, but it is still not completely understood. There were two main findings in this study. The first is that likelihood alone can have a major effect on the performance of the probe. The second is that, because of the longitudinal inaccuracy of the probe, setting the minimum time of the likelihood function to the same as the minimum warning time requirement causes extra Late Alerts that should not have been. In order to further understand the likelihood and additional experiments are recommended. 
	Overall, the study provides important insights into the three factors examined. It developed a number of metrics, including traditional counts and rates of false and late detections as well as implementation of fuzzy detection theory that extracted even more information out of the data. The study also implemented advanced experimental design techniques that both maximized use of the ERAM runs and examined the potential of interactions between factors. The study provides a strong foundation from which a number of additional experiments are being planned and underway.
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	1 Introduction
	The Federal Aviation Administration (FAA) is currently implementing a number of improvements to the National Airspace System (NAS) in the United States under a multi-agency initiative called the Next Generation Air Transportation System (NextGen) Program. The Separation Management and Modern Procedures Project is one of these NextGen initiatives. The FAA’s Air Traffic Organization’s En Route Program Office (ATO-E) has employed the FAA’s Concept Analysis Branch (ANG-C41) to conduct a series of independent evaluations on the performance enhancements to the En Route Automation Modernization (ERAM) Trajectory Modeling (TM) and Conflict Probe (CP) sub-systems. These ERAM enhancements are required by the Separation Management and Modern Procedures Project. ATO-E contracted the prime contractor of ERAM, Lockheed Martin under FAA Task Orders 45 and 51, to develop these prototypes within the actual ERAM architecture so the FAA could evaluate their efficacy.
	Before analyzing the initial prototype enhancements being developed, an initial experiment was performed that altered parameters of ERAM to determine if improvement can be achieved from the current version of ERAM without additional upgrades. This report describes this experiment and results.
	1.1 Background to Study

	The FAA created the NAS to provide a safe and efficient airspace environment for the air transportation system in the United States. This includes all commercial, general civilian and military aviation. The NAS is composed of a network of air navigation facilities, air traffic control facilities, and airports, along with the technologies and the rules and regulations to operate the system. As the air transportation system in the United States has grown, the NAS has evolved by incorporating new procedures and new technologies. The projected increases in demand could lead to a greater stress and perhaps to decreased quality of service for NAS users. In response to this the United States Congress created the multi-agency Joint Planning and Development Office (JPDO) in 2003 as a part of the "Vision-100" legislation (Public Law 108-176). The mission of the JPDO is to design and deploy an air transportation system meeting the nation's air transportation system's anticipated needs in 2025. Since its creation the JPDO has published an integrated plan [Federal Aviation Administration, 2004] and documented a concept of operations [Federal Aviation Administration, 2007] that establish a vision for the Next Generation Air Transportation System (NextGen). An integral part of this vision is Trajectory Based Operations (TBO), which represents a paradigm shift from clearance-based air traffic control to trajectorybased air traffic control. With TBO it is envisioned aircraft will fly negotiated trajectories and the air traffic control functions will move to trajectory management.
	In the United States, the FAA is the single Air Navigation Service Provider (ANSP) that operates the key components of the NAS, such as Air Route Traffic Control Centers (ARTCCs) and Terminal Radar Approach Control (TRACON) centers. A key function provided by an ANSP is to ensure the safe separation of aircraft within the air transportation system. This separation management function remains much as it was when radar was first introduced to civil aviation in the late 1950s. Aircraft-to-aircraft separation is managed by human air traffic controllers who make strategic and tactical decisions using radar displays to visualize aircraft positions and flight paths. These decisions are then provided to the pilots through voice communications via very high frequency (VHF) radio. Although more recent automated decision support tools (DSTs) have been made available to controllers that predict potential loss of separation (i.e., conflicts) and aid in their evaluation, the effectiveness of the DSTs is limited by airspace complexity, controller workload, and the use of voice communications.
	NextGen envisions trajectory-based separation management that will provide precise management of the current and future positions of all controlled aircraft in the air transportation system. This will require enhanced DSTs that not only predict future conflicts, but also provide conflict resolution that is communicated directly to the aircraft from the ANSP through digital Data Comm. This planned separation management capability will be able to handle the anticipated increase in traffic demand and aircraft diversity with minimal impact to user-desired performance profiles and to the environment, while retaining the existing strict safety standards.
	A specific separation management problem is an aircraft-to-aircraft conflict, which can be defined as a situation where two or more aircraft violate minimum separation criteria. The separation criteria depends on the aircraft's navigational equipment and the airspace (e.g., En Route, Terminal, or Oceanic) in which they are flying. For example, in En Route airspace the separation criteria may be five nautical miles horizontally and 1,000 feet vertically. A Conflict Probe (CP) is a DST that predicts when conflict situations may occur by continuously comparing projected aircraft positions over a user-specified lookahead time. 
	Figure 1. Illustrative Example of a Conflict
	Figure 1 presents a horizontal view of an example conflict situation in which an aircraft, identified as AAA001, is flying southbound under the control of the Sector A controller. Another aircraft, identified as BBB002, is flying eastbound at the same altitude under the control of the Sector B controller. In this figure the airplane icons represent the positions of these aircraft at 14:00 UTC, when a CP might predict a conflict in Sector A where their paths cross. The two aircraft are predicted to violate their separation criteria at 14:20 UTC, indicating a look-ahead time of 20 minutes. The situation is further complicated by the proximity of the aircraft to the sector boundary, in that the anticipated hand-off between the air traffic controllers would occur at about 14:16 UTC. This figure shows a typical separation management problem in which the flight path of the affected aircraft must be changed by heading, altitude, or speed changes. 
	It must be emphasized, that this figure is presented for illustrative purposes only in order to provide a touchstone for describing how conflicts are resolved. The separation of aircraft is complex because each situation presents unique circumstances, where numerous variables such as other air traffic, special use airspace that must be avoided, proximity of one of the aircraft to its destination, weather, and controller workload influence the action selected by the air traffic controllers. For this reason a number of assumptions are made to simplify this example. First, it is assumed both AAA001 and BBB002 are mid-flight and at their cruise altitude and AAA001 is flying at a slower rate of speed than BBB002. Secondly, it is assumed there are no thunderstorms or other abnormal weather conditions nor any other aircraft in the area.
	Lastly, it is assumed the CP presents the potential conflict to the Sector A controller. Given these assumptions, this is a simple conflict with few complicating factors that can be used in this Study Plan to illustrate approaches to conflict resolution. With this in mind, here is a comparison of the current and envisioned future ways that this conflict might be resolved: 
	 Current Resolution of Conflicts. In today's NAS there are a number of alternative ways to solve this illustrative conflict; none of which would be considered the "right" way to resolve the conflict. For example, since the Sector A controller is notified of the potential conflict by the CP he/she would typically call the Sector B controller and request an early hand-off of aircraft BBB002. Once the hand-off has occurred and BBB002 has established voice communications with the Sector A controller, the Sector A controller would notify the pilot of the heading change and the conflict would be avoided. Alternatively, the Sector A controller could contact the Sector B air traffic controller and have him/her initiate a heading change to BBB002 to resolve the conflict in a timelier manner. On the other hand, if the Sector A controller's workload was heavy, he/she might request AAA001 to change their altitude, thus avoiding the time consuming coordination with Sector B. With each of these alternatives there is much time lost due to coordination between sector controllers and voice communications with the affected pilots.
	 Future Resolution of Conflicts. Since NextGen is currently in the process of defining the alternatives that will exist in the future NAS, it cannot be stated with certainty how this example conflict will be handled in the future. But it is anticipated the function of the CP will be enhanced in several fundamental ways. First, it will not only exist at the associate controllers display like today but will be integrated within the radar controller’s display as well. The data block will contain alert data and additional pullout menus will contain time ordered listings of these notifications. Next, these enhanced alerts will automatically take into account user preferences and aircraft capabilities to generate a rankordered set of resolutions that both resolve the conflict and meet metering constraints. The enhanced CP will then notify the Sector A controller of the predicted conflict and present a menu of recommended resolutions. The Sector A controller will select the best resolution to the DST. If the best resolution involved maneuvering AAA001, automation would send the clearance directly to AAA001 via Data Comm. However, if the best resolution involved maneuvering BBB002, the Sector B controller would be notified of the conflict and recommended resolution, and if the Sector B controller concurs, automation would send the clearance directly to BBB002 via Data Comm.
	The current CP used in the NAS is very effective at detecting potential aircraft-to-aircraft conflicts that are of real concern and providing controllers with enough time to properly separate the aircraft. However, the current CP of ERAM is not effective at filtering out those events that will not become conflicts without any controller interaction. These additional alerts that are not of interest to the controller are called nuisance alerts, because they detract from the events that are of real concern. Before this CP can be used effectively by the radar controller or even by conflict resolution automation, the nuisance alert rate must be reduced to a level that is acceptable by Air Traffic Control (ATC) subject matter experts (SME). Likewise, in the process of reducing the nuisance alert rate, the rate of detecting the events that are of a real concern should not be adversely affected.
	Thus, the motivation of this work is in support of the NextGen project titled, Separation Management and Modern Procedures. This particular project is charged with enhancing and then implementing a strategic conflict probe into the radar controller’s display, required for the future NAS envisioned by NextGen. The prototype performance enhancements are required to present accurate and timely conflict predictions to the radar controller and support other NextGen advanced functions as they are implemented later. This paper presents results of an initial experiment limited to adjusting a few key parameters within the TM and CP functions. The details of this experiment and the analysis methodology will be presented in the Section 2.
	1.2 Scope

	This document reports on the results of an initial experiment limited to one large six hour traffic sample collected in May 2005 from the Washington Air Route Traffic Control Center (ARTCC). To induce conflicts between aircraft for evaluation purposes, the data sample was time shifted using a methodology documented in [Paglione, 2003]. This same scenario was originally developed and used for the formal testing of the En Route Automation Modernization (ERAM) system [Ryan, 2008]. It is envisioned that this study is an initial analysis with initial recommendations, but further experiments and analysis will follow that will confirm the results presented. Additional scenarios from other airspace regions and traffic days will expand the scope of these results. Being the first in a series of experiments, the methodology and metrics are explained in detail in this document. The descriptions provided will serve as a reference for subsequent experiments.
	1.3 Document organization

	Section 2 presents the analysis metrics and methodology employed to perform this experiment, including a description of the experiment itself. Section 3 presents the evaluation results of the experiment. Section 4 presents final conclusions and recommendations.
	2 Analysis Metrics and Methodology
	This section provides a detailed description of the metrics and methodology employed in this study. As introduced in Section 1.1, a key outcome of the authors’ support for the Separation Management and Modern Procedures Project is to provide a detailed list of recommended enhancements to ERAM to support the subsequent implementation of a strategic conflict probe in the en route radar controller’s display. Table 1 provides a comprehensive list of the various prototyping activities as defined by current ERAM development contractor’s delivery schedule (i.e. Lockheed Martin). The prototypes are delineated by functional areas. The two key functional areas are:
	1. Functional Area 32 which targets improvements to the aircraft trajectory modeling sub-systems and algorithms, and
	2. Functional Area 18 which is focused on improvements of the conflict prediction algorithms within the ERAM Conflict Probe Tool (CPT) sub-system.
	The FAA’s Concept Analysis Branch (ANG-C41) is charged with the task of providing an independent engineering evaluation of these prototypes. The evaluation is limited to the laboratory performance of the ERAM’s trajectory and conflict probe’s prediction capability. It expands on the accuracy requirements used in the formal ERAM testing program as described in detail in [Ryan, 2008].
	Table 1. Summary of Prototyping Activities
	#
	Functional Area
	Description of Prototyping Effort
	Estimated LM Delivery
	Evaluation Strategy
	1
	FA32
	Enhance initial point and lateral rejoin logic
	6/17/2011
	Integrated
	Experiment
	2
	FA32
	Enhance turn modeling
	2/14/2011
	Individual Evaluation
	3
	FA32
	Vertical Profile Modeling Enhancement
	1/28/2011
	Individual Evaluation
	4
	FA32
	Enhance Restriction Modeling
	8/31/2011
	Individual Evaluation
	5
	FA32
	Enhance modeling in terminal area (RNAV STARs to runway)
	6/21/2011
	N/A
	6
	FA18
	Trajectory Monitoring (TM) and Conflict Detection (CD) adherence bounds (functionally separate adherence bounds)
	9/30/2011
	Integrated
	Experiment
	7
	FA18
	Application of CD forced trajectory re-builds (FTR)
	9/30/2011
	Integrated
	Experiment
	8
	FA18
	Application of growth adherence bounds (GAB) for “near-time” encounters
	9/30/2011
	Integrated
	Experiment
	9
	FA18
	Application of conflict post-processing based on conflict geometry parameters
	9/30/2011
	Integrated
	Experiment
	10
	FA18
	Application of tailored warning times based on conflict parameters
	9/30/2011
	Integrated
	Experiment
	11
	FA18
	Application of new red/yellow criticality concept
	9/30/2011
	Integrated
	Experiment
	12
	FA18
	Application of specific designated notification sector changes
	9/30/2011
	Individual Evaluation
	13
	FA18a
	3nm strategic separation
	6/30/2011
	Individual Evaluation
	However, the evaluation is not limited to these accuracy requirements but significantly expands upon them by modifying and adding dozens of additional metrics. The objective of the evaluation is to answer the following question with a certain level of confidence based on the sample traffic data utilized.
	Has the prototype software listed in Table 1 in red and labeled “Integrated Experiment” installed in the ERAM subsystem, the Conflict Probe Tool (CPT), improved or degraded its trajectory (FA32) and conflict (FA18) prediction’s performance?
	The hypothesis therefore is that the upgraded CPT software performs equivalent to baseline CPT in terms of the trajectory and conflict prediction metrics. These metrics are defined by the authors in collaboration with system engineers from the ERAM development contractor and MITRE’s Center for Advanced Aviation System Development (CAASD). A set of experiments test whether this claim can be rejected and whether the performance improved. Since the CPT installed with the prototypes cannot be accepted if they degrade the system, the performance must be greater than the existing baseline performance. The amount of improvement required to be operationally significant will remain unknown for this phase of analyses. Only with the later consultation with subject matter experts (e.g. air traffic personnel) or through further evaluation using a human in the loop experiment proposed in [Willems, 2011] can this determination be made. The analysis objective is to first determine if the hypothesis can be rejected statistically (i.e. CPT improved) for each key metric and then synthesizes the results from the multitude of competing metrics. For example, the three key metrics for the conflict predictions are the:
	 Measure of aircraft-to-aircraft conflict events that indeed should have been predicted in a timely manner and were not – missed alerts,
	 Measure of nuisance aircraft-to-aircraft conflict notifications that should not have been presented but were – false alerts,
	 Measure of lead time provided when aircraft-to-aircraft conflict event is presented when it should have been – warning time.
	One challenge is these metrics could be inversely proportional. In particular, as missed alerts decrease false alerts tend to increase, thus the evaluation will need to balance these competing response variables and assess the overall performance of the CPT sub-system under various conditions. Another challenge is the various prototypes may interact with one another so these interactions must be taken into account. For example, if a reduction in the conflict detection bounds protects for less airspace inducing less alerts overall, it could leave in-trail overtake situations with less warning time. However, the Conflict Geometric Separation (CGS) prototype that inhibits in-trail alerts but predicts overtake cases would address this issue, allowing the overall benefit of the reduced conflict detection bound to prevail.
	Several methods will be brought to bear to address these challenges. Experimental design is well suited to help integrate the need to assess all the factors involved and their interactions, while examining the multitude of competing response metrics. It is defined as a “test or series of tests in which purposeful changes are made to input variables of a process or system so that we may observe and identify the reasons for changes in the output response.” Initially two experiments are being implemented. The first test examines the factors involved that simply change CPT’s parameters (e.g. TM and CD adherence bounds and predicted notification time thresholds). The second larger experiment is designed to assess the performance of several CPT prototypes (e.g. growth adherence bounds or GAB, forced reconformance or FTR). By utilizing experimental design techniques, an optimal design algorithm calculates the minimal number of ERAM CPT runs required to extract the maximum amount of information. These techniques were applied by the authors in similar contexts as described in both [Paglione, 2008] and [Santiago, 2010].
	A second advanced analysis method employed was development of the metrics themselves by applying what is referred to as black box and white box testing. Black box testing is employed when applying the author’s traditional crisp metrics considering minimal details inside the process under study but more on its input and output. For example, the system generates N alerts and it is partitioned as correct predictions (valid) and nuisance or false alerts. This is illustrated in the general model of a process in Figure 2, adapted from [Montgomery, 2009].
	Figure 2. Black Box – Crisp Metrics
	Figure 3. White Box – Fuzzy Metrics
	Illustrated in Figure 3, the white box view of the same process takes additional knowledge from the process itself and calculates fuzzy or more sensitive weighted metrics for the same events [Parasuraman, 2000]. Thus, the same nuisance or false alert event from the crisp analysis could be partially valid and partially false depending on additional factors related to the signal (i.e. the encounter event itself) and the response (i.e. alert color or warning time). For example, an encounter between two aircraft that is 5.1 nautical miles is a near conflict and typically of interest to the air traffic controller if formed from the crossing paths of the flights. Under the white box – fuzzy metric approach, an alert predicted for this event would receive a high valid assessment, while the black box – crisp metric would determine it is not a legal conflict based on its separation so label it as a false alert.
	In summary, the experimental design technique is being employed to plan and implement a set of experiments to evaluate the prototypes listed in Table 1. Extended from the ERAM Formal Test Program, a set of advanced metrics are being employed using both crisp and fuzzy measurement methods to fully test the hypothesis that these prototypes improved the ERAM CPT compared to a baseline without them. The evaluation will provide a statistical assessment that can be handed-off to the next level of evaluation. This next phase is the operational assessment focused at answering the question: is the prototypes’ performance improvement significant enough to be operationally acceptable for the intended function, namely implementation of CPT functionality on the radar controller’s console.
	The metrics and methodology will be applied to all the designated prototypes in Table 1 (i.e. in red). However, this particular study reports on the initial experiment and focused only item number 6 in Table 1. This includes evaluating the impact of changing the TM and CP bounds. It also includes changes to the CPT conflict likelihood parameters. Thus, the experiment evaluates the impact of altering existing configurable parameters within ERAM, offering NextGen the option of first enhancing the performance of the ERAM strategic conflict probe without actually making costly software changes. The study includes results of the first trajectory modeling enhancement, item number 1 from Table 1. It is expected that the other prototypes will require both changes in these parameters as well as the FA 32 (item number 1) enhancements, so logically the initial experiment focused on these items first.
	The following sub-sections will first present the evaluation metrics for both trajectory and conflict predictions in Section 2.1. Next in Section 2.2, the methodology of the designed experiment will be described including details on the model used to fit the experimental results.
	2.1 Evaluation Metrics

	The metrics used for evaluating the performance of the conflict probe in this experiment differed slightly from those used in previous studies. While most of the metrics used in previous studies are also used in this study, some additional metrics have been implemented as well. As stated above, two basic grouping of conflict prediction metrics are employed, including the traditional crisp and newer fuzzy metrics. The trajectory prediction accuracy metrics are also utilized and presented first.
	2.1.1 Trajectory Modeling Metrics

	As noted in previous work [Crowell, 2011, A], trajectory error metrics provide a statistical method to measure the accuracy of trajectories in multiple dimensions with respect to actual flight position. Correct implementation of these metrics allows for comparison and validation of trajectory predictors. Sampling methods and definitions of these metrics along with related analysis techniques are presented in the following sections.
	2.1.1.1 Trajectory Sampling

	The Interval Based Sampling Technique (IBST) is the trajectory accuracy sampling method developed by the FAA’s Concept Analysis Branch. It has been previously documented in [Paglione, 2007] and has been used in a number of FAA studies and test programs. As early as 1999, the Trajectory Predictors (TP) within the operational DSTs of the User Request Evaluation Tool (URET) and the Center TRACON Automation System were evaluated using this technique. More recently, it is being employed to evaluate the TP in the En Route Automation Modernization (ERAM) system, which will replace the en route operational systems such as URET and the Host Computer System. IBST is a two-step process that pairs the track and trajectory points to measure the prediction errors for an entire flight. This sampling technique takes the perspective of the DST user, the air traffic controller. The active trajectory at the time the controller is looking at the display may be several minutes old and in error. Consequently, in the IBST the trajectories are sampled at the current time for a look-ahead time of 0 seconds and at a number of parameter times in the future (e.g., 300, 900, and 1200 seconds). This is contrasted with a sampling technique that uses the internal build time of the trajectory to start the sampling [Brudniki, 1998] [Paielli, 1999].
	2.1.1.2 Definition of Metrics

	The four basic metrics defined in [Paglione, 2007] are horizontal error, vertical error, along track error, and cross track error. Figure 4 provides a notional illustration of these errors. The horizontal error is the time coincident difference in nm between the predicted position on the trajectory and the actual position calculated from surveillance radar reports. Cross track error (nm) is the perpendicular distance between the actual position of an aircraft and its projection onto the trajectory. Along track error (nm) is the longitudinal distance along the trajectory between the same projection and the time coincident predicted position of the aircraft. The vertical error (not illustrated in the figure) is the altitude difference in feet between the predicted trajectory position and the time coincident actual position. For further details on these definitions and how they are calculated see [Paglione, 2007].
	Figure 4. Diagram of Trajectory Errors
	Following these definitions, horizontal error is unsigned while the other three are signed. For most analyses involving these metrics, it is desirable to consider absolute values because the distance from zero is of interest. Therefore the absolute value is taken before calculating average values. Finally, the average metrics comprise only relevant data points by considering error values for trajectory points where a clearance or route amendment has not been received within a specified time period (as that may have altered the trajectory) and the flight remains within control of the center.
	2.1.1.3 Statistical Techniques

