
Demonstration of Improved 
Trajectory Prediction 
Using Future Air 
Navigation Systems 

Jesper Bronsvoort, Greg McDonald, Mike Paglione, 
Christina M. Young, Andrew Fabian, Jean Boucquey, 
and Carlos Garcia Avello 

This paper aims to demonstrate how current technology can assist 
to improve ground-based trajectory prediction. The lack of accurate 
ground-based trajectory prediction is often associated with the ineffi­
ciencies resulting from current Air Traffic Control (ATC) practices. To 
this purpose, results from different ground-based Trajectory Predictors 
(TPs) - both standard and enhanced with Future Air Navigation Systems 
(FANS) data-link - are compared using operations into Los Angeles 
(LAX). At first sight, direct use of trajectory information down-linked 
through FANS from the aircraft's Flight Management System (FMS) 
seems logical, but numerous arguments exist against that approach. 
Instead, this research inferred parameters as speed schedule and air­
craft mass from the FMS down-linked trajectory. Contrary to the trajec­
tory data itself, these parameters can be used as input to many legacy 
TPs and are often unknown such that nominal values must be assumed. 
This paper indicates that with use of this inferred information signifi­
cant improvements in ground-based trajectory prediction can be achieved. 
The 95% spread in the estimate time of arrival and top of descent error 
were reduced by a maximum 79% and 86%, respectively. The predicted 
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trajectories from some enhanced TPs were found to be even more accu­
rate than the original downlink predictions on which the inferred infor­
mation was based, providing arguments for a combined air-ground 
solution to trajectory prediction rather than reliance on solely airborne 
trajectory data. 

FANS is standard equipment on most wide-body aircraft, and fitting 
options exist on the major single-aisle aircraft fleet. With the infrastruc­
ture to obtain the required data already in place, the approach proposed in 
this paper is feasible today with minimum investment and aircraft system 
changes for airlines transitioning towards more advanced concepts and 
developing technologies. 

INTRODUCTION 

Internationally, significant work has been performed to analyse pro­
jections to air traffic and to propose methodology designed to manage 
the expected growth [Joint Planning and Development Office, 2007; 
SESAR Consortium, 2007; Australian Strategic Air Traffic Manage­
ment Group, 2007]. Connected with a multitude of proposed solutions 
is a corresponding legion of new technology to be adopted and most 
importantly funded. Consequently, most of these ideas, although 
brilliant remain just that - ideas in waiting. 

External to the air traffic management (ATM) arena, the global 
economic downturn has somewhat taken the immediacy from a solu­
tion and enabled a certain breathing space to examine priorities and 
solutions. Assumptions have been challenged and future concepts 
considered with the perspective of technology already available and 
deployed today [Bronsvoort, J., 2011; Bronsvoort, J. et al., 2012; 
McDonald, G.N. and Bronsvoort, J., 2012]. The benefit of this approach 
is that small and economically feasible steps can be made in the 
direction of trajectory based operations (TBO), using existing capa­
bilities with minimal risk. Additionally, lessons can be learned for 
future developments. 

Over time airlines have continuously fitted equipment on the 
promise of air traffic control (ATC) that it will be used to benefit 
operations. In many cases the use has not eventuated. In addition 
new equipment standards are being developed that are considered 
required for air-ground trajectory synchronization essential to TBO. 
This study, however, has extracted trajectory data from standard 
airline aircraft that are fitted with Future Air Navigation Systems 
(FANS) equipment aiming to demonstrate the generally unknown 
extended potential of this communication surveillance and naviga­
tion (CNS) system originally developed for oceanic operations. This 
extended potential could see results promised under TBO realised 
through a transition concept while more advanced technology is 
being developed. 
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BACKGROUND 

To realize improved use of non-radar airspace required by increas­
ing air traffic, the FANS concept was introduced in the early 1990s. 
The FANS concept involved improving the fields of communica­
tion, navigation, and surveillance. Boeing launched its FANS-1 prod­
uct based on Controller Pilot Data Link Communication (CPDLC) 
and Automatic Dependent Surveillance Contract (ADS-C) for the 
7 4 7-400 targeted at operations in the South Pacific. Airbus later 
developed its similar FANS-A product. The two products are col­
lectively known as FANS-1/A. 