	A common application of trajectory accuracy error metrics is in evaluating flight scenarios with both trajectory data and aircraft position data, often simulated. In the case where two scenarios containing data for the same set of flights are to be compared, it is possible to match up the performance of trajectories for the same flight in each scenario and get more information about how the two scenarios compare. For example, the average error value is calculated for the same flight in two scenario runs; these values may be collected and compared for many flights to illustrate any underlying differences between the runs. This is similar to taking multiple measurements from the same test subject in different treatments, and is referred to as a “matched pairs” or “paired difference” test in statistics.
	A matched pair analysis is performed for each of the four metrics using the average absolute error per flight. The analysis includes a paired t-test, which examines the distribution of differences in error between the two scenarios and tests if the mean of the differences is statistically different from zero. The results from the paired t-tests are provided in tables. The mean differences indicate which run has less error on average, and the p-value indicates whether or not this difference is statistically significant. The t-ratio is a statistical test parameter which is calculated as the mean difference over the standard error. Large negative values of the t-ratio produce small p-values and indicate that the mean difference is of statistical significance. The presented p-value is the probability of observing a discrepancy in means at least as large as that observed in the data set, even if there is no underlying difference in the means. A p-value less than 0.05 is typically considered to indicate statistical significance. 
	The results of the matched pair analysis may be presented graphically by plotting the difference in average trajectory error per flight between two runs against the average over these runs, where each data point represents one flight. The flight’s average error in the first run minus the respective mean in the second run is plotted on the vertical axis, while the horizontal axis represents the average of these two measurements (calculated by taking the sum of the mean error in each run and dividing this sum by 2 for each matched flight). The resulting plot indicates net trends between runs. For example, if the errors are predominantly above a zero line in the middle of the plot, this indicates the error is larger in the first run more often. If the errors are below this line, they indicate the error is larger in the second run. Appendix C provides a detailed description of the matched pair analysis and graphical output from the commercial statistical software package JMP® , which is used for the analyses presented in this document.
	2.1.2 Conflict Probe Metrics

	This section will describe the conflict prediction metrics that gauge the performance of an aircraft conflict probe directly. There are two sub-sections – Section 2.1.2.1 presenting the “crisp” conflict prediction metrics and Section 0 the “fuzzy” conflict prediction metrics.
	2.1.2.1 Conflict Prediction “Crisp” Metrics

	This section provides a detailed description of the traditional crisp conflict prediction metrics.
	2.1.2.1.1 Definition of Basic Conflict Prediction Metrics

	A conflict probe predicts when two aircraft will violate separation standards some time in the future. A violation of separation standards is typically called a conflict. An event where two aircraft pass near each other but not close enough to violate separation standards is labeled an encounter in this study. As documented in [Paglione, 1999], [Bilimoria, 2001], [Brudnicki, 1998], and [Cale, 1998], the conflict probe is not perfect and does make mistakes. For example, it can miss a conflict (Missed Alert) or it can predict a conflict that never occurs (False or Nuisance Alert). The four possible situations are shown in Table 5. 
	For a real time system, it is important that an alert be given sufficiently earlier in time of the actual conflict so corrective action can be taken. In other words, an alert must be timely as well as accurate. To ensure timeliness in conflict predictions, a conflict probe is often required to have some lead-time or actual warning time. This Minimum Warning Time (MWT) ranges from 1 to 5 minutes depending on the particular type of conflict probe being evaluated. For this study, specified notification lead time is required unless the conflict was determined to be a pop-up event. A pop-up conflict occurs when the probe is not provided with MWT threshold of continuous surveillance data or prediction for either of the associated flights. Detailed descriptions of the different situations that cause this to occur are described in [Paglione, 1999].
	Table 2. CP Alert and Conflict Event Combinations (adapted from [Paglione, 1999])
	CONFLICT OCCURS
	CONFLICT DOES NOT OCCUR
	ALERT
	CP predicts conflict and it occurs
	(VA – valid alert)
	CP predicts conflict and it does not occur
	(FA -- false alert)
	NO ALERT
	CP does not predict conflict and it occurs
	(MA -- missed alert)
	CP does not predict conflict and it does not occur
	(NC -- correct no-calls)
	Total Number
	of Alerts
	Total Number of Conflicts
	Total Number of Non-Conflicts 
	(i.e. encounters without conflicts)
	For this study, the conflict prediction accuracy crisp metrics consist of counts of the error events, including the false alerts (FA) and missed alerts (MA) in context of the correctly predicted events of valid alerts (VA) and correct no-calls (NC). The Conflict Probe metrics used in this study were described in detail in [Paglione, 2004] and [Crowell, 2009]. Thus, three main metrics used in the past are the VA, MA, and FA counts. There are also Missed Alert Rate (MAR) and False Alert Rate (FAR) that use ratios of the main metrics counts. The following Eq. 1 and Eq. 2 describe these ratios as the number of missed alerts over the total missed and valid alert counts and number of false alerts over the number of false alerts and correct no-calls, respectively.
	Eq. 1
	where,
	MA is total number of missed alerts
	VA is the total number of valid alerts
	Eq. 2
	where,
	FA is total number of false alerts
	NC is the total number of non-conflict encounters without associated alerts
	In this study, we split what previously were called Missed Alerts into two categories called Late Alerts (LA) and Missed Alerts (MA). Late Alerts occur when an alert is not posted within the minimum warning time of a conflict, but is still posted earlier than 40 seconds prior to the start of the actual conflict. Missed Alerts are all conflicts in which an alert is not posted until within 40 seconds of the start of the conflict. This includes conflicts which have no alert posting prior to the start of the conflict, sometimes referred to as no-call missed alerts. In the past, the minimum warning time requirement used for analysis of a strategic conflict probe was typically five minutes. However, after discussions with Air Traffic Controller (ATC) Subject Matter Experts (SMEs), it was determined the use of a three minute minimum warning time provides a better measure of what should be considered a Late Alert. Thus, another rate is required and used in the analysis that focuses only on these Late Alerts and does not include the excused popup conflict events. It is summarized in the following Eq. 3.
	Eq. 3
	where,
	LA is total number of late alerts, that are missed due to warning time less than MWT but greater than 40 seconds warning time, MA is the total number of missed alerts that are missing completely or due to a warning time less than 40 seconds, and
	 is the total number of standard valid alert conflicts (excludes valid alerts with less than threshold MWT of warning time associated to pop-up conflicts)
	2.1.2.1.2 Comparison of Conflict Prediction Results

	The typical approach of comparing an improvement or change in the CP is to assume the baseline performance as the role of the requirement and test the improved system against the baseline’s performance. There are two main limitations to this approach. If the MAR and FAR of the legacy system is compared to the new “prototype” system, these metrics are themselves random variables. The test tends to under estimate this random variation. Second and more importantly, this approach summarizes the errors for both systems into a ratio and only net effects are compared. For example, if the ERAM system had a total of two more missed alerts than the legacy URET system; it is only considering the net difference. In reality, ERAM had four missed alerts that the legacy system had correctly predicted, yet two more missed alerts were generated by the legacy system that ERAM correctly predicted. The test only compared the net quantities of missed alert events. A more sensitive test would compare the same conflict and alert events, reporting all mismatches. Furthermore, it is necessary to identify all the specific error events from a practical standpoint, so software corrections can be made. This section will present a method to identify and statistically compare these events.
	Before discussing this comparison, Table 3 lists the individual reason codes for each run’s conflict prediction results. The alert type falls into four categories. First, the missed alert and false alerts are the two errors being measured. Next, the valid alerts are the correct prediction of a conflict and discards are the events excused due to out of adherence situations or other artifacts of the traffic sample being used. The alert types and reason codes are generated by a software program written by ANG-C41. It matches the ground truth conflict and non-conflict encounter events and produces a data base table with these codes. It is titled the StrategicAlertEvaluator or SAE.
	Table 3. Conflict Prediction Result’s Main Reason Codes
	REASON CODE
	ALERT TYPE
	REASON DESCRIPTION
	STD_VA
	Valid Alert
	Standard Valid Alert
	LATE_VA
	Valid Alert
	Late Valid Alert, Valid since conflict was determined a pop-up
	NO_CALL_MA
	Missed Alert
	Missed Alert due to no call (no alert at all before the actual conflict start time)
	LATE_MA
	Missed Alert
	Late alert – alert presented with less than the minimum required warning time
	SHRT_NO_CALL_DISCARD
	Discard Alert
	Missed Alert no call discarded because conflict duration below a threshold time
	NO_CALL_DISCARD
	Discard Alert
	Missed Alert no call discarded since out of adherence
	SHRT_LATE_DISCARD
	Discard Alert
	Late alert discard because conflict duration below a threshold time
	LATE_DISCARD
	Discard Alert
	Late alert discard since out of adherence
	NO_TRK_FA_DISCARD
	Discard Alert
	No post processed track at predicted conflict start time so discard
	NO_ADHER_FA_DISCARD
	Discard Alert
	Out of adherence at predicted conflict start time so discard
	CLR_FA_DISCARD
	Discard Alert
	Retracted False Alert assigned by an ATC clearance so discard
	CFL_FA_DISCARD
	Discard Alert
	False Alert notified beyond last conflict actual start time so discard
	STD_FA
	False Alert
	Standard False Alert
	RETRACT_FA
	False Alert
	Retracted False Alert, notification end time earlier than predicted conflict start time
	IN_APDIA_FA
	False Alert
	False alert generated but predicted conflict start time determined to be inside an automated problem detection inhibited area
	The sets of conflict predictions generated by the legacy system run (e.g. Run A) and a new system (e.g. Run B) are first evaluated separately. The analysis results in a database table with records labeled with the reason codes defined in Table 3. The resulting paired evaluations of the two runs are listed in Table 4, but for this version it is assumed both runs are provided the same input traffic scenario. The first column in Table 4 lists all combinations of intersection and union of the events from Table 3. As in Table 4 and throughout this section, the first run compared will be referred to as Run A and the second as Run B. For example, Run A may generate a missed alert that is either a missed alert or valid alert in Run B and vice versa. Of particular interest is when Run A makes an incorrect prediction and Run B makes a correct prediction and vice versa. This is highlighted by the light orange shaded rows. It indicates one run has a VA and the other an MA for the same conflict event. The light green shading highlights where one run has an FA and the other a correct no-call for the same encounter.
	Table 4. Comparison of Two Run's Resulting Alert and Conflict Event Combinations
	CONFLICT OCCURS
	CONFLICT DOES NOT OCCUR
	ALERT by 
	both Runs A and B
	Both predicts conflict and it occurs
	(VA & VB -- valid alerts both)
	Both predicts conflict and it does not occur
	(FA & FB -- false alert both)
	ALERT by A and not B
	A predicts conflict and it occurs
	(VA -- valid alerts by A only)
	A predicts conflict and it does not occur
	(FA -- false alert by A only)
	B does not predict conflict and it occurs
	(MB -- missed alert by B only)
	B does not predict conflict and it does not occur
	(NCB – B correct no-call)
	ALERT by A and B ALERT or non-ALERT is discarded
	A predicts conflict and it occurs
	(VA -- valid alerts by A only)
	A predicts conflict and it does not occur
	( ** FA Continued **)
	B does not predict conflict correctly but is discarded 
	(DiscardMB -- B discard an MA)
	B does not predict conflict correctly 
	but is discarded
	(DiscardFB – B discard an FA)
	ALERT by B and not A
	B predicts conflict and it occurs
	(VB -- valid alerts by B only)
	B predicts conflict and it does 
	not occur
	(FB -- false alert by B only)
	A does not predict conflict and 
	it occurs
	(MA -- missed alert by A only)
	A does not predict conflict and 
	it does not occur
	(NCA – A correct no-call)
	ALERT by B and A ALERT or non-ALERT is discarded
	B predicts conflict and it occurs
	(VB -- valid alerts by B only)
	B predicts conflict and it does not occur
	( ** FB Continued **)
	A does not predict conflict correctly but is discarded 
	(DiscardMA -- A discard an MA)
	A does not predict conflict correctly but is discarded
	(DiscardFA – A discard an FA)
	NO ALERT by both Runs A and B
	Both do not predict conflict and it occurs
	(MA& MB -- missed alert by both)
	Both do not predict conflict and it does not occur
	(NC -- correct no-calls by both)
	Total Number
	of Alerts for
	each/both
	Total Number of Conflicts
	(Same for both Runs!)
	Total Number of Non-Conflicts 
	(Encounters that did not have conflicts;
	 Same for both Runs!)
	To determine the various combinations of comparative events as defined in Table 4, ANG-C41 wrote a software tool to identify them from the conflict prediction results for a pair of conflict probe runs. The program is titled the StrategicAlertComparer (SAC) or newer version called AlertComparerEnhanced. The program produces a database table of entries with evaluation codes for each of these events. A listing of these combinations and their corresponding codes are listed in the following Table 5. Because of limitations in the fidelity of the ERAM simulation platform, there are small differences in the input scenarios from run to run (e.g. slight time deviations in the radar track reports). Thus, an advanced matching algorithm was developed and presented in [Crowell, 2009] that matches the events in an efficient and fair manner. Table 5 delineates the events for equivalent ground truth input scenarios or when the scenarios are slightly different. Thus, if the codes are labeled false in the column “Same Ground Truth Only,” the event will only occur if the scenarios were different in some way.
	Table 5. Conflict Prediction Comparison Program Evaluation Codes
	Event
	(Labels from Table 4)
	Evaluation
	Code
	Same Ground Truth Only
	Description
	VA and VB
	SAME_VA
	True
	Both runs have valid alerts for the same conflict
	MA and MA
	SAME_MA
	True
	Both runs have missed alerts for the same conflict
	FA and FB
	SAME_FA
	True
	Both runs have false alerts for the same encounter
	VA and MB
	VA_MA
	True
	Run A has a valid alert and Run B has a missed alert for the same conflict
	MA and VB
	MA_VA
	True
	Run A has a missed alert and Run B has a valid alert for the same conflict
	VA and DiscardMB
	VA_DISCARD
	True
	Run A has a valid alert while Run B discards the conflict
	DiscardMA and VB
	DISCARD_VA
	True
	Run A discards the conflict while Run B has a valid alert
	DiscardMA and M B
	DISCARD_MA
	True
	Run A discards the conflict while Run B has a missed alert
	MA and DiscardMB
	MA_DISCARD
	True
	Run A has a missed alert while Run B discards the conflict
	FA and NCB
	FA_NC
	True
	Run A has a false alert while Run B has no prediction to match
	NCA and FB
	NC_FA
	True
	Run A has no prediction to match while Run B has a false alert for the same encounter
	FA and VB
	FA_VA
	False
	Run A has a false alert while Run B has a valid alert
	VA and FB
	VA_FA
	False
	Run A has a valid alert while Run B has a false alert
	FA and MB
	FA_MA
	False
	Run A has a false alert while Run B has a missed alert
	MA and FB
	MA_FA
	False
	Run A has a missed alert while Run B has a false alert
	VA and no match in B
	VA_NOMATCH
	False
	Run A has a valid alert while Run B has no event to match
	No match in A and VB
	NOMATCH_VA
	False
	Run A has no event to match while Run B has a valid alert
	MA and no match in B
	MA_NOMATCH
	False
	Run A has a missed alert while Run B has no event to match
	No match in A and MB
	NOMATCH_MA
	False
	Run A has no event to match while Run B has a missed alert
	FA and DiscardFB
	FA_DISCARD
	True
	Run A has a false alert while Run B discards the event
	DiscardFA and FB
	DISCARD_FA
	True
	Run A discard the event while Run B has a false alert
	DiscardA and no match B
	DISCARD_NOMATCH
	False
	Run A discard the conflict while Run B has no event to match
	No match A and DiscardB
	NOMATCH_DISCARD
	False
	Run A has no event to match while Run B discards the conflict
	DiscardA and correct no call B
	DISCARD_NC
	True
	Run A discards the event while Run B has no prediction to match
	Correct no call A and DiscardB
	NC_DISCARD
	True
	Run A has no prediction to match while Run B discards the event
	There are two additional comparison metrics used in this document that help to summarize the results of the comparison. These are % FA Improvement and % LA Improvement. These metrics should not be confused with FA% or LA%, which are not comparison metrics. Eq. 4 shows the formula for calculating % FA Improvement. Note that only the FA_NC and NC_FA counts are used. Any False Alerts in either run that match to Discards in the other run are intentionally not used in this metric. This metric is intended to show the differences between the two runs when both runs had the best chances of being correct. Since Discards usually mean something was wrong with the track or the trajectory, these counts are not included in this metric.
	Eq. 4
	where,
	FA_NC is the count of FA_NC events in the comparison
	NC_FA is the count of NC_FA events in the comparison
	FAA is the count of FA events in the Run A of the comparison
	%FAIMP is the percentage of improvement of Run B over Run A
	Eq. 5 shows the formula for calculating % LA Improvement. Once again, no Discard events are used because the metric is intended to show the differences between the two runs when they both had the best chance of correctly predicting the alert.
	Eq. 5
	where,
	LA_VA is the count of LA_VA events in the comparison
	VA_LA is the count of VA_LA events in the comparison
	LAA is the count of LA events in the Run A of the comparison
	%LAIMP is the percentage of improvement of Run B over Run A
	2.1.2.1.3 Statistical Approach of Comparing Conflict Predictions

	As implied in equations presented in Section 2.1.2.1.1 and the shading in Table 4, the most critical quantities to detect a statistical difference between runs are when one run correctly predicts an event and the other does not. Comparison of the MAR, LAR, and the FAR metrics will indicate the net magnitude of these differences. One approach to determine if the difference is statistically significance is to utilize a binomial distribution and perform a hypothesis test concerning the difference between population proportions [Devore, 2000]. However, this technique assumes that the respective runs are independent. For this study, each run is not independent, since the system is run with the same air traffic scenario and weather files.
	An alternative technique is presented in [Kachigan, 1986], utilizing categorical data analysis techniques. For categorical data analysis, we examine the difference in frequencies not proportions. For this study, the frequencies directly relating the missed and false alert rates include the counts of these events. Paired counts that are mutually exclusive and exhaustive, which is required for this test, occur when the error event occurs in one run and the correct event occurs in the other.
	For the missed alert analysis, the count of interest is the missed alert count in Run A when simultaneously getting a valid alert in Run B or vice versa for the opposite case. These include the counts VA2 or MB2 compared to the VB2 or MA2. Therefore, the count of valid alerts in Run A and simultaneous missed alerts in Run B is statistically compared to the count of valid alerts in Run B and simultaneous missed alerts in Run A. These counts should be equally likely if the two runs are statistically equivalent. Calculating the ratio of the squared difference between the expected value of each run and the observed value can test this hypothesis. If the hypothesis is true, this ratio will follow a chi-squared distribution or with one degree of freedom. The test statistic is as follows:
	Eq. 6
	where
	For this study, k is always two, since only paired runs are compared. For example, the observed frequencies are the extracted VA2/MB2 and VB2/MA2 counts for the two runs. Since the null hypothesis assumes both events are equally likely, both expected frequencies are equal and calculated from the following equation:
	Eq. 7
	The resulting test statistic in Eq. 6 can be expressed as a probability or P-value by assuming a chi-squared distribution with one degree of freedom. For example, let’s say we observe a VA2/MB2 = 8 and a VB2/MA2 = 22. The expected frequency from Eq. 7 is 15 for both values, and the resulting test statistic from Eq. 6 is 6.53. Therefore for this example exercise, the P-value is 0.011. This expresses that the hypothesis that these runs have equivalent missed alerts is only about one percent likely and provides evidence to reject the null hypothesis. For this test in the study, a P-value, which is less than 0.10, is considered sufficient to reject the hypothesis.
	False alert probabilities can be analyzed in an analogous way. For the false alert counts, the observed frequency of FA2/NCB and FB2/NCA are compared.
	The preferred method and further simplification to the test above was presented in [Agresti, 2002]. The test is referred to as the McNemar’s test and is specifically designed for testing two data sets that are not independent. This is clearly the case in this study where the same flights are examined between two runs of ERAM. An example is illustrated in the following Table 6.
	Table 6. Example Application of the McNemar’s test
	Encounters in 
	Treatment ERAM System
	Encounters in Legacy ERAM System
	With False Alert
	Without False Alert
	Total
	With False Alert
	47
	11
	58
	Without False Alert
	37
	63
	100
	Total
	84
	74
	158
	=14.083, df=1; p-value=0.000
	The test statistic, , is defined generically as follows:
	Eq. 8
	where,
	n21 is the quantity of flights in the second row, first column of the table
	n12 is the quantity of flights in the first row, second column of the table
	Under assumed conditions, the test statistic assumes a Chi-Squared Distribution. The test statistic can be applied directly to the evaluation code quantities listed in Table 5. The following Eq. 9 and Eq. 10 both apply the generic Eq. 8 to these evaluation codes first for missed alert processing and then false alert, respectively.
	Eq. 9
	where,
	MA_VA is quantity of Run A missed alerts with matching Run B valid alerts
	VA_MA is quantity of Run A valid alerts with matching Run B missed alerts
	Eq. 10
	where,
	 FA_NC is quantity of Run A false alerts with matching Run B correct no-calls
	 NC_FA is quantity of Run A correct no-calls with matching Run B false alerts
	Note, it can be shown that the methods in Eq. 6 and Eq. 7 will produce equivalent results as those in Eq. 8 through Eq. 10. Also, for the test statistics above to assume a Chi-Squared Distribution the sum of  in Eq. 8 or equivalently (MA_VA + VA_MA) and (FA_NC + NC_FA) must all be greater than 25. If their sum is less, an exact test can be used to utilize the Binomial Distribution with size parameter and 0.5 for the probability of success. Details are provided in [Agresti, 2002].
	2.1.2.1.4 Additional Crisp Metrics

	Other than the counts and rates discussed above, the single scenario metrics include the Sharpness and Sharpness Bias metrics described in [Paglione, 1999]. Also, point statistics describing the distribution of the warning time (WT) of the predicted conflicts provide an overview of the timeliness of the conflict notifications. Warning time is the lead time provided by the predicted notification. It is measured by the following Eq. 11.
	Eq. 11
	where,
	   is warning time for ith valid alert conflict prediction
	   is actual conflict start time for ith valid alert conflict prediction
	   is the notification start time for ith valid alert conflict prediction
	The warning time is calculated on all the valid alerts and late alerts not associated to a popup conflict event (i.e. STD_VA and LATE_MA events from Table 3). There are a number of point statistics calculated including average, median, maximum, minimum, standard deviation, 25th percentile, 75th percentile, and inter-quartile range which is the difference between the 75th and 25th percentiles. The warning time statistic that exhibits an important insight into the warning time distribution is the 25th percentile. It provides reasonably sensitive measure of the lower end of the distribution indicating how close this tail is to the MWT threshold (3 minutes in this study) and the tactical threshold of 40 seconds. The greater the 25th percentile more warning time is provided by the CP overall. The smaller the value and closer to the tactical threshold indicates the particular run is less suitable for strategic operations.
	Another useful CP performance metric is called sharpness which involves two metrics including a measure of sensitivity and bias. It was developed by the authors in 1999 and is described in detail in [Paglione, 1999]. The sharpness metric indicates the sensitivity of the probe as a function of the unit-less metric min-max-ratio. Min-max-ratio is the measure of the separation between a pair of aircraft. It is calculated for all aircraft with encounters of a large separation distance simultaneously in both vertical and horizontal dimensions. For this study, it is aircraft that simultaneously penetrate the horizontal separation distance of 30 nautical miles and vertical separation of 4000 feet. The min-max-ratio is defined by the following Eq. 12.
	Eq. 12
	  Where
	 i = current ith radar track position report
	 k = total number of track points
	= horizontal separation ratio of ith radar track position report
	= vertical separation ratio of ith radar track position report
	The  and  sub-ratios are expressed in the following two equations. First for horizontal separation Eq. 13 expresses the  as the instantaneous ratio of horizontal separation versus the horizontal separation standard. Next, vertical separation is illustrated in Eq. 14, which is the vertical separation distance versus the vertical separation standard. For this study, the horizontal separation standard is 5 nautical miles and vertical is 1000 feet.
	Eq. 13
	  Where
	= horizontal separation standard for the ith synchronized track point
	= x position of the ith track point of aircraft a in nautical miles
	= x position of the ith track point of aircraft b in nautical miles
	and , are the corresponding y positions
	Eq. 14
	  Where
	= vertical separation standard for the ith synchronized track point
	= altitude position of the ith track point of aircraft a in feet
	= altitude position of the ith track point of aircraft b in feet
	The maximum of these two ratios is calculated for each synchronized track position and minimum of this value for the entire overlapping flight times is expressed in Eq. 12. 
	The sharpness metric is calculated by measuring the min-max-ratio distance from the fitted alert probability (quartic fit) from 0.99 to 0.1. The smaller the measured sharpness metric the more sensitive the CP is as a function of separation distance. In other words if the sharpness is smaller, the probe is more sensitive to detecting aircraft-to-aircraft conflicts with smaller separations than a probe that has a larger sharpness.
	The sharpness bias metric is the distance (positive/negative) that the alert probability of 0.5 is from a min-max-ratio of one (at target separation, e.g. legal separation 5nm/1000ft). A CP could be perfect in terms of sharpness with a zero value, but if the sharpness bias is 1.0 it will have 100% false alerts (see Fig. 7 in [Paglione, 1999]).
	An excellent way to illustrate the mechanics of sharpness is by example. For illustrative purposes three runs were compared, including runs 3, 7, and 11 from the FA18 Interim Report 2. It compares three runs of different adherence bounds including 2.5, 3.5, and 1.5 nautical miles (nm), respectively. Figure 5 illustrates the three alert probability curves as a function of the min-max-ratio metric and Table 7 summarizes the metric results. Therefore, the 1.5 nm adherence bound run produces the best results in terms of the smallest sharpness metric and smallest sharpness bias. The 3.5 nm probed adherence box produces the next best performance, while 2.5 nm run produces the least performance.
	Figure 5. Example Alert Probability Illustrating Sharpness and Sharpness Bias
	From the sharpness metrics listed in 
	Table 7. Example of Sharpness Metric Summary
	Adherence
	Bound
	Distance
	Sharpness
	Metric
	Sharpness
	Bias
	Metric
	1.5
	1.98528
	0.21912
	2.5
	2.16854
	0.22647
	3.5
	2.11261
	0.21996
	There are three main metrics used throughout this technical note that are a variation of those described in the paragraphs above. These are labeled in the figures as FA%, LA%, and WT%. These metrics correspond to the False Alert, Late Alert, and Warning Time metrics discussed previously, but normalizes them by the results of the baseline for easier comparison of the performance among different runs. These three metrics are summarized in Equations 15, 16, and 17.
	Eq. 15
	where,
	FAR is the number of False Alerts in the treatment run.
	FABL is the number of False Alerts in the baseline run.
	Eq. 16
	where,
	LAR is the total number of Missed and Late Alerts in the treatment run.
	LABL is the total number of Missed and Late Alerts in the baseline run.
	Eq. 17
	where,
	WTR is the 25th percentile of Warning Time in the treatment run.
	WTBL is the 25th percentile of Warning Time in the baseline run.
	2.1.2.2 Conflict Prediction “Fuzzy” Metrics

	The fuzzy metrics offer a way to re-evaluate the classifications made by the SAE by accounting for uncertainties when classifying alerts. This uncertainty allows for any event, being an alert posting, encounter with no alerts, conflict with no alerts, or early alert deletion, to represent several event categories. For example, an encounter with no alerts would traditionally be counted as a no-call, but one would consider a well-separated encounter to be better than one that came close to minimum separation and generated no alert. The fuzzy metrics attempt to represent this subjective nature. A well-separated encounter will score very high for a no-call and next to nothing in the other categories, but as the encounter gets closer to being a conflict the score for no-call will decrease as the score for a late alert increases. A score of 0.2 for no-call and 0.8 for late alert would be a possible score for such an encounter, encoding more information than simply being a no-call event. Here the situation may have warranted attention since the no-call event in the new metric scored much closer to being a late alert.
	The fuzzy metric is an application of the fuzzy signal detection theory discussed in [Parasuraman, 2000]. Given that the metric here is used to rank conflict prediction performance, the natural source of signal is the true aircraft-pair geometry during the duration of the event. This gives a ranking from 0 (certainly not conflict-like) to 1 (certainly conflict-like) of how conflict-like the situation actually became while the event occurred. The response is a measure of perceived utility of the event from 0 (no perceived utility) to 1 (perceived to be of the utmost importance). The signal and response are designed to scale to each other, so that low-signal merits low-response and vice versa. After the involved task of finding appropriate functions for signal and response, they are easily combined to produce scores for the four classic event ratings:
	True Positive = Valid Alert  VA = min (r, s)
	False Negative = Late Alert  LA = max (s-r, 0)
	False Positive = False Alert  FA = max (r-s, 0)
	True Negative = No-Call  NC = min (1-r, 1-s)
	In fact, the classic system can be derived for these equations given that the response and signal are strictly binary:
	True Positive = Valid Alert  VA = min (r, s)  = 1, r = s = 1
	False Negative = Late Alert  LA = max (s-r, 0) = 1, r = 0 and s = 1
	False Positive = False Alert  FA = max (r-s, 0) = 1, r = 1 and s = 0
	True Negative = No-Call  NC = min (1-r, 1-s) = 1, r = s = 0
	The metric’s computation is described in detail in the next several paragraphs.
	Given the collection of alerts generated by the conflict prediction process, if they have no associated flight pair, a track is missing during the duration of an alert, or the entirety of a track occurred within an Automated Problem Detection Inhibited Area (APDIA) during this time, the signal is zero. At any time there is missing data or a point is inside an APDIA, that data is excluded. If any point occurred within an APDIA, a flag is set to alert that at least one of the flights entered an APDIA for at least a moment while the signal was computed. This flag informs an analyst that some care is needed in determining performance for these events. Also, if an alert was originally discarded, was not late, and not a no-call, it is re-included as a false alert.
	If the alert is a false alert (whether originally false or a re-included discard), a time buffer is computed after the alert duration. This buffer tb is the minimum of some buffer time t and the time between the end of the current alert and the beginning of the next alert for a flight pair. If this alert is the last, tb = t. The min-max ratio for the flight pair is calculated for the duration of the event and the duration of the buffer. To calculate the min-max ratio, the maximum of the horizontal and vertical separations in ratio to their minimum separation standards are measured, then the minimum of these values over the duration of the event is returned. This value indicates whether a flight pair violated minimum separation standards by being less than unity for in conflict, unity for at minimum separation, and greater than unity for not conflicted. For example, a value of 2 would represent aircraft separated in one of their separation standards by twice the minimum whereas 0.5 would represent aircraft separated by half of their separation standards.
	Given that the min-max ratio is smaller inside the alert or tb = 0, it is assumed that the alert was not an early-deletion event. The signal is computed for some time window about the min-max ratio, and allowed to extend outside the bounds of the event duration. The signal for the buffer region sb is also calculated. early_del = 1 – sb is reported only for this type of event. early_del gives an indication of the stability of the alert when it was removed. A high early_del indicates to an analyst that the end time was very stable, as very little signal actually occurred for some time after the end time. A low early_del indicates to an analyst that the end time was unstable. There was a high signal after the alert was removed. early_del = 1 when tb = 0 since another action was immediately taken.
	If the min-max ratio is smaller in the buffer zone (tb > 0), it is assumed that the alert was an early-deletion event. The signal is computed for some time window about the min-max ratio, and allowed to extend outside the bounds of the event duration. A second event is created to account for the alert being removed even though the signal increases past the deletion time. This event is marked as an early-deletion miss event and the signal for the buffer region is set to its signal.
	All other alerts require no special treatment. They and all encounters with no associated alerts have a signal computed around their min-max ratio times.
	To get a value for signal around the min-max ratio time, the following values are computed for an aircraft pair:
	 hmin = minimum horizontal separation standard
	 vmin = minimum vertical separation standard
	 h = horizontal separation at the min-max ratio time
	 v = signed vertical separation from cleaned vertical profile at the min-max ratio time, where negative denotes object below subject and vice versa
	  = average encounter angle about the min-max ratio time
	  = standard deviation of the encounter angle about the min-max ratio time
	  = average horizontal geometry weighting about the min-max ratio time, discussed in detail later
	  = average number of incidents about the min-max ratio time in which the object had a relative angle to the subject within 15 degrees of 0 or 360
	  = average vertical closure rate about the min-max ratio time
	  = average horizontal closure rate before the min-max ratio time
	 clr_sep = flag stating whether the aircraft are both within 300ft of their clearances and are separated by at least the minimum vertical separation standard at min-max ratio time
	If clr_sep is true, the aircraft are considered well-separated and the signal is zero, or else the vertical component of signal is calculated as follows.
	Eq.18
	            [Figure 6]
	Eq.19
	Eq.20
	vict is the vertical inverse closure time, which is the inverse of the time elapsed before the aircraft would meet vertically if continuing at the same vertical closure rate. Negative values indicate divergence. Large values are desirable for closure time meaning small values are desirable in the inverse. Since the function of vict needs to be close to zero for desirable values the inverse of the vertical closure time is used. The same argument is made for hict, the horizontal inverse closure time used later.
	Figure 6. Function of vertical inverse closure time.
	If , , and , then the subject and object were consistently in-line with a persistent and similar heading. The flights are categorized as in-trail and the horizontal component of the signal comprises horizontal separation and closure rate only. If this is not true, the horizontal component of the signal comprises horizontal separation and average encounter angle weighting.
	Eq.21
	     [Figure 7]
	Eq.22
	             [Figure 8]
	Eq.23
	Eq.24
	See the earlier definition for vict, the vertical inverse closure time, to understand the rationale for hict, the horizontal inverse closure time.
	Figure 7. Function of horizontal separation re-centered so that zero represents the minimum horizontal separation standard.
	Figure 8. Function of horizontal inverse closure time.
	Eq.25
	Where:
	difference in object’s heading from subject’s heading
	longitudinal distance to object from subject
	lateral distance to object from subject
	See Appendix A for additional information on the geometric weighting function w.
	Figure 9. Top: Gaussian distribution altered by Head-on horz. geometry weighting.       Bot: Same altered by Left-To-Right Perp. Crossing horz. geometry weighting instead.
	In Figure 9, the signal is represented by a Gaussian distribution for illustrative purposes. Let the arrow in the middle indicate the subject aircraft. The longitudinal direction and lateral direction are labeled where negative indicates behind and left respectively. Choosing a position on the grid, imagine the object aircraft is located there. In the top situation, the object is facing the completely opposite direction as the subject. In the bottom situation, the object is facing perpendicular to the subject traveling toward the right. In the top situation of Figure 9, if the object is behind the subject, they are diverging and the signal is sharply decreased. In the bottom situation, if the object is already to the left of the subject, they are diverging, more so if the object is also behind the subject, which is why the signal is most impacted in the (-long., +lat.) region. The head-on situation is symmetric on the lateral axis since a parallel case is identical on either side of the subject. The highest signal is when the object is directly in front of the subject, the highest chance of a conflict occurring. The crossing case has largest signal to the left and in front of the subject since the aircraft will be most rapidly converging in this case if they stay to course.
	The splines are created using the Fritsch-Carlson method to ensure weak monotonicity. The ends of the splines are required to be flat so that they smoothly connect to the areas where the functions are constantly either zero or one. The splines are defined by their control points and can be seen in Figure 6, Figure 7, and Figure 8.
	Finally, the signal is found to be the product of the horizontal and vertical components.
	Eq.26
	As for the response, if the event was classified as an early-deletion miss event, the response is automatically zero, since this is a no-action event. Also, if the encounter has no associated alerts, no action was taken so the response is also zero in this case. The actual warning time is the first part of the response. It is used to devalue alerts that are presented after the minimum warning time, which are late alerts and no-calls (since the alert was never made). If the alert was an FA, including the discards now marked as FAs, then the actual warning time is not computable, though this part of the response is set to 1 since there is no computable warning time to devalue the event. The warning time for computable events is the actual conflict start time minus the event start time. If for some reason the warning time is less than zero or the event is a no-call then the warning time is set to zero, having the effect of setting this portion of the response to zero. After this, the warning time is divided by the minimum warning time standard to get a unitless value t. If t < 1, the warning time did not meet the standard, and this part of the response takes the value r1 = t2.
	The second part of the response is based on predicted horizontal separation of the flights (Figure 10). The predicted horizontal separation is divided by the minimum horizontal separation standard to get a unitless ratio q. If this value is less than 1, the perceived utility of the response is high and this part of the response takes the value of 1. If q is at least 13, then the perceived utility is very low and this part of the response takes the value of 0. The values in-between are computed by a spline of the same type as in the signal. This spline is defined by its control points as follows:
	Figure 10. Function of predicted horizontal separation.
	The final value of the response is
	r = r1 r2
	Eq.27
	2.2 Description of the Experimental Plan

	One of the most powerful inferential statistical approaches is the design, implementation, and synthesis of experiments. Experiments are performed by most researchers and scientists in practically all disciplines. An input stimulus is entered into a process with a set of controllable factors. These processes were already illustrated in the Figure 2 and Figure 3, which contrasted the black and white box testing approaches. For both processes and for application of both the crisp and fuzzy metrics, these are the factors or independent variables in the experiment are manipulated to study the output or response variables. The uncontrollable factors are not easily manipulated, but through experimental design techniques such as blocking and randomization can be removed from the experiment. The output response variables are the dependent variables of the experiment. They are often determined by application of a metric or measured by a sensor device.
	Table 8. Processing Steps for the Experimental Analysis
	Step
	Description
	Section
	1 – Problem Definition
	Define the problem statement
	2.2.1
	2 – Design of Experiment
	Design the experiment – The factors, levels of the factors, response variables to be run, and the model to be used for analysis are defined.
	2.2.2
	3 – Execute Experiment
	Execute the experiment and prepare output data – The system is configured for the experimental runs defined by the design, runs executed, and resulting output data is processed for input into model 
	3.2
	4 – Implement Model
	Implement statistical model defined by the experiment.
	3.2.2.2.1
	5 – Model Results
	Examine the results of the model and discuss factor effects
	3.2.2.2.2 and 3.2.2.2.3
	6 – Synthesize Impact
	Synthesize overall results from the model and publish conclusions.
	4
	There are many purposes for performing an experiment. For this study, the objective of designing and executing an experiment is to determine (1) which pre-determined factors and interactions of these factors show a statistically significant effect on the ERAM system’s performance, and (2) the relative sizes of the determined significant effects. From designing the experiment to concluding on its results, a series of processing steps should be performed as identified in Table 8. The first two steps presented in Table 8 are described in this section, which documents the plan for the experimental analysis. The last four steps are described in Section 3.2 and Section 4, which presents the results by documenting the actual execution and analysis of the experiment.
	This initial integrated experiment is the main focus of this study. Various runs at different settings allowed a model to be developed that can estimate performance of the conflict probe at any settings between those chosen for the experimental levels. This will be discussed in detail in the subsequent Section 2.2.2.
	In the introduction to Section 2 and listed in Table 1 (item #1), an enhanced trajectory modeling feature was listed that improved the initial point and lateral rejoin logic. This prototype activity is organized under Functional Area 32 (FA32) Trajectory Modeling (TM) Enhancements. In Section 3.1, this prototype will be compared against the initial-baseline (IBL) ERAM run with no enhancements and parameter levels set to operational levels. For the remainder of this study, this FA32 scenario, referred to as baseline run (BL), with parameters equal to IBL settings is treated as the baseline scenario against which the scenarios with varying parameter settings (also referred to as treatment runs) are compared. This experimental plan applies only to the second task of the two presented in this paper. Thus, the first task compares the FA32 prototype run to the IBL ERAM run and subject of the analysis presented in Section 3.1. The second task and main focus of this paper uses the FA32 run as its baseline comparing it to the various parameter treatment runs, which are presented in the next sub-sections.
	2.2.1 Definition of the Problem Statement

	As stated in the introduction to Section 2, the objective of this study is to examine prototype enhancements and parameter changes to ERAM to recommend these changes for implementation in the operational ERAM trajectory modeling (TM) and CPT sub-systems. The motivation is to provide air traffic control users a conflict probe functionality on the radar display and without the improvements envisioned the current instantiation will not be suitable. Thus, this study documents an initial experiment. Several other experiments are either implemented or planned for the near future that expands upon this work. This initial experiment is limited to the parameter changes of the TM and CD adherence bounds and settings of the conflict likelihood function. The following problem statement captures the objective of this initial experiment.
	Through a set of purposeful runs of ERAM, input with the legacy ZDC time-shifted test traffic scenario, the experiment shall determine the statistically significant impact that the TM/CD adherence bound changes longitudinally and laterally, and likelihood function parameter changes has in terms of trajectory and conflict prediction accuracy performance.
	2.2.2 Design of the Experiment

	In order to develop the model without running a full factorial, which would have been 27 runs, a fractional design of experiment (DOE) was done using the JMP [SAS, 2010, B] software tool, which resulted in an experiment with only 12 runs. 
	2.2.2.1 Factors

	The factors used in the experiment included only settings of ERAM that can be changed in the current version without any prototype upgrades or code changes. The factors of this particular experiment are simply parameters within ERAM’s configuration files and do not require any new software enhancements.
	The lateral and longitudinal bounds of the conformance box were varied independently from each other. This variance did not include the prototype changes in FA18 Interim 2 [Crowell, 2011, C] that decoupled the TM bounds from the CP bounds. Instead all changes to the conformance bounds affected both the TM and CP bounds. Both of these factors are continuous factors, modeled using a quadratic equation. The ranges of two continuous factors are listed in Table 9.
	Table 9. Continuous factors of the Integrated Experiment
	Factor
	Min
	Max
	Lateral Bound
	0.5 nm
	2.5 nm
	Longitudinal Bound
	0.5 nm
	1.5 nm
	In some initial experiments, likelihood appeared to be a significant factor. In order to further understand the effects of likelihood, it was varied among three discrete values. Effects of likelihood cannot easily be modeled as a continuous function because the likelihood parameter is a function in itself. The functions used for likelihood contain either two or three parameters. When two parameters are used, the first one is the maximum time in minutes at which a likelihood value of 0.0 will generate an alert. The second parameter is the minimum at which a likelihood value of 1.0 is required in order to generate an alert. This creates a linear function similar to that shown in Figure 11. The white area above the line is where the likelihood must fall in order for an alert to be generated. When three parameters are used, it becomes a piecewise linear function, with the first parameter being the maximum time at which a likelihood value of 0.0 will generate an alert. The last parameter is the minimum time in minutes at which a likelihood value of 1.0 is required in order to generate an alert, and the center parameter is the time in minutes at which a chosen value is required in order to generate an alert. In the case of the 3-parameter settings used in this experiment, this chosen value is set to 0.8. This results in a function like the one shown in Figure 12. The settings used for likelihood are shown in Table 10.
	Table 10. Nominal factors of the Integrated Experiment
	Factor
	Settings
	Likelihood Function
	10/20
	3/8/20
	3/8/10
	Figure 11. Linear likelihood function for 10/20 setting
	Figure 12. Piecewise linear likelihood function for 3/8/20 setting
	These settings resulted in the 12 runs shown in Table 11. Also shown in this table are the settings used currently in the deployed version of ERAM. This run is referred to as the baseline (BL) run or in some cases the FA32 Baseline (32BL).
	Table 11. Twelve runs for the integrated experiment and the baseline run
	Run
	Lateral
	Longitudinal
	Likelihood
	1
	0.5
	0.5
	10/20
	2
	2.5
	1.5
	3/8/10
	3
	0.5
	1.5
	10/20
	4
	1.5
	0.5
	3/8/20
	5
	1.5
	1.0
	10/20
	6
	0.5
	1.5
	3/8/10
	7
	1.5
	1.5
	3/8/20
	8
	2.5
	0.5
	10/20
	9
	2.5
	1.0
	3/8/20
	10
	2.5
	0.5
	3/8/10
	11
	0.5
	0.5
	3/8/10
	12
	0.5
	1.0
	3/8/20
	BL
	2.5
	1.5
	10/20
	2.2.2.2 Model