A largely unknown aspect of FANS-1/A is the ability to down-link 
to ATC part of the aircraft's future trajectory as calculated by the 
flight management system (FMS). Previous work by these authors 
has compared the accuracy of this FMS calculated trajectory against 
the accuracy of trajectories predicted by current ground-based sys­
tems. The work concluded that ground-based systems can benefit 
significantly from the trajectory information derived via FANS, both 
laterally [Paglione, M/ et al, 2010] and longitudinally [Bronsvoort, J. 
et al., 2011]. Longitudinally, the improved accuracy mainly applies to 
climb and descent phases as ATC generally systems lack accurate 
knowledge of speed schedules and aircraft weight [Bronsvoort, J. 
et al.; Vivona, R.A. et al., 2011; Lopez Leones, J. et al; 2013]. 

Several attempts have been made to overcome this limitation with 
the use of aircraft-derived data. The Aircraft Data Aiming at Pre­
dicting the Trajectory (ADAPT) studies used aircraft-derived data 
to off-line tune the aircraft performance model of an existing ground­
based trajectory predictor (TP) [Courdacher, T. and Mouillet, V, 2008]. 
While this methodology provides a solution, the tuning was performed 
off-line, was flight-specific, and depended on the atmospheric condi­
tions of the day because of the kinematic nature of the TP used. 

Airservices Australia performed similar research work using 
FMS trajectory information derived via the ADS-C component of 
FANS-1/A. The benefit of using ADS-C is that all existing infra­
structure, both in the air and on the ground, is already in place. 
The ADAPT studies on the other hand made use of a data-link 
originally designed for communications between aircraft and the 
airline operations center (AOC); as such, forwarding systems from 
AOC to ATC had to be put in place. In previous research work, 
Airservices produced a method to improve ground-based trajectory 
prediction by appropriately combining data extracted from the FMS 
via ADS-C and data available on the ground. First, the critical pieces 
of missing trajectory information for descent - speed schedule and 
aircraft mass - are inferred from FANS-1/A trajectory data. Secondly, 
using the inferred information, a new prediction is performed by a 
ground-based TP using an extensive weather forecast assisted by 
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practical knowledge of how the FMS executes the descent. The 
accuracy of the new predicted trajectories has proven to be signifi­
cantly more accurate than the original FMS predictions [Bronsvoort, 
2011; Bronsvoort et al., 2012]. 

STUDY CONTRIBUTION AND OVERVIEW 
OF METHODOLOGY 

The results obtained by Airservices as discussed above were obtained 
using Boeing 737-800 aircraft operating into Melbourne, Australia. 
In this paper the technique is extended to Airbus A380-800 air­
craft, which are standardly equipped with FANS-1/A, operating 
into Los Angeles International Airport (LAX). In addition, while in 
references cited in [Bronsvoort, 2011; Bronsvoort et al., 2012], the 
information inferred from the FANS-1/A trajectory data was applied 
by a single TP in one particular method, this paper investigates dif­
ferent methods applied by different TP systems. 

At first a baseline was established of current TP performance 
available to existing ground-based automation supporting LAX oper­
ations for a selected pool of flights. For this same pool of flights 
trajectory information was down-linked via FANS-1/A and recorded 
for comparison. Different methods of applying the FANS-1/A down­
link trajectory information will be discussed on the basis of techniques 
developed by Airservices Australia. Finally, the performance of several 
TPs enhanced with data-link will be assessed illustrating the generic 
applicability of the FANS-1/A data and developed techniques. 