	The initial model allowed both continuous factors to have at most a quadratic effect. It was assumed all factors could interact with each other only in pairs (two-way interactions only). The constant or overall mean effect is represented in the model as μ, and εn(ijk) represents the assumption of independently normally distributed random error with a zero mean. All factors are assumed additive. The model is defined as in Eq.28.
	Response:
	Eq.28
	Where:
	Lati = lateral conformance bounds in nautical miles, i = 0.5, 1.5, 2.5
	Longj = longitudinal conformance bounds in nautical miles, j = 0.5, 1.0, 1.5
	Likek = likelihood, k = “10/20”, “3/8/10”, “3/8/20”
	εn(ijk) = random error, n = 1, 2, … for all i, j, k
	There are five response variables, all of which are addressed by this model. Rijk will represent the percentage improvement in traditional and fuzzy false alert counts, traditional and fuzzy late alert counts, or the 25th percentile of warning time from the baseline depending on context.
	3 Performance Evaluation
	There were two major evaluation tasks of this study. The first task was the analysis of Function Area 32 (FA32) Trajectory Modeling (TM) Enhancements. This analysis was presented in [Young, 2011] and compares the performance of the IBL scenario to a scenario including the trajectory modeling enhancements defined in FA32. This comparison was done independent of and prior to other analyses because all of the following runs include the enhancements.
	The next task was an integrated experiment that uses 12 runs of ERAM at different CP and TM settings from which a model is built that allows estimations to be performed within a continuous range of CP and TM settings. The factors defined for this experiment are parameters in the currently deployed version of ERAM whose settings can be adjusted without requiring modifications to the system.
	In all the analyses included in this document, the performance evaluations are performed on a test scenario and should not be taken out of context. The scenario used for the evaluation has had conflicts injected into it intentionally, some of which are particularly difficult for ERAM to detect. The numbers presented in this document are for purposes of comparison to other numbers within this document only. The purpose of this analysis is not to determine if the CP meets some numerical performance requirement, but rather to determine if an improvement can be gained when compared to the same scenario run through the CP with different settings.
	3.1 Trajectory Modeling Enhancements

	This chapter provides the analytical results from the evaluation of algorithmic enhancements to the aircraft trajectory modeling that has been implemented in the En Route Automation Modernization (ERAM) prototyping effort that was presented in [Young, 2011]. The algorithmic details of the planned prototype effort can be found in the Lockheed Martin report [McKay, 2011] delivered as part of the Separation Management Task Order 51 activity for Functional Area 32 (FA32) –trajectory modeling improvement.
	In earlier ERAM releases, trajectory modeling only begins at the track position on a lateral re-adherence of the trajectory, or change of track control. Otherwise, the initial point is taken to be the track projection onto the previous trajectory. On some trajectory rebuilds, the trajectory initial point could be up to 2.5nm from the latest track reported position.
	This prototype effort changes the aircraft trajectory algorithm to always start at the latest track position, and investigates different lateral rejoin enhancements. It provides for risk reduction, firming up of algorithmic changes, an associated accuracy benefit, and accelerated software development and implementation strategy.
	These changes to the trajectory modeling were included in all the treatment runs for this experiment. Since this technical note is concerned only with the effects of altering the parameters of the ERAM Conflict Probe, a new baseline is needed to compare the treatment runs to. The new baseline must be run at the baseline settings, but contain the FA32 trajectory modeling enhancements. This chapter provides a comparison of this new FA32 Baseline (32BL) to the Initial Baseline (IBL) run, to provide a perspective for the treatment run analyses.
	3.1.1 Analysis Description

	The Initial Baseline (IBL) is detailed in [Crowell, 2011, A] and used to gain an understanding of the performance differences of the FA32 Baseline (32BL). The FA32 update introduces an enhanced method of trajectory modeling, and a new scenario was generated using this method. The purpose of this chapter is to analyze the effect of the trajectory modeling enhancements by comparing the 32BL to the IBL in terms of trajectory accuracy and conflict probe performance. Specifically, the accuracy of the trajectories generated in each scenario is calculated using the simulated track data as a baseline.
	FA32 scenario data was provided by LM and run through CPAT tools, using the same process as in the initial baseline scenario. The conformance bounds and likelihood parameter were set to match the values in the IBL run, which were 2.5 nm lateral, 1.5 nm longitudinal and 10/20 likelihood. The only difference between the two runs is the FA32 trajectory modeling enhancement.
	3.1.2 Results

	The two parts of the analysis results—accuracy of trajectory prediction and performance of conflict probe—are presented in the following two sections respectively. 
	3.1.2.1 Trajectory Accuracy

	Average error values are calculated for the same flight in the IBL and 32BL runs; these values are collected and compared over many flights to illustrate any underlying differences between the runs. A matched pair analysis is performed for each of the four metrics using the average error per flight between the IBL and 32BL with the trajectory modeling enhancements. The analysis includes a paired t-test, which examines the distribution of differences in error between the two scenarios and tests if the mean of the differences is statistically different from zero. The results from the paired t-tests are provided in Table 12. In each of the four graphs in Figure 13 the difference in average trajectory error per flight from the IBL to the 32BL is plotted against the mean of the two errors.
	Appendix C provides a detailed description of the matched pair analysis and graphical output. Positive mean differences indicate the baseline has more error on average than the prototype run.
	Table 12. Statistical Results for Trajectory Error.
	Error
	Mean Diff 
	Std Error
	p-value 
	Horizontal (nm) 
	0.1153
	0.0082
	< 0.0001
	Abs. Vertical (ft) 
	2.1481
	1.5954
	0.1783
	Abs. Cross Track (nm) 
	0.1237
	0.0066
	< 0.0001
	Abs. Along Track (nm) 
	0.0268
	0.0058
	< 0.0001
	From the results in Table 12, the 32BL has less average error per flight for all four types of error. Each p-value presented in Table 12 is the probability of observing a discrepancy in means at least as large as that observed, even if there is no underlying difference in the means. A p-value less than 0.05 is typically considered statistically significant. For this analysis the mean difference is statistically significant for horizontal, absolute cross track, and absolute along track errors. For absolute vertical error, the new run has less mean error but the difference is not statistically significant.
	Figure 13. Matched Pair Analyses for Trajectory Error Metrics.
	Figure 13 illustrates the same results of the matched pair analysis graphically. It presents the measurements for each metric using a special plot from the commercial statistical software package called JMP®. It plots each paired difference, with the vertical axis being the difference of the flight’s average error in the IBL run minus the respective mean in the treatment run. The horizontal axis is the average of these two measurements. The resulting plot normalizes the error differences indicating net trends between runs. For example, if the errors are predominantly above the red line at zero in the middle of the plot, this indicates the error is larger in the baseline run more often. If the errors are below this line, they indicate the error is larger in the treatment run (in this case the 32BL run). Supporting the same conclusion as drawn from the results of Table 12, Figure 13 illustrates a trend of most error differences being above the zero line, indicating the net benefit of FA32.
	It is helpful to know how accurate the trajectories are under certain conditions, such as when the flight is considered to be adhering to its known flight path (including clearances entered into the trajectory predictor automation) within specified parameters. This is the focus of the second stage of trajectory analysis. The data is filtered to include only data from a sample of points along the trajectory where the flight is in adherence. See [Pankok, 2011] for further details of the parameters determining adherence status. The matched pair analysis is repeated on this filtered data set. The results from the paired t-tests are provided in Table 13, while the graphical results are presented in Figure 14.
	Table 13. Statistical Results for Trajectory Error of In-Adherence Data.
	Error
	Mean Diff 
	Std Error
	p-value 
	Horizontal (nm) 
	0.0899
	0.0072
	< 0.0001
	Abs. Vertical (ft) 
	5.3179
	1.9219
	0.0057
	Abs. Cross Track (nm) 
	0.0991
	0.0062
	< 0.0001
	Abs. Along Track (nm) 
	0.0197
	0.0057
	0.0005
	From the results in Table 13, the FA32 baseline run has less average error per flight for all four types of error when only data from in adherence track points are considered. This difference is statistically significant for all error types: horizontal, absolute vertical, absolute cross track and absolute along track errors. However, the mean differences are less than in Table 12 for overall data, thus the positive impact from the trajectory modeling enhancements on trajectory accuracy is observed in all error types when considering flights that are adhering to the known flight path. Compared to the unfiltered data results, this impact is more consistent for vertical errors but overall is reduced in magnitude. This is expected because the prototype affects re-adherence trajectories for flights out of lateral route adherence, and the filtered data only considers flights in lateral route adherence.
	Figure 14. Matched Pair Analyses for Trajectory Error Metrics for In-Adherence Data.
	3.1.2.2 Conflict Probe Accuracy

	A simulated conflict probe is run on both baselines. Since the underlying ground truth is theoretically the same, individual conflicts and encounters can be matched between the two scenarios and the conflict probe response in each scenario can be compared to demonstrate the impact of FA32 changes. It should be noted that there may be some small differences in track position data due to randomness in the radar signal generation process. These differences may affect the trajectory prediction process and even the designation of conflicts, so much so that a pair of flights designated in-conflict in one scenario may exhibit track positions in the other that are separated just enough to avoid being in conflict.
	Unlike the other analyses performed in this study, all alerts generated by ERAM were considered in this conflict probe analysis. No filtering by predicted separation or conflict duration was done, whereas the other analyses in this study filtered out conflicts with less than 10 second duration. One exception is that this analysis, like the other analyses, does not consider muted alerts, which are alerts for conflicts that are predicted to occur outside of the current cleared altitude. An interim clearance, for example, may be assigned to a flight during a climb to its intended cruise level. Meanwhile, the simulated trajectory prediction engine uses the flight plan clearance as input, which may generate muted alerts. The decision to exclude muted alerts was made based on input from ATC SMEs.
	Software applications developed by the Conflict Probe Assessment Team (CPAT) were used to evaluate the results of the conflict probe and compare the performance of the FA32 run to the baseline by matching encounter pairs. The Strategic Alert Evaluator and Strategic Alert Comparer applications are described in [Paglione, 1999] and [Crowell, 2009] respectively. Table 14 presents the results of the comparison. The shaded rows represent cases where the slight differences in ground truth between the two scenarios caused some events that were near the threshold of being defined as a conflict to be recorded as conflicts in one scenario and not the other. The last three rows represent cases where the conflict probe’s performance in two scenarios matched perfectly. The first three rows represent the more interesting cases, and they are discussed here.
	Table 14. Conflict Probe Comparison Results.
	IBL
	FA32
	Count
	LA
	VA
	3
	FA
	N/A
	220
	N/A
	FA
	140
	LA
	N/A
	1
	N/A
	VA
	9
	VA
	N/A
	3
	FA
	FA
	1167
	LA
	LA
	26
	VA
	VA
	160
	From Table 14, there are three cases where a Late Alert in the IBL changed to a Valid Alert in the 32BL, which demonstrates that the trajectory modeling enhancements had a positive impact on the performance of the conflict probe. These cases will be explored in further detail and the results reported in a final version of this analysis. There are no instances of a Valid Alert in the IBL changing to a Late Alert in the 32BL. Therefore, the improvement in Late Alerts can be stated as the count of Late Alerts that changed to Valid Alerts divided by the number of Late Alerts common to both. This is calculated as LA_VA / LA_LA = 3/26 = 11.5%. These alerts do not comprise a large enough sample to test for statistical significance in this improvement.
	There are 220 cases where a False Alert in the IBL changed to a correct No Call in the 32BL, and only 140 cases where the opposite occurred. Decreasing the false alert rate this way is an important objective for trajectory prediction improvements. The improvement in False Alerts can be stated as the count of False Alerts that changed to correct No Calls (FA_NC) minus the count of correct No Calls in the IBL that changed to False Alerts (NC_FA), divided by the number of False Alerts common to both (FA_FA). This is calculated as (FA_NC – NC_FA)/FA_FA = (220-140) / 1167 = 6.85%.
	The false alert results were tested for significance using the chi-squared test presented in [Vivona, 2010]. The null hypothesis being tested is that the incidence of false alerts is statistically equivalent for the two runs. The test calculates the squared difference between the counts of FA_NC and NC_FA and divides by their sum. The test statistic is defined as:
	and the calculated value is 17.77. With one degree of freedom the corresponding probability is less than 3E-5, so the null hypothesis can be rejected [Agresti, 2002]. This indicates that the reduction in false alerts in the FA32 scenario is statistically significant.
	It is useful to know how the conflict probe performs when the adherence of flights to their known flight paths is considered as a factor in categorizing conflicts and alert responses. For more information on how adherence age is used in the evaluation of the conflict probe please refer to [Crowell, 2011, A]. When the length of time in adherence is considered, many more alerts will be categorized as discards. This can be seen in Table 15, which presents the results of the conflict probe on the same two scenarios when considering adherence age in the evaluation of alert responses. Similar to Table 14, the first two rows represent the cases of most interest to this analysis.
	Table 15. Adherence Conflict Probe Comparison Results.
	IBL
	FA32
	Count
	FA
	N/A
	59
	N/A
	FA
	45
	N/A
	VA
	9
	VA
	N/A
	3
	FA
	FA
	429
	LA
	LA
	1
	VA
	VA
	160
	When adherence is used, there are 59 cases where a False Alert in the IBL changed to a correct No Call in the 32BL, and 45 cases where the opposite happened. The improvement in False Alerts can be stated as above, (FA_NC – NC_FA)/FA_FA = (59-45) / 429 = 3.26%.
	Another chi-squared test is formulated to test whether the incidence of false alerts is statistically equivalent for these results. The calculated value of the test statistic is 1.88. With one degree of freedom the corresponding probability is 0.17, so the null hypothesis cannot be rejected. This indicates that the reduction in false alarms in the FA32 scenario cannot be said to be statistically significant. The reason for this may be similar to the reason that the observed improvement in trajectory metric accuracy was less for in-adherence data.
	The analysis shows that the FA32 trajectory modeling enhancements did provide a net improvement in both trajectory and conflict prediction accuracy. Most importantly, FA32 prototype was observed to have an overall net improvement in reducing both late and false alerts. Typically it is difficult to reduce both simultaneously; generally one can be reduced with degradation to the other. This was not the case for the FA32 trajectory modeling enhancements. The evidence showed that the false alert rate was reduced while the late alert rate was not degraded.
	3.2 Integrated Experiment Analysis

	The main experiment of this study was the integrated experiment that is defined in Section 2.2. Trajectory modeling and conflict probe performance were analyzed in detail using several approaches, including data exploration using discrete results from the treatment runs and analysis of effects using the least squares fit model created with the d-optimal design.
	3.2.1 Trajectory Modeling Analysis

	This section analyzes the effect of the three defined factors on the trajectory accuracy in the scenario runs. The trajectories generated in each scenario are compared to the simulated track data—which should be very similar but not identical across runs—and three trajectory metrics are calculated as described in Section 2.1.2. The null hypothesis for this trajectory modeling analysis is the following:
	A significant decrease in trajectory modeling errors cannot be gained by altering the lateral or longitudinal adherence bounds or the likelihood function of the current probe. 
	To test this hypothesis, the trajectory error in a treatment run is compared to the error in the FA32 baseline scenario (32BL) using a matched pair test. This statistical test is carried out for all three error types and for each of the 12 treatment runs. For the matched pair analysis, the average error is calculated for each individual flight in the baseline and treatment run scenarios. The values are compared for every flight, and the mean difference is calculated to illustrate any underlying differences between the scenarios. The matched pair analysis includes a paired t-test, which examines the distribution of differences in per flight error between the two scenarios and tests if the mean of the differences is statistically different from zero. The results from the paired t-tests for cross track, along track, and vertical errors are provided in Table 16, Table 17, and Table 18 respectively. The likelihood parameter has no effect on the trajectory modeling, so it is left out of these tables.
	Table 16. Statistical Results for Trajectory Cross Track Error
	Run
	Lat bound
	Long bound
	Mean by flight (nm)
	t-ratio
	vs. 32BL
	p-value
	vs. 32BL
	1
	0.5
	0.5
	0.72941
	-23.0753
	<.0001
	2
	2.5
	1.5
	0.85348
	0.449675
	0.653
	3
	0.5
	1.5
	0.73571
	-22.0115
	<.0001
	4
	1.5
	0.5
	0.78731
	-14.5896
	<.0001
	5
	1.5
	1.0
	0.79885
	-11.9374
	<.0001
	6
	0.5
	1.5
	0.73486
	-22.2937
	<.0001
	7
	1.5
	1.5
	0.80568
	-10.5545
	<.0001
	8
	2.5
	0.5
	0.81791
	-16.0585
	<.0001
	9
	2.5
	1.0
	0.84138
	-7.23434
	<.0001
	10
	2.5
	0.5
	0.81917
	-15.6695
	<.0001
	11
	0.5
	0.5
	0.72927
	-23.2975
	<.0001
	12
	0.5
	1.0
	0.73328
	-22.5304
	<.0001
	32BL
	2.5
	1.5
	0.85316
	-
	-
	Table 17. Statistical Results for Trajectory Along Track Error
	Run
	Lat bound
	Long bound
	Mean by flight (nm)
	t-ratio
	vs. 32BL
	p-value
	vs. 32BL
	1
	0.5
	0.5
	1.03443
	-37.7576
	<.0001
	2
	2.5
	1.5
	1.32823
	1.154313
	0.2485
	3
	0.5
	1.5
	1.24105
	-9.89563
	<.0001
	4
	1.5
	0.5
	1.05273
	-34.3245
	<.0001
	5
	1.5
	1.0
	1.17805
	-19.1516
	<.0001
	6
	0.5
	1.5
	1.2426
	-9.74754
	<.0001
	7
	1.5
	1.5
	1.29028
	-1.95322
	0.0509
	8
	2.5
	0.5
	1.05834
	-38.539
	<.0001
	9
	2.5
	1.0
	1.19206
	-21.4522
	<.0001
	10
	2.5
	0.5
	1.05846
	-38.5739
	<.0001
	11
	0.5
	0.5
	1.03259
	-38.6468
	<.0001
	12
	0.5
	1.0
	1.14615
	-23.7055
	<.0001
	32BL
	2.5
	1.5
	1.3008
	-
	-
	Table 18. Statistical Results for Trajectory Vertical Error
	Run
	Lat bound
	Long bound
	Mean by flight (ft)
	t-ratio
	vs. 32BL
	p-value
	vs. 32BL
	1
	0.5
	0.5
	340.985
	-7.77013
	<.0001
	2
	2.5
	1.5
	359.383
	0.419611
	0.6748
	3
	0.5
	1.5
	350.159
	-4.52418
	<.0001
	4
	1.5
	0.5
	343.959
	-7.53102
	<.0001
	5
	1.5
	1.0
	352.234
	-4.06503
	<.0001
	6
	0.5
	1.5
	349.732
	-4.75879
	<.0001
	7
	1.5
	1.5
	354.995
	-2.79515
	0.0052
	8
	2.5
	0.5
	346.388
	-7.9294
	<.0001
	9
	2.5
	1.0
	355.486
	-2.9365
	0.0034
	10
	2.5
	0.5
	346.958
	-6.94365
	<.0001
	11
	0.5
	0.5
	341.066
	-7.85201
	<.0001
	12
	0.5
	1.0
	349.432
	-4.75783
	<.0001
	32BL
	2.5
	1.5
	358.964
	-
	-
	When the mean error in the baseline is greater than that in the treatment run, the mean difference is negative. The t-ratio is a statistical test parameter which is calculated as the mean difference over the standard error. Large negative values of the t-ratio produce small p-values and indicate that the mean difference is of statistical significance.
	From the results in Table 16 for cross track error, the low p-values for almost all runs indicate there is a statistically significant difference in error for every treatment run except one. Run 2 uses the same lateral and longitudinal bounds as the baseline and it is intuitive that it would be an exception, because the trajectory modeling process in this treatment run would behave similar to that in the baseline. In all the other treatment runs, it can be observed that reducing the lateral or longitudinal bounds resulted in lower average error.
	In Table 17, the results for along track error also include low p-values for many runs, with exceptions in Run 2 and Run 7. The reasoning for Run 2 is the same as above. Noting that the lateral and longitudinal bounds for Run 7 are 1.5 each (compared to 2.5 and 1.5, respectively, in the baseline) it can be surmised that the slightly smaller lateral bound resulted in decreased errors, similar to the other treatment runs, and that in this case the effect was just under the threshold of statistical significance.
	The results for vertical error in Table 18 also include statistically significant p-values for all runs except Run 2. However, the t-ratio values overall are less negative, which implies less drastic effects than in the previous two tables. This may be explained by the fact that while changes in lateral and longitudinal bounds directly affect cross and along track errors, respectively, their impact on vertical error is much less straightforward.
	These impacts are further explored using a statistical model of the factors’ effects on the error metrics. Average error values were taken over all valid data points and entered into a model of treatment effects. The prediction profiler is a tool from JMP [SAS, 2010, B] that graphically presents the results of the model by plotting average error versus the lateral, longitudinal, and likelihood factors. A screenshot of this tool is shown in Figure 15. Note that for the matched pair tests, the average error value was calculated by individual flights first and then the average over these per flight values was taken. Those values differ from the overall average values of all sampled error data points, which is what was used in the model.
	Figure 15. Prediction Profiler of TM Model with Baseline Parameter Settings
	Figure 15 profiles some of the treatment effects from the statistical model, and a few important patterns can be discerned. As the lateral bound is reduced, the average cross track error decreases sharply, thereby increasing the trajectory accuracy in this dimension. Next, as the longitudinal bound is reduced, the average along track error decreases sharply, increasing trajectory accuracy in the longitudinal dimension as well. Average vertical error is also affected by reducing either bound, however the error is measured in feet so the practical effect is much less in comparison to the other errors in nm. In other words, the effect is statistically significant but not practically significant.
	3.2.2 Conflict Probe Analysis

	Using the integrated experiment, each effect of the conflict probe performance can be evaluated at many different settings. This allows the analyst to understand the effects of each of the three factors on the conflict probe performance. The purpose of this integrated experiment is not to determine the optimal settings, but rather to understand the effects of each of the settings and determine if a significant improvement to performance can be gained by altering these settings of the conflict probe. The null hypothesis for the conflict probe evaluation is the following:
	A significant Conflict Probe performance improvement cannot be gained by altering the lateral or longitudinal adherence bounds or the likelihood function of the current probe.
	The purpose of this section is to prove this null hypothesis false. In order to do this we are looking for a significant decrease in False Alert Rate as well as either a decrease in Late Alert Rate or no significant increase in Late Alert Rate. Furthermore, a desirable result would include no significant decrease in warning time.
	In the following analysis the 32BL is the baseline scenario that includes the FA32 trajectory modeling upgrades described in Section 3.1. IBL is the initial baseline that was described in [Crowell, 2011, A], and does not include the FA32 upgrades. In this chapter, the main analysis performed compares the results of the twelve treatment runs to the 32BL, since the purpose of this technical note is to determine the performance that can be gained by altering the three settings described in Section 2.2.2.1, and these three settings are the only differences between 32BL and each of the treatment runs. The comparison to the IBL is included since the conclusion of the FA32 analysis was that the upgrades should be implemented, so this information shows the overall performance gained through just that upgrade with several different settings.
	In Table 19, the alert type counts of each of the treatment runs and the two baseline runs are shown. It can be seen from this table, that although all runs decrease the FA count from both baselines, they also increase the LA count. This table also shows that all runs do not significantly affect MA count. Although there are four runs that decrease the MA count from 4 to 3, this decrease is not significant and can likely be attributed to the noise inherent among runs of ERAM. Likewise, the three that show an increase to 5 MAs do not show a significant change.
	Table 19. Alert type counts for each of the treatment runs and the two baselines.
	Run
	VA
	STD VA
	LA
	MA
	FA
	1
	155
	125
	19
	4
	878
	2
	159
	131
	15
	4
	1148
	3
	160
	131
	15
	3
	1013
	4
	151
	120
	24
	3
	814
	5
	160
	130
	15
	3
	1066
	6
	161
	132
	13
	4
	774
	7
	156
	127
	18
	4
	994
	8
	156
	126
	17
	5
	1288
	9
	157
	128
	17
	3
	1092
	10
	154
	123
	19
	5
	981
	11
	150
	119
	23
	5
	633
	12
	158
	129
	16
	4
	718
	32BL
	163
	135
	11
	4
	1394
	IBL
	158
	134
	12
	4
	1470
	During the development of the fuzzy metrics defined in Section 0, a new metric was discovered that weights the value of each Late Alert or Missed Alert by the amount of time by which it was late. This metric is less susceptible to the noise inherent among runs, since a small shift in time will be represented by a small difference in the value, instead of a difference between counting as a LA or not. The values of each alert are summed for the run and this value is called Adjusted LA. In Table 20 this value is shown for each run and compared to the sum of Late Alerts and Missed Alerts. An example of the differences between the two metrics can be seen by comparing Runs 6 and 7. Using the LA+MA metric, Run 7 seems to have a significant degradation in performance, with a value of 22 compared to the 17 of Run 6. However, looking at the Adjusted LA metric, it can be seen that there is no significant difference between the two runs, since their scores differ by a value of only 0.04.
	Similar to the LA metric, the Adjusted LA metric shows a significant degradation in late alert performance for all of the treatment runs, when compared to either of the two baseline scenarios. Those that have the highest values of LA count, particularly Runs 4 and 11, also have the highest values of Adjusted LA. The lowest values of Adjusted LA are from Runs 2 and 3, with Run 5 close behind. Runs 6, 7, and 9 are only slightly further degraded in performance. These initial findings are interesting in that Runs 2, 3, 6, and 7 are run with a longitudinal setting of 1.5 nm, whereas Runs 5 and 9 are run with a longitudinal setting of 1.0 nm with lateral settings of 1.5 and 2.5 nm respectively. The only run with a longitudinal bound of 1.0 nm or greater not included in this list is Run 12, with a longitudinal of 1.0 and lateral of 0.5 nm. These initial findings indicate that longitudinal conformance bound may be the most significant factor affecting LAs, and there is a small interaction with the lateral conformance bound that becomes most prominent when the lateral bounds are set to the smallest value. This is an important finding and will be analyzed further later.
	Table 20. Late Alert plus Missed Alert count and Adjusted Late Alert value for each of the treatment runs and the two baselines.
	Run
	LA+MA
	Adj LA
	1
	23
	14.58
	2
	19
	10.46
	3
	18
	10.64
	4
	27
	16.45
	5
	18
	11.13
	6
	17
	11.78
	7
	22
	11.74
	8
	22
	12.90
	9
	20
	11.64
	10
	24
	12.57
	11
	28
	16.32
	12
	20
	13.26
	32BL
	15
	8.95
	IBL
	16
	8.79
	Next, we look at the LA and FA Rates in Table 21. LA Rate is calculated by summing the number of LAs and MAs and dividing by the total number of conflict events. FA Rate is calculated by dividing the number of FAs by the number of non-conflict events. Non-conflict events are encounters that do not result in a conflict. The overall rates are shown on the left, and then the FA Rate is broken down into bins based on the horizontal and vertical separation of the encounter event at the minimum max-ratio time.
	Table 21. Overall Alert Rates and False Alert Rates by separation category.
	FA Rate
	Horz
	<5
	<5
	5 ≤ h
	< 8
	5 ≤ h
	< 8
	8 ≤ h
	≤ 13
	8 ≤ h
	≤ 13
	>13
	>13
	Run
	LA Rate
	FA Rate
	Vert
	<1000
	≥1000
	<1000
	≥1000
	<1000
	≥1000
	<1000
	≥1000
	1
	0.155
	0.051
	 
	1.000
	0.119
	0.805
	0.244
	0.225
	0.036
	0.076
	0.024
	2
	0.127
	0.068
	 
	1.000
	0.107
	1.000
	0.365
	0.600
	0.185
	0.037
	0.013
	3
	0.121
	0.059
	 
	1.000
	0.109
	0.921
	0.347
	0.319
	0.060
	0.061
	0.024
	4
	0.184
	0.048
	 
	1.000
	0.122
	0.931
	0.328
	0.241
	0.059
	0.046
	0.011
	5
	0.122
	0.063
	 
	1.000
	0.119
	0.978
	0.372
	0.338
	0.085
	0.045
	0.024
	6
	0.114
	0.045
	 
	1.000
	0.102
	0.916
	0.334
	0.292
	0.055
	0.036
	0.009
	7
	0.148
	0.058
	 
	1.000
	0.117
	0.977
	0.378
	0.413
	0.120
	0.038
	0.011
	8
	0.149
	0.076
	 
	1.000
	0.123
	0.973
	0.365
	0.494
	0.135
	0.069
	0.029
	9
	0.135
	0.064
	 
	1.000
	0.106
	0.967
	0.364
	0.523
	0.152
	0.044
	0.014
	10
	0.163
	0.058
	 
	1.000
	0.121
	0.951
	0.346
	0.416
	0.126
	0.038
	0.011
	11
	0.190
	0.037
	 
	1.000
	0.119
	0.759
	0.234
	0.168
	0.033
	0.033
	0.011
	12
	0.134
	0.042
	 
	1.000
	0.118
	0.862
	0.307
	0.177
	0.034
	0.043
	0.010
	32BL
	0.100
	0.082
	 
	1.000
	0.113
	0.994
	0.365
	0.648
	0.192
	0.058
	0.031
	IBL
	0.107
	0.087
	1.000
	0.114
	1.000
	0.381
	0.650
	0.206
	0.053
	0.033
	The first bin is a horizontal separation of less than 5 nm and a vertical separation of less than 1000 ft. This column includes all events that are conflicts, and since there are no non-conflict events in this bin, all rates are a value of 1, because the denominator becomes only the number of FAs. Looking at these false alert rates, it can clearly be seen that false alerts are far less likely when the flights remain separated vertically. Every column shows a higher FA Rate in both baseline scenarios than in all runs, which is exactly what was expected, so there are no real surprises to be investigated in this table.
	In Figure 16 the Hit Rate is graphed versus the False Alert Rate for each of the treatment runs and the two baselines. The FA Rates are the same values from Table 21, whereas Hit Rate is 1 – LA Rate from the same table. The top-left corner of the plot is the most desirable, since the most desired performance is high Hit Rate and low FA Rate. From this plot we can see that both baselines have a high FA Rate but a desirable LA Rate, whereas all of the treatment runs sacrifice Hit Rate in order to reduce the FA Rate. Looking at this plot, of the twelve treatment runs, Run 6 seems to provide the best balance of Hit Rate versus FA Rate, since it greatly reduces the FA Rate when compared to the baselines, but barely reduces the Hit Rate. Assuming no other metrics, all runs to the right of and below Run 6 can be eliminated, since they degrade in performance of both FA Rate and Hit Rate. This leaves only Runs 6, 11, and 12 as the top contenders, but another important metric to observe is Warning Time.
	Figure 16. Hit Rate vs. False Alert Rate colored by Warning Time. The top-left corner of the graph is the most desirable.
	The warning time of alerts is an important metric because it tells not only how correct the probe is, but how much workload it puts on the controller. Less warning time before the conflict requires quicker reaction times from the controllers and therefore increases controller workload.
	Table 22 shows several statistics of warning time for each of the treatment runs and the two baselines. The statistics used are the median, inter-quartile range (IQR), and 25th percentile. The graph shown next to the columns is the 25th percentile. The 25th percentile is the main metric we want to look at, since this tells us the low end of the warning times of alerts. Raising this low end is more desirable than raising the median, since the median is almost always well above the required warning time, which in this case is 180 seconds. Back in Figure 16, each point representing a run has been colored based on its warning time value. The exact metric used for this coloring is the percentage difference of the 25th percentile of warning time from the FA32 Baseline, where deep blue is no reduction and deep red is the maximum reduction of 22.5%. Looking at the graph, we can see that warning time is consistently reduced as the FA Rate is reduced.
	Table 22. Median, inter-quartile range, and 25th percentile of conflict warning time.
	Run
	Median
	IQR
	25th %
	1
	397.0
	374.0
	264.0
	2
	409.0
	264.0
	307.5
	3
	445.5
	399.0
	305.0
	4
	387.5
	306.0
	266.0
	5
	443.0
	414.0
	311.0
	6
	379.0
	232.5
	275.0
	7
	389.0
	292.0
	279.0
	8
	436.0
	432.0
	312.0
	9
	406.0
	271.0
	303.0
	10
	391.5
	273.0
	278.0
	11
	361.5
	212.0
	256.0
	12
	376.5
	241.0
	265.0
	32BL
	492.0
	440.0
	331.5
	IBL
	460.0
	378.5
	320.5
	Table 23. The runs that can be eliminated based on Hit Rate, FA Rate and 25th percentile Warning Time.
	Run
	Lateral
	Longitudinal
	Likelihood
	1
	0.5
	0.5
	10/20
	2
	2.5
	1.5
	3/8/10
	4
	1.5
	0.5
	3/8/20
	9
	2.5
	1.0
	3/8/20
	Another analysis used to help validate our previous findings is the Conflict Probe Comparison that compares the results of each of the treatment runs’ conflict probes to the baseline conflict probes. Table 24 shows the results of each comparison to the FA32 Baseline run. The table contains a lot of information, but the main focus points are the VA-LA, LA-VA, FA-N/A, and N/A-FA. These fields are wrapped into the two fields at the bottom of the table: % FA Improvement and % LA Improvement. The percent FA improvement metric is the N/A-FA count subtracted from the FA-N/A count, divided by the number of FAs in the baseline run. Similarly percent LA improvement is the VA-LA count subtracted from the LA-VA count, divided by the number of LAs in the baseline run. LAs in this table include Late Alerts as well as Missed Alerts. A positive percentage is an improvement over the baseline whereas a negative percentage is degradation.
	Table 24. Results of comparisons of each of the treatment runs to the FA32 Baseline run.
	Lat
	0.5
	2.5
	0.5
	1.5
	1.5
	0.5
	1.5
	2.5
	2.5
	2.5
	0.5
	0.5
	Lon
	0.5
	1.5
	1.5
	0.5
	1
	1.5
	1.5
	0.5
	1
	0.5
	0.5
	1
	Like
	10/20
	3/8/10
	10/20
	3/8/20
	10/20
	3/8/10
	3/8/20
	10/20
	3/8/20
	3/8/10
	3/8/10
	3/8/20
	BL
	Proto
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	FA
	FA
	597
	1107
	772
	645
	864
	629
	851
	1010
	948
	813
	473
	551
	FA
	N/A
	718
	276
	548
	687
	449
	701
	491
	310
	408
	516
	858
	779
	N/A
	FA
	189
	24
	166
	111
	131
	95
	92
	194
	92
	116
	99
	104
	LA
	LA
	13
	15
	13
	14
	13
	12
	14
	15
	14
	14
	14
	13
	LA
	VA
	2
	0
	2
	1
	2
	3
	1
	 0
	1
	1
	1
	2
	VA
	LA
	10
	4
	5
	13
	5
	5
	8
	7
	6
	10
	14
	7
	VA
	VA
	153
	159
	158
	150
	158
	158
	155
	156
	156
	153
	149
	156
	VA
	N/A
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	DSC
	DSC
	625
	696
	783
	446
	838
	455
	565
	901
	588
	490
	362
	431
	DSC
	FA
	92
	17
	75
	58
	71
	50
	51
	84
	52
	52
	61
	63
	FA
	DSC
	79
	11
	74
	62
	81
	64
	52
	74
	38
	65
	63
	64
	DSC
	N/A
	555
	559
	414
	768
	363
	767
	656
	287
	632
	730
	849
	778
	N/A
	DSC
	133
	10
	92
	65
	107
	40
	39
	130
	59
	53
	67
	65
	% FA Imp
	38%
	18%
	27%
	41%
	23%
	43%
	29%
	8%
	23%
	29%
	54%
	48%
	% LA Imp
	-53%
	-27%
	-20%
	-80%
	-20%
	-13%
	-47%
	-47%
	-33%
	-60%
	-87%
	-33%
	The results seen in this table are similar to those seen in the previous analyses performed in this technical note. Each of the treatment runs improves the FA performance but degrades in LA performance when compared to the baseline. Figure 17 shows the two improvement metrics plotted against each other. Once again the points are colored by the warning time. The plot is essentially the mirror image of Figure 16. It is mirrored because that figure plotted Hit Rate vs. FA Rate, where Hit Rate is 1 – LA Rate.
	Figure 17. Graph of % FA Improvement vs. % LA Improvement compared to the FA32 Baseline. Top right corner is the most improved.
	To give an idea of how these results compare to the Initial Baseline, Table 25 shows the results of the conflict probe comparison of each of the treatment runs to the IBL. Once again, looking at the percent improvements, we notice that all runs significantly improve upon the False Alert performance, but not in the LA performance. However, unlike in the comparison to the FA32 Baseline, Run 6 does not degrade in LA performance at all. 
	Figure 18 plots the percent improvement of the FA versus the LA. This figure looks almost exactly the same as Figure 17, only the LA degradation is smaller. This table and figure only confirm that any findings when analyzed against the FA32 Baseline will hold true against the Initial Baseline.
	Table 25. Results of comparisons of each of the treatment runs to the Initial Baseline run.
	Lat
	0.5
	2.5
	0.5
	1.5
	1.5
	0.5
	1.5
	2.5
	2.5
	2.5
	0.5
	0.5
	Lon
	0.5
	1.5
	1.5
	0.5
	1
	1.5
	1.5
	0.5
	1
	0.5
	0.5
	1
	Like
	10/20
	3/8/10
	10/20
	3/8/20
	10/20
	3/8/10
	3/8/20
	10/20
	3/8/20
	3/8/10
	3/8/10
	3/8/20
	BL
	Proto
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	DSC
	DSC
	616
	606
	758
	452
	829
	446
	549
	865
	559
	475
	360
	433
	DSC
	FA
	100
	66
	92
	71
	88
	61
	68
	110
	74
	76
	69
	70
	DSC
	N/A
	599
	643
	465
	792
	398
	808
	698
	340
	682
	764
	886
	812
	FA
	DSC
	86
	56
	87
	61
	90
	68
	60
	86
	62
	71
	66
	63
	FA
	FA
	602
	989
	762
	634
	838
	624
	840
	972
	906
	784
	467
	546
	FA
	N/A
	782
	425
	621
	775
	542
	778
	570
	412
	502
	615
	937
	861
	LA
	LA
	13
	15
	12
	14
	13
	12
	14
	15
	14
	14
	14
	13
	LA
	VA
	3
	1
	4
	2
	3
	4
	2
	1
	2
	2
	2
	3
	N/A
	DSC
	135
	55
	104
	60
	107
	45
	47
	154
	64
	62
	66
	64
	N/A
	FA
	176
	93
	159
	109
	140
	89
	86
	206
	112
	121
	97
	102
	N.A
	LA
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	N/A
	VA
	5
	5
	5
	5
	5
	5
	5
	5
	4
	5
	5
	5
	VA
	LA
	9
	3
	5
	12
	4
	4
	7
	6
	5
	9
	13
	6
	VA
	N/A
	2
	2
	2
	2
	2
	2
	2
	2
	2
	2
	2
	2
	VA
	VA
	147
	153
	151
	144
	152
	152
	149
	150
	151
	147
	143
	150
	% FA Imp
	41%
	23%
	31%
	45%
	27%
	47%
	33%
	14%
	27%
	34%
	57%
	52%
	% LA Imp
	-38%
	-13%
	-6%
	-63%
	-6%
	0%
	-31%
	-31%
	-19%
	-44%
	-69%
	-19%
	Figure 18. Graph of % FA Improvement vs. % LA Improvement compared to the Initial Baseline. Top right corner is the most improved.
	3.2.2.1 Fuzzy Analysis Results

	The fuzzy alert metrics are used in addition to the traditional metrics to provide some insight where the traditional metrics cannot. Since the fuzzy metrics use continuous values, they are less susceptible to the noise among runs of ERAM, but this is only one advantage provided by these metrics. The metrics were developed to capture the severity of an encounter event, rather than a simple yes or no of whether the event was a conflict or not, like the traditional metrics do. By capturing this severity, many more events are available for analysis that were previously simply encounters and are now very severe events. Many of these events were considered False Alerts using the traditional metrics and are captured as Valid in the fuzzy metrics. The fuzzy metrics attempt to capture the events that should be alerted regardless of whether or not they are an actual conflict.
	In Table 26 we see the fuzzy alert values for each of the three main metrics. Though the measures provide similar numbers to the traditional metrics, it is important to note that, as with all fuzzy metrics, these numbers are calculated using a much different method than the traditional metrics and are only intended for comparison to fuzzy metrics of other runs. These fuzzy metrics should not be compared directly to the traditional metrics. 
	Table 26. Fuzzy Alert values for each of the treatment runs and the baselines.
	Run
	VA
	LA
	FA
	1
	261.05
	29.57
	740.02
	2
	260.04
	20.42
	763.46
	3
	267.02
	20.39
	815.86
	4
	266.14
	24.01
	629.73
	5
	271.44
	18.33
	837.26
	6
	264.99
	22.47
	594.09
	7
	268.33
	17.31
	730.34
	8
	266.51
	23.12
	954.01
	9
	267.22
	20.90
	748.33
	10
	264.45
	23.13
	694.92
	11
	253.96
	33.76
	502.16
	12
	262.68
	25.03
	570.33
	32BL
	260.31
	20.55
	949.11
	IBL
	257.33
	19.08
	994.56
	Table 27. Overall Fuzzy Alert Rates and Fuzzy False Alert Rates by separation category.
	FA Rate
	Horz
	<5
	<5
	5 ≤ h
	 < 8
	5 ≤ h 
	< 8
	8 ≤ h
	 ≤ 13
	8 ≤ h
	 ≤ 13
	>13
	>13
	Run
	LA Rate
	FA Rate
	Vert
	<1000
	≥1000
	<1000
	≥1000
	<1000
	≥1000
	<1000
	≥1000
	1
	0.102
	0.044
	 