Air traffic arriving to LAX, like most busy destinations, is assigned 
a published Standard Terminal Arrival Route (STAR) procedure prior 
to top of descent (TOD) as a means to position it in a stream of simi­
larly arriving flights. A STAR prescribes a lateral path containing 
vertical and/or speed requirements to position the aircraft for vec­
toring by the TRACON to final approach. The amount of vector­
ing instructed by the TRACON depends on the number of arriving 
aircraft to be sequenced to final approach. As the sequencing into 
LAX is distance-based rather than time-based, specifying how much 
delay and, hence, vectoring will be applied to any particular aircraft 
is difficult. 

Qantas Airbus A380-800 (A388) flights from Australia to LAX 
chosen for this study are equipped with ADS-C data-link as stan­
dard. The aircraft operate daily to Los Angeles from Sydney and 
Melbourne, Australia, as long-haul operations and have a flight 
time from 13 to 14 hours, depending on prevailing winds. The air­
craft depart mid-morning from Australia, cross the dateline, and 
arrive in the United States (US) at a similar, but slightly earlier, time 
on the same calendar day as they departed. 
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The A380 is a heavy, wide-body aircraft for which Qantas defines 
strict operating procedures. The crews manage the aircraft to a 
company-defined flight plan and cost index calculated for each flight 
consistent with the current ATC clearance loaded to the FMS. Qantas 
expects its crews to operate the aircraft in path-managed mode as 
much as possible and have the aircraft established on a stabilized 
final from five nautical miles and 1,500 feet from the threshold. 

Normal pilot procedures prescribe the crew will load the expected 
STAR into the FMS prior to TOD so that descent can be planned 
efficiently assuming an idle descent to the first impacting altitude 
constraint. Because of ATC interventions required to sequence the 
aircraft with other arriving traffic, the expected route and, there­
fore, efficient profile do not always eventuate. 

BUFIE is a commonly used STAR into LAX for oceanic arrivals and 
is depicted in Figure 1. Aircraft are generally allowed to conduct a 
continuous idle descent at the speed schedule resulting from the cost 
index down to the fix GOATZ where a speed constraint of 280 knots 
indicated air speed (KIAS) applies. Santa Catalina (SXC) is a fix of 
interest for arrival metering with a 12,000 ft. altitude constraint. 

In addition to the constraints published as part of the BUFIE proce­
dure, ATC issues an additional constraint to reach 12,000 ft at GOATZ. 
This constraint is generally issued to the flight crew at the same time 
as the STAR and is included in the Los Angeles Air Route Traffic 
Control Center (ZLA-ARTCC) adaption data though not published. 
For this study, the 12,000 ft at GOATZ was always taken into account. 
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With the STAR and additional constraints loaded into the FMS 
when still on cruise, the FMS can compute the optimal descent pro­
file for the selected cost index. A representation of this optimal profile 
can subsequently be down-linked to ATC with use of ADS-C. 

DATA SOURCE DESCRIPTION 

For research purposes Airservices Australia established a duplicate 
ATC system to collect data from any FANS-1/A equipped aircraft 
through ADS-C. ADS-C should not be confused with ADS-Broadcast 
(ADS-B), as ADS-C is not a general broadcast function but a unique 
specific data-link contract between aircraft and ATC [Roberts, 2009]. 
The data collection system is located in Melbourne and carries the 
SITA address "THAL." Any FANS-1/A equipped aircraft can log on 
to THAL identically to the way it would log on to any operational 
system like Oakland Oceanic (KZAK) in the US. Through the agree­
ment with Qantas, all A380 flights arriving to LAX during April, 
May, and June, 2012 participated in the data collection trial. A 
temporary pilot instruction was released by Qantas for their crews 
to log on to THAL manually 2 hours prior to their arrival at LAX. 
The ADS-C contract rate was set to 2 minutes to allow maximum 
data collection. En route radar data for the same flights were col­
lected from the US host computer system (HCS). No special treat­
ment from ATC was provided to the participating flights. 