	0.832
	0.342
	0.686
	0.210
	0.224
	0.035
	0.075
	0.023
	2
	0.073
	0.045
	 
	0.822
	0.197
	0.815
	0.300
	0.343
	0.118
	0.030
	0.011
	3
	0.071
	0.048
	 
	0.837
	0.334
	0.775
	0.295
	0.276
	0.055
	0.057
	0.023
	4
	0.083
	0.037
	 
	0.823
	0.210
	0.800
	0.276
	0.216
	0.052
	0.043
	0.011
	5
	0.063
	0.050
	 
	0.809
	0.338
	0.830
	0.316
	0.283
	0.071
	0.041
	0.022
	6
	0.078
	0.035
	 
	0.843
	0.172
	0.772
	0.283
	0.250
	0.051
	0.034
	0.009
	7
	0.061
	0.043
	 
	0.805
	0.202
	0.809
	0.313
	0.314
	0.091
	0.034
	0.010
	8
	0.080
	0.056
	 
	0.755
	0.353
	0.824
	0.302
	0.344
	0.097
	0.058
	0.025
	9
	0.073
	0.044
	 
	0.825
	0.204
	0.803
	0.301
	0.325
	0.101
	0.035
	0.012
	10
	0.080
	0.041
	 
	0.791
	0.201
	0.785
	0.287
	0.278
	0.089
	0.032
	0.010
	11
	0.117
	0.030
	 
	0.815
	0.203
	0.628
	0.198
	0.165
	0.033
	0.033
	0.011
	12
	0.087
	0.034
	 
	0.836
	0.201
	0.740
	0.266
	0.170
	0.033
	0.042
	0.010
	32BL
	0.073
	0.057
	 
	0.761
	0.330
	0.798
	0.298
	0.389
	0.124
	0.045
	0.024
	IBL
	0.069
	0.059
	 
	0.771
	0.334
	0.817
	0.312
	0.367
	0.130
	0.039
	0.026
	The fuzzy alert values can be analyzed in the same way the traditional alert type counts are. Although all of the treatment runs improve the FA value over the Initial Baseline, Run 8 does not improve over the FA32 Baseline, indicating that the real improvement in that run was achieved by the FA32 prototypes and not by the altered settings. Another thing to note that is very different than the traditional metrics is that four of the runs actually reduce the LA value from both baseline values. Runs 2, 3, 5, and 7 all reduce the LA value. These are four of the runs that were noted to have a low LA count in the traditional metrics. The other two runs that were noted in the traditional metrics were Runs 6 and 9. Although these two runs increase the LA value over the baselines, they only increase slightly and have considerably lower values than most other runs. These findings with the fuzzy metrics further verify our speculation that lowering the longitudinal conformance bounds has a negative impact on the LA performance of the conflict probe.
	Table 27 shows the fuzzy alert rates. These are similar to the alert rates shown for the traditional metrics, but the numerator and denominator of these metrics use fuzzy values. The LA Rate is the LA value from the Table 26 divided by the sum of the LA value and the VA value. The FA Rate is the FA value from Table 26 divided by the sum of the FA value and the No-call (NC) value. NC Value is not shown in the table above, but the NC value for each event is defined as:
	The variables S and R are signal and response, respectively, as defined in Section 0. The overall NC value for a run is the sum of all NC values for events in that run.
	The FA Rate columns on the right of the table are separated into categories by horizontal and vertical separation at the minimum max-ratio time.
	Figure 19 shows the fuzzy Hit Rate versus FA Rate of each of the treatment runs and the baselines, once again colored by percent difference of the warning time from the FA32 Baseline. Interestingly, there are quite a few runs that improve over the baseline in fuzzy hit rate, whereas all runs degraded in the traditional hit rate. 
	Figure 19. Fuzzy Hit Rate vs. Fuzzy False Alert Rate.
	3.2.2.2 Model Analysis

	The main analysis performed for this study used an integrated experiment with a D-optimal design that was described in Section 2.2.1. The design allows the analyst to model many different parameter settings with only the twelve experimental runs of ERAM and the FA32 Baseline. The model provides many options for analysis of the three factors. For initial discovery we look at a graph called the prediction profiler, which allows the analyst to observe effects of several factors on several response variables in one interactive graph. Since the model is a multi-dimensional model the graph must be interacted with in order to gain the full perspective of the data. In this document we provide several perspectives of the data.
	3.2.2.2.1 Implementation of Statistical Model

	The traditional metrics will be modeled separately from the fuzzy model (using the same warning time percentage in both models since it does not change). Using the data collected from the 12 runs and the baseline, the following leverage plots are obtained (Figure 20). In these plots the measured values (y-axis) are plotted against their modeled values (x-axis). Therefore, all points that fall on the diagonal are exactly modeled. The horizontal blue line represents the mean value of the samples and the red curves indicate the 95% confidence interval. Although the model captures between 95% and 100% of the variation in the study, which can be seen from the RSq value under each plot (RSq is the coefficient of determination R2), none of the responses are statistically significant. The significance is quickly determined in a leverage plot by determining if the confidence interval intersects the mean, where no intersection indicates insignificance. There are likely more than one interaction terms in the model whose interactions have little correlation and can be removed from the model for improvement.
	Figure 20. Traditional FA %, LA %, and WT % metrics leverage plots
	The following tables (Table 28, Table 29,) list the effect tests for each interaction of the various factors for each of the three responses currently being investigated. Highlighted are those effects that have a p-value of at least 0.7000, where p > 0.0500 indicates statistical insignificance. The two-way interaction of lateral and longitudinal bounds is highly insignificant for all three response variables, indicating that it should be removed from the model. Also, the two-way interactions of likelihood are highly insignificant for LA % and WT %. These values are below the initial threshold of 0.7000 for FA %, though are still much higher than 0.0500. These three interactions will therefore be excluded for the next iteration of the model.
	As an aside, removing only Lat and Lat*Likelihood interactions still produces a model with all three responses significant, although LA % only has a significance value of 0.0368, the R2 values would be 94% for LA %, 97% for WT % and 100% for FA %. The confidence gain of removing all three outweighs the degradation of the model fit. 
	Table 28. Initial Model Effect Test for the FA % Response Variable
	Source
	DF
	Sum of Squares
	F Ratio
	Prob > F
	Lat(0.5,2.5)
	1
	1644.2036
	844.9787
	0.0219
	Long(0.5,1.5)
	1
	265.7555
	136.5754
	0.0543
	Likelihood
	2
	869.0968
	223.3204
	0.0473
	Lat*Long
	1
	0.0058
	0.0030
	0.9653
	Lat*Likelihood
	2
	3.0997
	0.7965
	0.6210
	Long*Likelihood
	2
	6.6495
	1.7086
	0.4758
	Lat*Lat
	1
	14.0043
	7.1970
	0.2271
	Long*Long
	1
	13.2975
	6.8338
	0.2326
	Table 29. Initial Model Effect Test for the LA % Response Variable
	Source
	DF
	Sum of Squares
	F Ratio
	Prob > F
	Lat(0.5,2.5)
	1
	100.0000
	0.2813
	0.6896
	Long(0.5,1.5)
	1
	4011.1111
	11.2813
	0.1842
	Likelihood
	2
	1247.0588
	1.7537
	0.4710
	Lat*Long
	1
	88.8889
	0.2500
	0.7048
	Lat*Likelihood
	2
	62.2222
	0.0875
	0.9225
	Long*Likelihood
	2
	160.0000
	0.2250
	0.8305
	Lat*Lat
	1
	177.7778
	0.5000
	0.6082
	Long*Long
	1
	711.1111
	2.0000
	0.3918
	Table 30. Initial Model Effect Test for the WT % Response Variable
	Source
	DF
	Sum of Squares
	F Ratio
	Prob > F
	Lat(0.5,2.5)
	1
	239.0125
	20.5200
	0.1383
	Long(0.5,1.5)
	1
	103.6527
	8.8989
	0.2059
	Likelihood
	2
	193.9714
	8.3265
	0.2380
	Lat*Long
	1
	1.3764
	0.1182
	0.7892
	Lat*Likelihood
	2
	5.7534
	0.2470
	0.8181
	Long*Likelihood
	2
	9.0293
	0.3876
	0.7505
	Lat*Lat
	1
	0.5315
	0.0456
	0.8660
	Long*Long
	1
	15.1822
	1.3034
	0.4579
	From Figure 21, it can be seen that although R2 has degraded to the range of 91% to 100% (as opposed to 95% to 100%), the degradation is acceptable considering the huge impact on the confidence intervals of the three responses. Now all three response variables are significant. The new model is therefore Eq.29.
	Response:
	Eq.29
	Where:
	Lati = lateral conformance bounds in nautical miles, i = 0.5, 1.5, 2.5
	Longj = longitudinal conformance bounds in nautical miles, j = 0.5, 1.0, 1.5
	Likek = likelihood, k = “10/20”, “3/8/10”, “3/8/20”
	εn(ijk) = random error, n = 1, 2, … for all i, j, k
	Figure 21. Traditional FA %, LA %, and WT % metrics in the refined model
	The model also relies on the assumption that the random error εn(ijk) is normally distributed. The residual errors should therefore be tested for normalcy. Figure 22 shows normal probability plots, box plots, and histograms fitted to a normal density curve. Although the data set is sparse, the histograms and box plots do trend toward a symmetric distribution.
	Figure 22. Residual Error Distributions for the Response Variables from the Refined Model.
	Also, the normal probability plots illustrate that for each response, the model errors fall within the confidence interval along the diagonal line of the plot, indicating that each residual is at least approximately normally distributed. This provides evidence that the model is indeed appropriate.
	Table 31 shows that all of the remaining interactions are significant to FA %, so the model cannot be further refined by removing interactions. Lateral conformance bounds and their squares are the only interactions that are not significant for LA %, although they have low enough p-values to be of interest. The two-way interactions are not significant for WT %, though the square of longitudinal conformance bounds has a small p-value and is of interest, while the square of the lateral conformance bounds is not of much interest for WT %.
	Table 31. Summary of Refined Model Effect Tests for Response Variables.
	Source
	DF
	FA % P-Value
	LA % P-Value
	WT % P-Value
	Lat(0.5,2.5)
	1
	<0.0001*
	             0.2754
	0.0003*
	Long(0.5,1.5)
	1
	<0.0001*
	0.0006*
	0.0017*
	Likelihood
	2
	<0.0001*
	0.0423*
	0.0020*
	Lat*Lat
	1
	0.0365*
	             0.2528
	           0.7464
	Long*Long
	1
	0.0401*
	0.0447*
	           0.1203
	Since it is unknown at this point how the fuzzy counts will interact with the model, the initial model will be used for the starting point again. Since WT % is the same as the first model, it is already known that it would be insignificant with the initial model, though the fuzzy variables are found to both be insignificant as well (Figure 23). Table 32 and Table 33 show the effect tests for the fuzzy responses and can be referred to for the WT % values. It seems as one of Lat*Like and Long*Like should be removed, which will actually be enough for all effects to be significant, though removing both effects greatly improves confidence in WT % for little degradation of the other responses, much like the reasoning with the traditional LA %, both interactions will be removed. The new model is therefore Eq.30.
	Response:
	Eq.30
	Where:
	Lati = lateral conformance bounds in nautical miles, i = 0.5, 1.5, 2.5
	Longj = longitudinal conformance bounds in nautical miles, j = 0.5, 1.0, 1.5
	Likek = likelihood, k = “10/20”, “3/8/10”, “3/8/20”
	εn(ijk) = random error, n = 1, 2, … for all i, j, k
	In the fuzzy model, it is noticed that the interaction of the lateral and longitudinal conformance bounds must now be included in the model.
	Figure 23. Fuzzy FA %, LA %, and WT % metrics leverage plots.
	Table 32. Initial Model Effect Test for the Fuzzy FA % Response Variable.
	Source
	DF
	Sum of Squares
	F Ratio
	Prob > F
	Lat(0.5,2.5)
	1
	787.4953
	172.627
	0.0484
	Long(0.5,1.5)
	1
	129.8698
	28.4688
	0.1179
	Likelihood
	2
	1460.3960
	160.0668
	0.0558
	Lat*Long
	1
	15.0463
	3.2983
	0.3204
	Lat*Likelihood
	2
	0.3091
	0.0339
	0.9678
	Long*Likelihood
	2
	19.2427
	2.1091
	0.4378
	Lat*Lat
	1
	0.2271
	0.0498
	0.8602
	Long*Long
	1
	11.4582
	2.5117
	0.3583
	Table 33. Initial Model Effect Test for the Fuzzy LA % Response Variable.
	Source
	DF
	Sum of Squares
	F Ratio
	Prob > F
	Lat(0.5,2.5)
	1
	1098.7736
	95.4297
	0.0649
	Long(0.5,1.5)
	1
	2273.4201
	197.4491
	0.0452
	Likelihood
	2
	125.8989
	5.4672
	0.2895
	Lat*Long
	1
	683.0919
	59.3273
	0.0822
	Lat*Likelihood
	2
	124.6678
	5.4138
	0.2908
	Long*Likelihood
	2
	15.4549
	0.6711
	0.6534
	Lat*Lat
	1
	574.0277
	49.8549
	0.0896
	Long*Long
	1
	81.3805
	7.068
	0.229
	The refined fuzzy model gives the leverage plots in Figure 24.
	Figure 24. Fuzzy FA %, LA %, and WT % metrics in the refined model.
	The fit on the fuzzy metrics is overall better than the fit on the traditional metrics, both with similar p-values. It can be seen that the range of the R2 values in Figure 24 is 96% to 99%. Again, the random error is tested for normalcy, where it is already known from Figure 22 that the residual error for the WT % response has evidence for normalcy.
	Figure 25. Residual Error Distributions for the Fuzzy Response Variables from the Refined Model.
	Figure 25 shows nice distributions on the histograms, especially for Fuzzy LA % and the box plots show decent symmetry. The best evidence here is the normal probability plots, which show that the fuzzy response variables fit within the confidence interval around the diagonal suggesting they approximate normal error, thus the fuzzy responses have good evidence of having normally distributed error as well so the refined fuzzy model is claimed to be appropriate.
	Table 34 summarizes the p-values for the significance of interaction effect tests on the factors of the refined fuzzy model. For fuzzy FA %, the effect of squared lateral conformance bounds is insignificant, also the rest of the two-way interactions are not significant but have small enough p-values to be interesting. The squared longitudinal conformance bounds and the main effect of likelihood are not significant for fuzzy LA % although have small enough p-values to be interesting. None of the two-way interactions are significant for WT % and only the square of longitudinal conformance bounds has a small enough p-value to be interesting. Long*Long is the only effect that is not significant for any of the responses, but has a small enough p-value that there is not enough justification to remove it from the model.
	Table 34. Summary of Refined Fuzzy Model Effect Tests for Fuzzy Response Variables.
	Source
	DF
	Fz FA % P-Value
	Fz LA % P-Value
	WT % P-Value
	Lat(0.5,2.5)
	1
	<0.0001*
	0.0013*
	0.0010*
	Long(0.5,1.5)
	1
	0.0040*
	0.0003*
	0.0039*
	Likelihood
	2
	<0.0001*
	               0.2207
	0.0050*
	Lat*Long
	1
	               0.1376
	0.0051*
	            0.6316
	Lat*Lat
	1
	               0.8368
	0.0074*
	            0.7640
	Long*Long
	1
	               0.1839
	               0.1623
	            0.1509
	3.2.2.2.2 Examine Model Results

	Figure 26 shows the prediction profiler with the parameters set to the baseline values. This figure provides an idea of the model accuracy and trends in responses from each factor. By investigating the tails of the histograms in Figure 22, it can be shown that the maximum unsigned residuals are 2.08 for FA %, 15.33 for LA %, and 3.08 for WT %. These were caused by Runs 8, 6, and 1 respectively. These percentages convert into approximately 29.0 FAs, 2.3 LAs, and 10.2 seconds of warning time. These bounds are considered acceptable since we are already aware of the large uncertainty associated with the LA % response and the most this error will cause is an error of 2.3 LAs. We are also willing to accept an uncertainty of 29 FAs and 10 seconds of warning time for the purposes of this study.
	Figure 26. Prediction profiler of the model with baseline parameter settings.
	The metrics used in the prediction profiler are the percent differences from the FA32 baseline of warning time (WT %), Late Alert count (LA %), and False Alert count (FA %). These should not be confused with the “%FA” and “%LA” metrics from Table 24 and Table 25. The metrics here are calculated with the following formula:
	Where r is the FA count, LA count, or 25th percentile of warning time for one of the treatment runs, and b is the respective value for the FA32 baseline. The desire of the model is to decrease FA and LA count and increase warning time, so smaller values of FA % and LA % are desirable, whereas a larger value of WT % is desirable.
	Typically in an integrated experiment, the model is used in operations research in order to determine the optimal settings of the factors defined in the model. In this experiment, there is no simple definition of what is optimal since all responses cannot be optimized together. We instead try to determine the effects of the different settings in order to make recommendations. The first step is to determine the optimal settings for each metric independent of the other metrics.
	Figure 27. Optimal settings of the conflict probe to minimize the LA count ignoring all other response variables.
	Figure 27 shows the optimal parameter settings of the conflict probe in order to minimize Late Alerts, without considering any other response variables. As expected, given the earlier analysis, there is very little change in the parameters from the baseline settings. The model does suggest a small reduction in the longitudinal conformance bounds to 1.275 nm. This may be due only to error in the model, since it is only a decrease of 0.0075, which is within the error of the model that we know to be at most 2.3. The part of the model between 1.0 and 1.5 longitudinal shows very little change in the effect on LAs and could use some further investigation to determine if that is truly the case.
	The optimal settings to decrease the LA % show a decrease of -0.05%. Compare this value to the modeled baseline at 4.00%. There also is a slight decrease shown in the FA % by -3.48%. Finally, there is an increase in WT % by 0.54%. These parameter settings improve upon all responses, though the effects are very slight compared to those by other settings. 
	Figure 28. Optimal settings of the conflict probe to minimize the FA count ignoring all other response variables.
	Figure 28 shows the optimal settings of the CP to minimize FA % ignoring the effects on all other response variables. These settings are the opposite extreme of what the original baseline settings are. Lateral and longitudinal conformance bounds are both set to 0.5 nm, and the likelihood is set to 3/8/10, which was considered to be the most extreme change from the default 10/20 setting.
	In contrast to the settings for optimizing LA %, these settings for optimizing FA % have a major effect on all response variables, though a negative effect on LA % and WT %. False Alerts are decreased by a very significant 55% with these settings, but Late Alerts are increased by 73% and warning time is decreased by nearly 25%.
	Figure 29 shows the optimal settings to increase the Warning Time. This is not the goal of these parameter changes, but rather the goal is to not adversely affect the warning time while improving the FA and LA performance. This figure is included simply to show the effects of the parameters on the warning time.
	Figure 29. Optimal settings of the conflict probe to maximize the warning time.
	The parameter settings for optimal warning time are not too different from the baseline settings nor are they very different from the settings for optimal LA %. This is understandable since a higher warning time usually coincides with less Late Alerts.
	These three different settings give an idea of how the factors affect the three responses being analyzed. The False Alerts are affected positively by reducing the lateral or longitudinal, and by changing to either of the new likelihood settings. The Late Alerts and warning time follow the same trends and are affected negatively by reducing the lateral or by changing the likelihood. They are also affected negatively when the longitudinal is reduced too far.
	Next we want to look at the interactions of the factors in regards to each of the response variables. The interaction profiler plot will give an idea of how changing the value of each factor affects how the other factors affect the response.
	Figure 30 shows the interactions of the factors’ effects on the FA % response variable. Each cell of this plot is a graph of the response by the factor listed in its respective column. The multiple curves in each cell represent the different settings of the factor listed in its respective row. Each of the curves is labeled by which setting it is. The two continuous factors have curves for the minimum and maximum settings used, whereas likelihood has a curve for each of the three nominal values it was set to. If there is no interaction between the factors listed in the respective row and column of the cell, then each of the curves will be the same shape, only shifted up or down. If the curves cross or change shape, this indicates there is some interaction between the two factors.
	Figure 30. Interaction profile of the factors effects on the FA % response variable.
	In Figure 30 we can see there is no interaction between any two factors. We expect this since we removed all two-way interactions from the model. Having no major interactions for this response gives the advantage of being able to change the setting of a single parameter to reduce the False Alerts without being concerned about the settings of the other parameters.
	Figure 31 shows the interaction profile of the factors’ effects on the LA % response variable. Again there is no interaction as expected.
	Figure 31. Interaction profile of the factors’ effects on the LA % response variable.
	Figure 32. Interaction profile of the factors’ effects on the WT % response variable.
	Finally, Figure 32 shows the interaction profile of the factors’ effects on the WT % response variable. Still the interactions are not existent as expected since no two-way interactions remain in our model.
	Figure 33. Prediction profiler with settings that are a combination of the optimal values for each response.
	Now that the optimal settings for each of the responses have been found and determined to be very different from one another, the prediction profiler can be used to vary the settings based on what has been learned so far. Figure 33 shows one option of combining what has been learned to generate parameter settings. The lateral and likelihood were determined to have a major effect on the False Alerts whereas the longitudinal was determined to have a major effect on the Late Alerts and warning time. These settings combine the optimal longitudinal for warning time, which was also very close to the optimal for the Late Alerts, with the optimal lateral and likelihood for the False Alerts. The settings provide an over 48% decrease to false alerts, with a nearly 25% increase to Late Alerts and over 16% decrease in warning time. The absolute optimal settings for False Alerts only provided less than an 8% higher decrease to False Alerts, but cost 50% more Late Alerts and 8% less warning time.
	Figure 34. Prediction profiler with a combination of optimal settings of the responses.
	Figure 34 shows the prediction profiler with changing the lateral and longitudinal based on what has been learned, but leaving the likelihood at the baseline setting of 10/20. These settings do not provide as large a decrease to the False Alerts, but also do not increase the Late Alerts or decrease the warning time as much. These settings also would provide a performance increase without changing the likelihood, which may be a desirable result, since the likelihood may need to be investigated further before it should be changed.
	The prediction profiler is also applied to the fuzzy metrics with the expectation of similar findings to the prediction profiler of the traditional metrics. Figure 35 shows the prediction profiler at baseline configuration. Decreasing the fuzzy FA percentage (FzFA%) and fuzzy LA percentage (FzLA%) is desirable, whereas increasing the warning time percentage (WT%) is desirable.
	Figure 35. Prediction profiler of the model with baseline parameter settings.
	Figure 36 gives optimal settings for late alert reduction only. These settings are different because the late alerts curve by lateral conformance bounds has changed in the fuzzy metrics significantly. The prediction does suggest that decreasing only the lateral conformance bounds will positively influence the conflict probe’s late alerts count down to about 1.5 nautical miles.
	Figure 36. Optimal settings of the conflict probe to minimize the LA count ignoring all other response variables.
	Figure 37 gives optimal settings for false alert reduction only. These settings are the same ones suggested by the traditional metrics, and comparing the trending of the false alert curves, it is apparent that the fuzzy metrics provide a similar prediction of false alerts compared to the traditional metrics. Figure 38 gives optimal settings for warning time maximization only. The same warning times are being used here (giving the same optimal settings). The optimal settings of warning time show very little change in fuzzy late alerts although the false alerts are still inversely correlated with the late alerts.
	Figure 37. Optimal settings of the conflict probe to minimize the FA count ignoring all other response variables.
	Figure 38. Optimal settings of the conflict probe to maximize the warning time.
	Figure 39 still gives 3/8/10 as the best likelihood setting for reducing false alerts sacrificing warning, but not having as great an impact on late alerts. 1.35 nautical mile longitudinal conformance bounds are still optimal giving a benefit to both warning time percentage and fuzzy late alerts for a smaller reduction in fuzzy false alerts. Finally the 0.5 nautical mile setting for lateral conformance bounds now has the largest negative impact on fuzzy late alerts and warning time percentage, whereas 2.5 nautical mile conformance bounds have the best warning time percentage and very little impact on fuzzy late alerts. This setting was chosen since the total setting gives a 23% improvement to fuzzy false alerts for 6% loss of warning time and 2% loss of late alert performance. Sacrificing more warning time will improve both alert performances to 1.5 nautical miles (32% improvement to FA, 11% improvement to LA, and 12% loss of warning time) then late alert performance degrades quickly below 0.65 nautical miles (39% improvement to FA, 6% loss to LA, 16% loss of warning time).
	Figure 39. Prediction profiler with settings that are a combination of the optimal values for each response.
	3.2.2.2.3 Factor Effects