To compare TP performances fairly, the study data were limited 
to flights that performed an uninterrupted descent according to 
the BUFIE STAR and successfully transmitted ADS-C data. Flights 
with significant cross-track deviations from the cleared route were 
disregarded, which provided consistent and known lateral intent 
to all TPs. Only flights arriving through the BUFIE STAR were 
selected, as this procedure requires the FMS to plan the descent to 
a fixed point in space (7,000 ft at Seal Beach [SLIJ, see Figure 1) 
essential for optimization. 

In total 119 flights participated in the trial, of which 62 arrived 
through the BUFIE STAR. Of those 62 flights, 25 flights were 
disregarded because of significant lateral deviations. The resulting 
data pool therefore contained 37 flights of radar track and clearance 
data and extracted from the ZLA en route center's HCS in common 
message set (CMS) format. Data from the operational ATC system, 
the En Route Automation Modernization (ERAM) system, were 
unavailable to this study, and, therefore, the research platform Java 
En Route Development Initiative (JEDI) developed by The MITRE 
Corporation was utilized. JEDI is often used by the FAA to emulate 
ERAM, to simulate the US ground automation system including 
trajectory prediction [Young et al. , 2012]. A benefit of using JEDI 
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is the ability to simulate ERAM in different scenarios without inter­
fering with the operational system. The ZLA-ARTCC adaptation 
and weather forecast data were collected for the trial period to allow 
simulation of the US ground automation system. Track positions 
were derived from radar and available about every 12 seconds. 

To compare the performance of different TP systems correctly, 
common initial conditions for the predictions had to be selected. In 
this study the initial conditions were taken as the point at which the 
correct arrival procedure (BUFIE STAR plus 12,000 ft at GOATZ) 
was loaded into the aircraft's FMS. From this point on the aircraft's 
intent should remain consistent (stable TOD and descent profile) and, 
hence, allows for the actual trajectory flown to be compared against 
the prediction. The point at which the arrival procedure is loaded can 
easily be obtained by observing the contents of subsequent ADS-C 
down-links. These initial conditions were anywhere between 150 nmi 
and 300 nmi from GOATZ, with the majority around 200 nmi. 

METRICS 

A set of common metrics is defined to evaluate the accuracy of a 
given TP and allow comparison of different TPs later in this paper. 
Metrics of interest are the errors in predicting the following: (1) time 
of arrival at Santa Catalina (SXC), (2) TOD position, and (3) average 
descent rate over the unconstrained part of the descent. 

As a first metric, the estimated time of arrival (ETA) at SXC is 
compared to the actual time of arrival (ATA) from flight data. These 
times are indicated in Figure 2 as ETA (for SXC) and ATA (for SXC). 
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The error in the ETA tends to increase as the time from trajectory 
build (to) to metering fix , or the prediction horizon ATA-t0 , increases. 
This increase poses a problem when comparing the ETA error for 
different flights as the time to run from the prediction start point 
to SXC is different for each flight. For example consider a situation 
in which the ETA error for two flights is 30 seconds; Flight A with 
10 minutes to run and flight B with 15 minutes to run. In absolute 
terms the errors are equal; however, flight B has a longer predic­
tion horizon. The ETA for flight B is, therefore, better in relative 
terms (30/15 vs. 30/10). To account for different prediction horizons, 
a relative error metric is used by dividing the absolute ETA error 
(ETA-ATA) by the prediction horizon (ATA-t0), 

ETA-ATA 
eETA - MF = ATA - to [%]. (1) 

The distance between the estimated horizontal position at the 
TOD, denoted as ETOD, and the actual horizontal position at the 
TOD, denoted as ATOD, is an important metric for aircraft arrivals 
as it defines the uncertainty in the start of the descent phase. 
The position data are provided in stereographic coordinates, and 
for ease of calculation the Euclidean distance between the points 
is used, 

eTOD = s *dist (ETOD , ATOD) [NM]. (2) 

The signs is defined such that a negative value indicates the actual 
descent began after the predicted position of descent. Note that 
flights with significant cross-track deviation from the cleared route 
were removed from the sample, and, hence, the metric solely repre­
sents the along-track TOD error. 