	In the previous sections, many discoveries were made as to the effects of each of the factors on each of the responses. Several of these effects were seen from many different perspectives through the model and through analysis of the discrete values.
	A recurring theme through each analysis has been the effect of the longitudinal conformance bound. Early in the analysis it was determined that longitudinal had a major effect on the Late Alerts and warning time, and each subsequent analysis further confirmed this suspicion. Something that was discovered later, when looking at the results of the model, was that the longitudinal bound does not have nearly as large an effect on the False Alerts as it does the Late Alerts. Finally, the conformance bound has the largest effect on False Alerts between 1.5 and about 1.0 nm, and then the slope of the tangents to the curve become much flatter between 1.0 and 0.5 nm. Likewise, the effect of the longitudinal conformance bound on the False Alerts is not nearly as large as the lateral conformance bound’s is.
	The lateral conformance bound was determined to have a major effect on the False Alerts, decreasing them by over 26% when no changes are made to the other parameters. The lateral has almost no effect on the Late Alerts, increasing them by only 12% at the most, as opposed to the longitudinal that can increase them by up to 48%. Lateral does have a significant effect on the warning time, decreasing it by less than 10%, which is slightly higher than the 7% decrease caused by the longitudinal.
	Finally, the likelihood can have a major effect on all responses. By changing only the likelihood the FAs can be decreased by 18%, the LAs can be increased by up to 27% and the warning time can be decreased by up to 9%. There are still many open questions with likelihood since only three different parameter settings were used. Both of the changes from the default decreased the minimum notification time to three minutes, which is also the required minimum warning time. Having this value right on the edge of the requirement may have caused many more Late Alerts than it reduced False Alerts, so it may be best to have a larger minimum in the likelihood function.
	It is important to note the three factors’ effects on the warning time. Although each of them significantly impact the warning time, the highest decrease by any single factor is only 10%, and the highest decrease overall is not more than 26%. This 26% is a significant decrease, but the baseline settings of ERAM were strategically chosen to increase the warning time above what was then the requirement of five minutes. So, although the warning time is decreased significantly at the lowered settings, the 25th percentile of warning time is still far above the three minute minimum warning time that was used as the requirement in this study.
	3.3 Example Flights

	A detailed statistical analysis has been provided in the previous sub-sections of Section 3 on the entire sample scenario of air traffic. This section is dedicated to an in depth description of a set of selected example flights, their flight plans in the NAS, their ERAM trajectory and conflict predictions, and their accuracy results. It illustrates how the performance evaluation is being applied on these individual flights and how the prediction errors manifest themselves in the metric calculations.
	3.3.1 Flight Example 1

	Flight A (red) is a McDonnell Douglas MD-83 equipped with RNP and RVSM (Code /Q) flying from Dallas/Fort Worth International Airport (KDFW) to Bradley International Airport (KBDL). In each figure, it is moving from lower left to upper right.
	Flight B (green) is a Boeing 737-800 also with aircraft equipment code /Q flying from Fort Lauderdale-Hollywood International Airport (KFLL) to Newark Liberty International Airport (KEWR). In each figure it is moving from bottom left to top right.
	These flights become sufficiently close to trigger a false alert with baseline settings while both are at the same altitude, level, and cruising. The dots represent the actual track points that each aircraft are flying. The disks are centered on each aircraft and have a 2.5nm radius (minimum separation requirement violated when disks intersect). The line path extending through each disk is the predicted trajectory of each flight created by the conflict probe. Finally the boxes (both sharp and rounded corners make a box) that are centered at a point along the trajectory, in this instance not far from the current time, represent the conformance boxes, which extend from the minimum separation box (5nm sides) by 2.5nm on either side laterally and 1.5 nm on either side longitudinally. The final dimensions of the boxes are therefore 10nm lateral x 8nm longitudinal. The intersection of a conformance box rectangle with sharp corners with a conformance box rectangle with rounded corners show pictorially what the conflict probe is measuring. The intersection as described gives the conflict probe’s definition of separation violation as long as the flights have a horizontal separation not exceeding (e.g.  nautical miles). Keeping this slight limitation of the visualization in mind, these boxes are very useful for understanding how the conformance boxes are interacting in each situation.
	Figure 40 shows a conflict detection occurring 11 seconds after a trajectory rebuild by Flight B. The figure makes sense as being the point of first contact between the rectangle and the rounded-corner rectangle. The conflict detection ultimately creates a false alert, since Flight B passes safely behind Flight A.
	Figure 40. Baseline conflict detection (2.5 by 1.5 conformance bounds).
	Figure 41 shows the effect on detection when the longitudinal bounds are reduced to the minimum tested value of 0.5nm. Here the estimated boxes do not even intersect at the same time. In fact no prediction was made because the conformance bounds are never violated here. The conflict prediction conformance bounds are coupled to the trajectory adherence bounds in these runs so the trajectories will potentially update more often, since speed differences will have a larger impact on the system with reduced longitudinal bounds. This can be seen by the more current trajectory being used by Flight A as compared to the baseline scenario.
	Figure 41. Reducing only longitudinal bounds to 0.5.
	In Figure 42 only lateral conformance bounds were tightened, giving conformances boxes of 0.5 by 1.5 nautical miles. In this situation, the conflict prediction was not made, but it was close to being called, remembering that the pictorial conformance boxes intersecting must do so with a rectangle and a rounded-corner rectangle.
	Figure 42. Reducing only lateral bounds to 0.5.
	Figure 43 shows both conformance bounds reduced to mid-level values, being 1.5nm and 1.0nm for lateral and longitudinal conformance respectively. No prediction is made at these settings. The trajectory of Flight A is significantly older than that in Figure 41 due to the increase of longitudinal conformance bounds.
	Figure 43. Mid-level conformance bounds (1.5 by 1.0).
	Finally, Figure 44 shows the case that the conformance bounds are reduced to the minima being tested, 0.5 by 0.5 nautical miles. This of course offers the largest gap between the conformance boxes, but since these boxes are so small, one expects a reduction of false alerts to come at the price of loss of warning time and increase in missed alerts.
	Figure 44. Low-level conformance bounds (0.5 by 0.5).
	3.3.2 Flight Example 2

	In the second example, reducing lateral conformance does not deter detection of a valid conflict, but reducing longitudinal conformance causes a missed alert.
	Flight C (red) is an Airbus A320 with aircraft equipage \Q flying from Orlando International Airport (KMCO) to John F. Kennedy International Airport (KJFK). In each figure it is approaching the crossing point from the left.
	Flight D (green) is an Airbus A310 with aircraft equipage \Q flying from Vilo Acuña Airport in Cuba (MUCL) to Montréal-Pierre Elliott Trudeau International Airport in Canada (CYUL). In each figure it is approaching the crossing point from the right.
	These flights are at the same altitude, level, and cruising. Each figure shows the time of detection for each setting of the conflict probe. Figure 45 shows that the valid conflict detection was made with ample warning time, and this prediction must have persisted as it did not become a retracted false alert.
	Figure 45. Baseline settings showing a valid conflict detection.
	Figure 46 shows the effect of reducing the lateral conformance bounds to the minimum setting of 0.5nm. Here the detection cannot be made until the trajectories become much closer than needed in the baseline. However the prediction is made slightly earlier than the baseline. This is attributable to better quality trajectories. Here Flight C has just created a new trajectory and instead of Flight D being predicted to pass in front of Flight C, as in the baseline, now the trajectories predict that the flights will be side-to-side when entering conflict. This has to do with the delay caused by likelihood. The baseline actually detected the alert earlier than the case in Figure 46, though it waited to notify because of likelihood. In the reduced lateral conformance bounds treatment, the prediction was not able to be made until much later and then was immediately presented with improved accuracy instead of being held back by the likelihood function.
	Figure 46. Lateral conformance bounds only are reduced to minimum.
	Finally, Figure 47 shows the result of using conformance bounds where only the longitudinal conformance is reduced to minimum. Here the larger lateral conformance bounds allow the detection of the conflict in the same manner as in the baseline, but the predictions are being retracted by the probe until the final prediction is made below minimum warning time and retraction is no longer possible, turning the prediction into a missed alert. Tightening the longitudinal bounds translates to a greater confidence in speed profiling, though the conflict probe is less certain causing the predictions to be detected and then retracted due to the lack of confidence in speed profile.
	Figure 47. Longitudinal conformance bounds only are reduced to minimum.
	4 Recommendations and Future Work
	This report documents an initial study on the prototype enhancements required to advance the ERAM strategic conflict probe and allow it to be implemented within the radar controller’s display. It is an initial study because it focuses mostly on altering parameter settings of functionality that already exists in ERAM. It does make use of one prototype enhancement on the trajectory modeling subsystem (see item #1, Table 1), but the experiment focuses on three factors that can be implemented in ERAM today without any software changes. Being an initial study, development of metrics and methodology was accomplished that can be utilized on all sub-sequent experiments. These metrics and methods are documented in Section 2 of this report. Furthermore, the study is limited in its use of a single data set of roughly 6-7 hours of traffic and about 2000 recorded flights. However, additional data sets have been collected from other facilities and traffic days. These scenarios will be used for follow-up experiments to both verify the results of this initial experiment and expand it by examining other factors and prototypes.
	As presented in Section 3.1, task one of this report showed that the FA32 trajectory modeling prototype did have a significant improvement on both trajectory and conflict prediction performance. It was subsequently used for the experiment of task two, which is the main focus of this report. As outlined in the experimental plan in Section 2.2 and illustrated in the results in Section 3.2, the experiment focused on three key factors: longitudinal and lateral conformance or adherence bounds, reducing them for a range of values from operational settings of 1.5 and 2.5 nm, respectively, to as low as 0.5 nm. The third factor was changes to configurable parameters within the likelihood function. This algorithm assesses each conflict prediction and depending on its confidence estimate, may delay the alert notification until the estimate is improved or prediction is more imminent. The current ERAM operational system bypasses this calculation for all alerts predicted to begin within the next 10 minutes and applies the likelihood function for conflict detections beyond 10 minutes only. The two other levels examined in this experiment reduced this minimum threshold from 10 minutes to 3 minutes and changed other parameters associated with the function. For one level, it reduced the upper bound to 10 minutes and for the other left this setting at 20 minutes. As a result, these three factors, including longitudinal conformance bounds, lateral conformance bounds, and likelihood function, were simultaneously altered using experimental design techniques and ERAM run at twelve different treatment and two baseline runs.
	The longitudinal conformance bound was found to significantly increase the Late Alerts when reduced too far from its original setting. The lateral conformance bound was determined to produce a significant decrease in False Alerts when reduced to the minimum parameter setting of 0.5 nm, without causing a major negative impact on Late Alerts. Though there is some interaction of these two settings with the likelihood, the interactions seen were minimal, so recommendations can be made independent of the likelihood function.
	The longitudinal conformance bounds should not be lowered too far from the original setting of 1.5 nm. At a minimum, it should be set to 1.189 nm. However, to determine the best value of the longitudinal, a follow up study should be performed that varies the longitudinal conformance bounds between 1.0 and 1.5 nm. The study should be performed as an integrated experiment and contain center point runs at 1.25 nm longitudinal setting. Since no interactions were found between the lateral and longitudinal bounds, it is not necessary to include the lateral as a factor in this experiment.
	The lateral conformance bounds were found to almost linearly decrease the False Alerts when lowered from 2.5 to 0.5 nm. Though the warning time was impacted, there was not a major impact on Late Alerts when this change was made. It is recommended that the lateral conformance bound be lowered significantly from its original setting of 2.5 nm. A setting of 0.5 nm was found to provide the biggest impact of False Alerts, but more analysis is needed before a setting can be recommended. Once again, since no interaction was found with the longitudinal bound, it is not necessary to include it as a factor in this experiment.
	Likelihood was determined to have a major effect on False Alerts, Late Alerts, and warning time. Unfortunately, it is not as easy to make a recommendation for a setting of likelihood. The three different settings of likelihood used in this study provided some insight to how the function affects the performance of the probe, but it is still not completely understood. There were two main findings in this study. The first is that likelihood alone can have a major effect on the performance of the probe. The second is that, because of the longitudinal inaccuracy of the probe, setting the minimum time of the likelihood function to the same as the minimum warning time requirement causes extra Late Alerts that should not have been. In order to further understand the likelihood and how the minimum, maximum, and middle setting of the probe affects the performance a separate experiment should be performed. This experiment should contain far more than only the three settings that were used in this experiment. An experiment is being planned in the year following this publication to precisely address these issues.
	Overall, the study provides important insights into the three factors examined. It developed a number of metrics, including traditional counts and rates of false and late detections as well as implementation of fuzzy detection theory that extracted even more information out of the data. The study also implemented advanced experimental design techniques that both maximized use of the ERAM runs and examined the potential of interactions between factors. The study provides a strong foundation from which a number of additional experiments are being planned and underway.
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	Appendix A
	This appendix provides more details of the Fuzzy Alert analysis. Section A.1 describes the logic used by the Fuzzy Alert Re-Evaluator software application, and Section A.2 provides details of computations performed for the Fuzzy Alert analysis.
	A.1 Fuzzy Alert Logic

	The Fuzzy Alert Re-Evaluator (FARE) program assigns fuzzy values to events from the Strategic Alert Evaluator (SAE) program. There are two types of events: encounter pairs with no associated conflict predictions presented, and encounter pairs with one or more conflict predictions presented (alerts). An encounter pair is defined to be a pair of aircraft that passed both spatial and temporal gross filters. If two aircraft are found to be an encounter pair more than once, then each event is treated as a separate encounter pair. For easier reference, each encounter pair is given a unique integer identification number greater than zero called the encounter index. Events marked with encounter indexes of zero or negative one are special case events in SAE that will be described later in this appendix.
	Some information relevant to FARE is the data associated with an alert or encounter pair. For each encounter pair the time of closest approach, called the min-max ratio time, is recorded. Alerts have a predicted conflict start time (PCST), which is the time at which the conflict probe predicts an encounter pair will become a conflict pair (an encounter pair that also is violating minimum separation standards), and a predicted conflict end time (PCET). The other times recorded in a conflict prediction are the actual conflict start time (ACST) marking the start of the conflict duration (if it occurred) in the encounter pair, and the actual conflict end time (ACET) marking the end of the conflict duration (if it occurred) in the encounter pair, NOTIF_START_TIME marking the beginning time of the alert, and NOTIF_END_TIME marking the ending time of the alert. Also associated with alerts are predicted separation values at the predicted min-max ratio time. 
	User-defined parameters include the MAX_LOOK_AHEAD_TIME which defines the maximum duration of the BUFFER_TIME used in signal calculation of false alerts. Additionally, MIN_WARNING_TIME defines the minimum time before ACST in which the NOTIF_START_TIME can occur before becoming a late alert (which needs to match the value used by SAE). Finally, the minimum separation values MIN_HORZ_SEP and MIN_VERT_SEP are user-defined parameters in FARE which should match those used in SAE.
	At the top-level of the flowchart, presented in Figure 48, the program begins by gathering all of the conflict predictions and encounter pairs. Each presented conflict prediction made by the conflict probe needs to map onto an encounter pair, however SAE does not provide mapping for all discarded alerts. In Figure 48, any conflict prediction that is not mapped to an encounter pair is matched by finding the encounter pair involving the same aircraft and with the closest min-max ratio time to the alert’s PCST, though it is still possible to not have a mapping after this matching, which is handled in the subsequent flowcharts. The response for conflict predictions must be evaluated using the flowchart shown in Figure 49. Encounter pairs with no associated conflict predictions were never presented as potential conflict pairs by the conflict probe, and thus have no associated response. Both types of events then have their signal computed using the flowcharts in Figure 50 and Figure 51. With both signal and response calculated, the flowchart in Figure 52 provides the fuzzy classification of the event into the valid alert, late alert, false alert, and correct no-call categories.
	Figure 48. High-level FARE Process Flow
	Figure 49. Fuzzy Response Computation Process Flow
	Conflict predictions enter the flowchart presented in Figure 49, and are separated into two categories. The “yes” branch corresponds to conflict predictions that were determined to be late alerts discarded by SAE, or any non-discard that is not a false alert (excluding correct no-call events because they are not explicitly created by SAE). The “no” branch then corresponds to the remaining discards and false alerts. The reason this split is made is that the latter category does not have an intuitive notion of warning time, since no actual conflict occurred. In this case, R1 is set to one so that total response is reduced to R2. On the other hand, no-call events fail to generate an alert for an actual conflict so warning time is set to zero in this case. For the remaining events, WARNING_TIME is simply ACST – NOTIF_START_TIME, the time between when the alert was made and the actual conflict began. WARNING_TIME is forced to be no less than zero to reflect the notion that making a prediction after the fact has the same perceived utility as making no prediction at all. The ratio of WARNING_TIME to MIN_WARNING_TIME is taken and if this ratio is greater than or equal to one, R1 is set to one; otherwise R1 is set to the square of the ratio to reflect a lateness penalty. END_TIME is the last possible time an alert could update before becoming late, so it is simply ACST – MIN_WARNING_TIME for the “yes” branch where a conflict actually occurred. For the “no” branch where no conflict actually occurred the END_TIME needs to be interpreted as a perceived threshold and is thus PCST-MIN_WARNING_TIME. Once END_TIME is found the last amendment to the predicted horizontal separation during the duration of the conflict prediction notification set is retrieved up to the END_TIME, after which no amendments could be usefully posted. The ratio of this predicted horizontal separation to the MIN_HORZ_SEP is taken and R2 is calculated by the spline as described in Section 2.1.2.2. Finally, the response is calculated as R1*R2.
	In the flowchart shown in Figure 50, events are split into three groups: encounter pairs with no associated conflict predictions, conflict predictions, and error events. Encounter pairs with no associated conflict predictions are labeled with reason code = ENC and their signal is computed around their already-recorded min-max ratio time by using the flowchart in Figure 51. ENC becomes ENC_A if at any point along either track, an APDIA was encountered when computing the signal at min-max ratio time. It is noted that any time the flowchart in Figure 51 is used, ‘_A’ will be appended to the reason code label to warn that the computed value may be skewed due to the presence of an APDIA. The second category includes any event that has an error code (0 or -1) encounter index from SAE. For these events, the reason code is set to SIGNAL_0 and the signal is set to 0, with warning values (-9999999) recorded instead of actual values such as min-max ratio, min-max ratio time, etc. The third category, conflict predictions, leads to more complex flowchart paths than the other two categories. The simplest path is when a conflict prediction cannot be matched to an encounter pair, and the event is processed as if it belonged to the SIGNAL_0 category previously discussed. Otherwise, the conflict predictions are again split into two categories exactly as in the response calculations. The “yes” branch matches to the “yes” branch of the response calculation and represents alerts made about actual conflicts, so these can be treated exactly the same as the ENC category. This leaves the “no” branch, corresponding to false predictions and the most involved branch. All conflict predictions associated with an encounter pair are first sorted by NOTIF_START_TIME so that the duration between the current false alert event and its successor can be calculated. BUFFER_TIME is taken to be the minimum of this duration and MAX_LOOK_AHEAD_TIME. The min-max ratio and min-max ratio time are then computed for the duration of the alert (between NOTIF_START_TIME and NOTIF_END_TIME) and for the duration of the buffer (between NOTIF_END_TIME and NOTIF_END_TIME+BUFFER_TIME). The encounter pair min-max ratio is not used here since the event does not necessarily align with the encounter pair min-max ratio time due to the event being a false alert. S1 is set to zero if the min-max calculations fail due to no track data or being within an APDIA for the duration of the event. The same is done for S2 if the calculations fail in the buffer or the buffer has zero duration. If both fail the reason code is IN_NOTIF_A and warning values are set as in SIGNAL_0 meaning the signal is ultimately zero here but is assumed to be within the event’s duration (IN_NOTIF) and the assumed reason for failure is the presence of an APDIA (_A). Although not necessarily true, these IN_NOTIF_A events are easy to distinguish from actual IN_NOTIF_A events due to the warning values set and would require further investigation to determine actual cause of failure. If both S1 and S2 do not fail, then there are two possible cases. The first case is when S1 is not set, implying a min-max ratio and an associated min-max ratio time were successfully computed for the event, and also the calculated min-max ratio is less than or equal to that of the buffer’s, where this condition is assumed true if S2 was set, implying a min-max ratio and an associated min-max ratio time were not found in the buffer. This case can be restated as determining the aircraft were closer during the duration of the event than they were immediately after the event, therefore the signal is potentially stronger during the event than immediately after it. This case provides the reason code of IN_NOTIF. The second case is the reverse of the first case, where the aircraft were found to be closer after the event than during it implying the event would have potentially computed a higher signal if it had not been deleted, which means the false alert was most likely an early deletion event. This case therefore provides the reason code of ED_NOTIF. In either case, signals S1 and S2 are computed for the duration of the event and the buffer respectively if they have not already been set by failing to compute min-max ratio and its time. IN_NOTIF events are the only events assigned an early deletion value (1 – S2), which provides a score of how “stable” the situation was when the false alert was removed. ED_NOTIF events are paired with ED_MISS events, which are the only new events that this program creates. ED_MISS events are assigned a response of zero and a signal of S2, and these events denote the situation of missing potentially high signal by deleting a false alert. In either case the signal for the actual event is given as S1.
	The flowchart shown in Figure 51 is used to compute signal at some time. The track data is retrieved for the aircraft, as well as their active clearance altitudes. Any track point with altitude within 300ft of the ACTIVE_CLEARANCE is said to be in vertical adherence. If the point at TIME, the time about which the signal is being calculated, is in vertical adherence all points within the computation region are set to their ACTIVE_CLEARANCE if they are within 300ft of it, called snapping altitude to clearance. If the point at TIME is out of vertical adherence, the path is more complex. First, the number of points out of vertical adherence to both their ACTIVE_CLEARANCE and PREVIOUS_CLEARANCE (immediately before active) is calculated. If the result is no more than 4 data points and does not represent more than half of the sample points, it is said that overall the aircraft is in vertical adherence and the outliers are snapped to their respective clearances (either ACTIVE or PREVIOUS). If it is instead found that most points are out of adherence, it is checked to see if the vertical separation at TIME is less than 1.1*MIN_VERT_SEP and the horizontal separation at TIME is less than MIN_HORZ_SEP, indicating the aircraft are either in conflict or near conflict due to vertical separation while out of adherence. In case this is due to a spike in the data, the altitude at TIME is set to the middle value of the average altitudes before and after the current TIME. After this is done, all points are snapped to clearance as was done when the current point was in vertical adherence, and the vertical profile is said to be cleaned and ready for use. If it is found that at TIME both aircraft are in vertical adherence and separated by at least MIN_VERT_SEP, then by the vertical adherence rule it is said that the aircraft are well separated and have signal 0. Otherwise, vertical and horizontal separation are calculated at TIME, then HORZ_CLOSURE_RATE (up to TIME), ENCOUNTER_ANGLE_WEIGHTING (up to TIME), VERT_CLOSURE_RATE, ENCOUNTER_ANGLE, and the number of points with ENCOUNTER_ANGLE within 15 degrees of 0 or 360 are computed for each point in the signal region. After this, HORZ_CLOSURE_RATE, VERT_CLOSURE_RATE, ENCOUNTER_ANGLE, and ENCOUNTER_ANGLE_WEIGHTING are averaged, the percentage of points with ENCOUNTER_ANGLE within 15 degrees of 0 or 360 is calculated, and the standard deviation of ENCOUNTER_ANGLE is calculated. From these values, the signal is computed using the formulas in Section 2.1.2.2.
	Figure 50. High-level Fuzzy Signal Computation Process Flow
	Figure 51. Process Flow for Computation of Fuzzy Signal at a Point in Time
	Figure 52. Determining Fuzzy Alert Values
	Following the calculation of response and signal, the final values for VALID_ALERT, LATE_ALERT, FALSE_ALERT, and CORRECT_NO_CALL are computed in the flowchart, presented in Figure 52.
	A.2 Additional Computations for Fuzzy Alert Logic

	Eq.22 is a weighting function for flight pair geometry; as such its parameters are relative angle and relative position of the object of the pair to the subject of the pair (Figure 9). Certain cases of the weighting have been solved in the following to give a better idea as to how it performs.
	Metal-to-metal at any relative angle is a certain conflict, thus .
	At hmin given any relative angle, the weighting is:
	The minimum value of the weighting is 0.5.
	If the object has positive lateral distance from the subject, it is on the right of the subject. If the object has negative lateral distance from the subject, it is on the left of the subject. Approaching from the right is the mirror of approaching from the left, thus .
	Flights with the same heading are related by:
	Flights with the same heading at hmin have exactly the weighting:
	Flights that are at hmin with only lateral distance separating at 90 degrees have exactly the weighting:
	Flights that are at hmin with only lateral distance approaching at 90 degrees have exactly the weighting:
	Flights that are at hmin with only longitudinal distance with exactly opposite headings directed at each other are certainly in conflict.
	Flights that are at hmin with only longitudinal distance with exactly opposite headings separating from each other have a low chance of being in conflict.
	Appendix B
	The following repeats the work done in Section 3.2.2, but now with adherence settings applied. It is expected that performance will improve on the whole from 3.2.2 though the same patterns are likely to emerge. In Table 35, the alert type counts of each of the twelve runs and the two baseline runs are shown, it is easy to see that the total number of FAs, LAs, and MAs have decreased significantly without affecting VAs (except for a slight impact in IBL). Except Run 11, it is difficult to say much about the LAs and MAs simply due to there being so few in the new data set. It is also seen here that every run has fewer false alerts than each baseline.
	Table 35. Alert type counts for each of the twelve runs and the two baselines.
	Run
	VA
	STD VA
	LA
	MA
	FA
	1
	155
	125
	2
	1
	294
	2
	159
	131
	1
	1
	524
	3
	160
	131
	1
	1
	365
	4
	151
	120
	2
	1
	350
	5
	160
	130
	1
	1
	395
	6
	161
	132
	1
	1
	325
	7
	156
	127
	1
	1
	447
	8
	156
	126
	2
	1
	475
	9
	157
	128
	1
	1
	475
	10
	154
	123
	2
	1
	425
	11
	150
	119
	4
	1
	245
	12
	158
	129
	1
	1
	299
	32BL
	163
	135
	1
	1
	540
	IBL
	146
	134
	1
	0
	535
	By only looking at the counts of LAs and MAs it is difficult to make much of a judgment about late alert performance, though the adjusted LA metric is of interest (Table 36). Again Run 11 has the worst performance by this metric, although now all other runs are comparable to 32BL. IBL has a superior score in this metric.
	Table 36. Late Alert plus Missed Alert count and Adjusted Late Alert value for each of the twelve runs and the two baselines.
	Run
	LA+MA
	Adj. LA
	1
	3
	1.21
	2
	2
	1.17
	3
	2
	1.17
	4
	3
	1.21
	5
	2
	1.17
	6
	2
	1.17
	7
	2
	1.17
	8
	3
	1.21
	9
	2
	1.17
	10
	3
	1.21
	11
	5
	2.41
	12
	2
	1.17
	32BL
	2
	1.17
	IBL
	1
	0.22
	Table 37 also supports what was found in 3.2.2. There it was found that the baselines had the lowest LA Rate and the highest FA Rate and that FA Rate is greatly diminished when aircraft are well-separated vertically. It is not fair to focus on LA Rate heavily, though the same pattern has emerged, since there are so few samples there, however the FA Rates follow the same pattern, with the baseline runs having the highest rates, although now Run 2 is close to having the same rate.
	Table 37. Overall Alert Rates and False Alert Rates by separation category.
	FA Rate
	Horz
	< 5
	< 5
	5 ≤ h < 8
	5 ≤ h < 8
	8 ≤ h ≤ 13
	8 ≤ h ≤ 13
	> 13
	> 13
	Run
	LA Rate
	FA Rate
	Vert
	< 1000
	≥ 1000
	< 1000
	≥ 1000
	< 1000
	≥ 1000
	< 1000
	≥ 1000
	1
	0.023
	0.018
	1.000
	0.066
	0.673
	0.140
	0.108
	0.008
	0.028
	0.003
	2
	0.015
	0.032
	1.000
	0.063
	1.000
	0.241
	0.411
	0.089
	0.014
	0.003
	3
	0.015
	0.022
	1.000
	0.059
	0.867
	0.213
	0.169
	0.014
	0.027
	0.003
	4
	0.024
	0.021
	1.000
	0.072
	0.878
	0.204
	0.122
	0.021
	0.016
	0.002
	5
	0.015
	0.024
	1.000
	0.063
	0.960
	0.233
	0.184
	0.029
	0.018
	0.003
	6
	0.015
	0.020
	1.000
	0.054
	0.860
	0.206
	0.137
	0.014
	0.015
	0.001
	7
	0.016
	0.027
	1.000
	0.063
	0.960
	0.245
	0.249
	0.052
	0.018
	0.002
	8
	0.023
	0.029
	1.000
	0.077
	0.950
	0.220
	0.319
	0.060
	0.026
	0.003
	9
	0.015
	0.029
	1.000
	0.063
	0.942
	0.227
	0.331
	0.068
	0.013
	0.003
	10
	0.024
	0.026
	1.000
	0.071
	0.912
	0.212
	0.253
	0.056
	0.009
	0.002
	11
	0.040
	0.015
	1.000
	0.063
	0.620
	0.136
	0.077
	0.007
	0.010
	0.002
	12
	0.015
	0.018
	1.000
	0.069
	0.779
	0.185
	0.073
	0.006
	0.014
	0.002
	32BL
	0.015
	0.034
	1.000
	0.063
	0.990
	0.233
	0.447
	0.090
	0.023
	0.005
	IBL
	0.008
	0.033
	1.000
	0.059
	1.000
	0.223
	0.423
	0.101
	0.017
	0.004
	In Table 38, Runs 5 and 8 have the largest 25th percentile of the 12 runs, with the baselines outperforming all runs. This supports what was found before. Here Runs 6, 11, and 12 have the worst performance in warning time, though Runs 1, 4, 11, and 12 were the worst in 3.2.2. Runs 11 and 12 therefore scored the worst in both analyses.
	Table 38. Median, inter-quartile range, and 25th percentile of conflict warning time.
	Run
	Median
	IQR
	25th %
	1
	446.0
	367.0
	328.0
	2
	444.5
	282.5
	337.0
	3
	487.5
	389.0
	347.0
	4
	424.5
	322.0
	331.0
	5
	505.0
	393.0
	352.0
	6
	397.0
	211.0
	313.5
	7
	424.5
	296.5
	324.0
	8
	490.5
	436.0
	360.0
	9
	426.0
	323.0
	333.5
	10
	420.0
	289.5
	332.5
	11
	391.0
	196.0
	311.0
	12
	399.5
	231.0
	316.0
	32BL
	511.5
	476.0
	369.0
	IBL
	564.0
	440.0
	399.0
	Table 39. Results of comparisons of each of the twelve runs to the FA32 Baseline run.
	Lat
	0.5
	2.5
	0.5
	1.5
	1.5
	0.5
	1.5
	2.5
	2.5
	2.5
	0.5
	0.5
	Lon
	0.5
	1.5
	1.5
	0.5
	1
	1.5
	1.5
	0.5
	1
	0.5
	0.5
	1
	Like
	10/20
	3/8/10
	10/20
	3/8/20
	10/20
	3/8/10
	3/8/20
	10/20
	3/8/20
	3/8/10
	3/8/10
	3/8/20
	BL
	Proto
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	DSC
	DSC
	1114
	1330
	1360
	877
	1464
	873
	1093
	1642
	1177
	1018
	709
	819
	DSC
	FA
	43
	19
	26
	39
	35
	23
	34
	38
	40
	38
	36
	35
	DSC
	N/A
	980
	790
	751
	1222
	638
	1240
	1011
	459
	921
	1082
	1393
	1283
	DSC
	VA
	2
	0
	2
	1
	2
	3
	1
	0
	1
	1
	1
	2
	FA
	DSC
	50
	6
	34
	41
	42
	37
	29
	41
	28
	39
	50
	38
	FA
	FA
	197
	489
	295
	266
	324
	275
	375
	361
	393
	337
	176
	228
	FA
	N/A
	293
	45
	211
	233
	174
	228
	136
	138
	119
	164
	314
	274
	LA
	LA
	2
	2
	2
	2
	2
	2
	2
	2
	2
	2
	2
	2
	N/A
	DSC
	268
	18
	214
	131
	202
	108
	93
	248
	109
	119
	133
	133
	N/A
	FA
	54
	16
	44
	45
	36
	27
	38
	76
	42
	50
	33
	36
	VA
	DSC
	9
	4
	5
	12
	5
	5
	8
	6
	6
	9
	11
	7
	VA
	LA
	1
	0
	0
	1
	0
	0
	0
	1
	0
	1
	3
	0
	VA
	N/A
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	VA
	VA
	153
	159
	158
	150
	158
	158
	155
	156
	156
	153
	149
	156
	% FA Imp
	44%
	5%
	31%
	35%
	26%
	37%
	18%
	11%
	14%
	21%
	52%
	44%
	%LA Imp
	-50%
	0%
	0%
	-50%
	0%
	0%
	0%
	-50%
	0%
	-50%
	-150%
	0%
	Table 40. Results of comparisons of each of the twelve runs to the Initial Baseline run.
	 
	Lat
	0.5
	2.5
	0.5
	1.5
	1.5
	0.5
	1.5
	2.5
	2.5
	2.5
	0.5
	0.5
	Lon
	0.5
	1.5
	1.5
	0.5
	1
	1.5
	1.5
	0.5
	1
	0.5
	0.5
	1
	Like
	10/20
	3/8/10
	10/20
	3/8/20
	10/20
	3/8/10
	3/8/20
	10/20
	3/8/20
	3/8/10
	3/8/10
	3/8/20
	BL
	Proto
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	DSC
	DSC
	1134
	1220
	1352
	886
	1460
	873
	1086
	1603
	1157
	1002
	728
	829
	DSC
	FA
	45
	63
	44
	53
	53
	40
	63
	58
	63
	61
	40
	48
	DSC
	N/A
	1086
	984
	869
	1329
	754
	1351
	1119
	606
	1048
	1205
	1499
	1389
	DSC
	VA
	12
	10
	12
	9
	10
	13
	9
	10
	9
	9
	10
	11
	FA
	DSC
	44
	32
	46
	44
	48
	43
	36
	42
	31
	41
	41
	36
	FA
	FA
	195
	418
	271
	252
	300
	256
	349
	346
	367
	319
	169
	214
	FA
	N/A
	296
	85
	218
	239
	187
	236
	150
	147
	137
	175
	325
	285
	LA
	LA
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	N/A
	DSC
	257
	105
	213
	124
	205
	105
	98
	289
	131
	138
	127
	129
	N/A
	FA
	54
	43
	50
	45
	42
	29
	35
	71
	45
	45
	36
	37
	N/A
	LA
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	N/A
	VA
	5
	5
	5
	5
	5
	5
	5
	5
	4
	5
	5
	5
	VA
	DSC
	6
	1
	2
	7
	0
	2
	3
	3
	1
	4
	7
	3
	VA
	LA
	1
	0
	0
	1
	0
	0
	0
	1
	0
	1
	3
	0
	VA
	N/A
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	VA
	VA
	138
	144
	143
	137
	145
	143
	142
	141
	144
	140
	135
	142
	% FA Imp
	45%
	8%
	31%
	36%
	27%
	39%
	21%
	14%
	17%
	24%
	54%
	46%
	%LA Imp
	-100%
	0%
	0%
	-100%
	0%
	0%
	0%
	-100%
	0%
	-100%
	-300%
	0%
	As for the fuzzy metrics (Table 41), the FA counts still agree that Runs 1, 4, 6, 11, and 12 all return the lowest FA counts, yet also return the highest LA counts.
	Table 41. Fuzzy Alert values for each of the 12 runs and the baseline.
	Run
	VA
	LA
	FA
	1
	193.46
	17.69
	223.37
	2
	197.41
	10.04
	340.64
	3
	199.67
	12.04
	272.49
	4
	196.22
	10.17
	254.68
	5
	202.14
	9.45
	286.91
	6
	197.51
	13.16
	239.12
	7
	199.02
	7.61
	318.54
	8
	195.71
	11.74
	331.68
	9
	200.65
	10.40
	313.69
	10
	195.82
	11.27
	287.10
	11
	185.91
	21.35
	177.83
	12
	198.76
	14.53
	221.01
	32BL
	198.47
	12.31
	357.20
	IBL
	180.49
	7.53
	346.84
	Again there is agreement in the data (Table 42) that vertically well-separated events have much lower FA rates. Here Runs 2 and 8 have similar FA rates to the baselines though all runs improve on the FA rates on the whole.
	Table 42. Overall Fuzzy Alert Rates and Fuzzy False Alert Rates by separation category.
	FA Rate
	Horz
	< 5
	< 5
	5 ≤ h < 8
	5 ≤ h < 8
	8 ≤ h ≤ 13
	8 ≤ h ≤ 13
	> 13
	> 13
	Run
	LA Rate
	FA Rate
	Vert
	< 1000
	≥ 1000
	< 1000
	≥ 1000
	< 1000
	≥ 1000
	< 1000
	≥ 1000
	1
	0.084
	0.014
	0.945
	0.090
	0.505
	0.117
	0.108
	0.008
	0.027
	0.003
	2
	0.048
	0.021
	0.918
	0.080
	0.823
	0.198
	0.215
	0.057
	0.012
	0.002
	3
	0.057
	0.017
	0.905
	0.082
	0.707
	0.179
	0.146
	0.013
	0.026
	0.003
	4
	0.049
	0.015
	0.973
	0.078
	0.721
	0.169
	0.109
	0.018
	0.015
	0.002
	5
	0.045
	0.018
	0.892
	0.084
	0.803
	0.195
	0.153
	0.023
	0.017
	0.003
	6
	0.062
	0.014
	0.928
	0.055
	0.714
	0.175
	0.121
	0.013
	0.014
	0.001
	7
	0.037
	0.019
	0.938
	0.077
	0.797
	0.200
	0.192
	0.039
	0.017
	0.002
	8
	0.057
	0.021
	0.854
	0.098
	0.814
	0.180
	0.211
	0.042
	0.022
	0.003
	9
	0.049
	0.019
	0.907
	0.083
	0.807
	0.183
	0.200
	0.044
	0.011
	0.003
	10
	0.054
	0.018
	0.901
	0.079
	0.757
	0.173
	0.167
	0.038
	0.008
	0.002
	11
	0.103
	0.011
	0.944
	0.069
	0.450
	0.112
	0.077
	0.007
	0.009
	0.002
	12
	0.068
	0.013
	0.962
	0.075
	0.641
	0.160
	0.070
	0.005
	0.014
	0.002
	32BL
	0.058
	0.022
	0.811
	0.101
	0.817
	0.189
	0.251
	0.058
	0.020
	0.004
	IBL
	0.040
	0.022
	0.852
	0.085
	0.846
	0.186
	0.226
	0.065
	0.015
	0.003
	Appendix C
	The statistical software program JMP, and specifically the Matched Pairs platform was used to compare response metrics and reveal any difference between scenarios. The graphical output from the Matched Pairs platform is called a Tukey mean-difference plot, which presents the paired differences by the paired means. In other words, the value from one set is subtracted from the value from the second set and this difference is plotted on the vertical axis, while the average of the same two values is plotted on the horizontal axis. If there are points that have no difference between the two sets, they will fall exactly on the zero horizontal axis. Points from values that are much greater in one set will appear far away from the zero axis, and if the majority of points follow this trend it becomes apparent that there is a difference between the two sets.
	Figure 53. Examples 1 and 2 of Matched Pairs Analysis from JMP
	Figure 54. Examples 3 and 4 of Matched Pairs Analysis from JMP
	A JMP reference book [SAS, 2007] notes that this graph is the same as a scatterplot of the two original variables, with a 45 degree rotation and rescaling to turn the original coordinates into a difference and a mean. Red horizontal lines are added to the graphs to illustrate the mean of differences (solid line) and 95% confidence interval around that value (dotted lines above and below). If the confidence interval includes the zero axis then the means are not significantly different at the 0.05 level, and it is possible the two sample sets do not have any underlying difference that affects the metric.
	The statistical method underlying the matched pair approach is the paired t-test, which examines the distribution of the differences between two sets and tests if the mean of the differences is statistically different from zero. The output p-value is the probability of observing a discrepancy in means as large as (or larger than) that observed, even if there is no underlying difference in the means. This p-value is compared against a given alpha level (0.05 is commonly used) and if the p-value is lower, the difference is determined to be statistically significant. For more information on the Matched Pairs platform including its output and statistical tests, please see [13].
	The graphical plots of differences can reveal patterns or correlation in the data, while the statistical test will state the difference in means and whether that difference is statistically significant. It then remains to decide whether that difference is practically significant, or if it is too small to have any practical effect.
	Appendix D
	The Strategic Alert Evaluator (SAE) software evaluates the alerts generated by a conflict probe in order to determine how they match to actual conflicts that occurred in the scenario. SAE provides a result for each event in the scenario. The result is whether the event is evaluated as a Valid Alert (VA), False Alert (FA), Missed Alert (MA), or Discard. The current version of SAE does not support the new definition change to Missed Alerts or the new Late Alert (LA) evaluation. The LA/MA determination was performed by separate software for this analysis.
	The following flowcharts describe the process flow of SAE and how each evaluation is assigned to the event.
	Figure 55. StrategicAlertEvaluator Process A – Establishing Notification Sets from Alerts
	Figure 56. StrategicAlertEvaluator Process B – Evaluating Actual Conflict Notification Set
	Figure 57. StrategicAlertEvaluator Process C – Evaluating False Notification Set
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