An altitude deviation metric at SXC is not of any use as the BUFIE 
procedure specifies an AT 12,000 ft constraint at that point. Instead 
the average descent rate error for the unconstrained descent is 
included in this paper. The difference between the estimated descent 
rate (EDR) and the actual descent rate (ADR) forms a good general 
indication of how well the TP predicts the constant or unconstrained 
descent phase of flight, as seen in Figure 2. The metric is given by 

eDR = EDR -ADR [fpm] . (3) 

In this study all trajectories matched the aircraft in altitude at 
TOD, and all trajectories matched the aircraft in altitude at the 
bottom of the constant descent phase of flight due to the altitude 
constraint at GOATZ. Therefore the numerators of the descent rates 
(altitude descended) will be the same on a per flight basis, while the 
denominators (time during descent) may vary. 
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The errors in TOD position and average descent rate are presented 
as absolute metrics because they are not as dependent on prediction 
horizon as the ETA error. While an aircraft is cruising, the drift in 
ETA for SXC is mainly caused by errors in the predicted groundspeed 
resulting from differences between actual and forecast winds (and tem­
perature). Provided the aircraft is still cruising and a TP does not make 
any aircraft intent changes, e.g. speed schedule, and does not update 
its meteorological model, the descent trajectory should not change 
except for a constant shift in ETAs along that descent trajectory. 

BASELINE TP PERFORMANCE AND OPERATIONS 

This section examines the accuracy of the US ground automation 
system as represented by JEDI for the selected pool of flights based 
on the metrics introduced above. 

JEDI was configured to perform trajectory predictions for the 
trial pool of 37 flights. JEDI requires a radar position update to 
provide the initial conditions for the prediction. Therefore, the first 
radar position update was selected after the aircraft transmitted 
the ADS-C position report that was defined as the common initial 
condition in the section on Data Source Description. The resulting 
difference is small and in theory limited to the radar update period 
of 12 seconds; this difference is accounted for by using relative met­
rics for the affected performance indicators (ETA at metering fix). 

The predicted trajectories were compared to the actual track data 
and error statistics were determined for given set of metrics. The 
summary statistics for the US ground system are given in TABLE I. 
The bracketed values show the 95% confidence interval of the mean 
and standard deviation. These results are elaborated upon in the 
remainder of this section. 

JEDI employs a kinematic trajectory predictor. For each aircraft 
type, airspeed and descent rate are provided in a static table against 

Table 1. Summary Statistics For US Ground System 

Metric Distribution Characteristics 

Standard 50% 95% 
Metric TP Mean Deviation range range 

EETA-MF US System 0.9 3.4 3.3 14.5 
[%] [-0.2, 2.0] [2.8, 4.5] 

ETOD US System -43.0 25.2 21.2 97.4 
[nmi] [-51.1, -34.9] [20.5, 32. 7] 

EnR US System 28 110 147 388 
[ft/min] [-8, 63] [90, 143] 
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altitude (performance tables) tuned to current operations of that 
aircraft type (not necessarily comprising only uninterrupted flights) 
[Vivona et al., 2011]. When modelling the trajectory, JEDI first cal­
culates the descent phase of the flight and ensures that all alti­
tude constraints of the BUFIE STAR and the 12,000 ft at GOATZ 
are met when placing the TOD position. Even though the altitude 
restriction is modelled correctly, the average error in TOD position 
is 43 nmi before the true TOD position with a standard deviation 
of 25 nmi. The average error in SXC crossing time is 16 seconds 
late, with a standard deviation of 51 seconds. This crossing time error 
is also expressed as a percent error in look-ahead time when crossing 
the fix, producing 0.9% average late with a standard deviation 
of 3.4%. The descent rate resulted in an average error being 28 feet 
per minute (fpm), about 1.4 % of a standard average descent rate 
of 2000 fpm, with a standard deviation of 110 fpm. 

The results shown in Table 1 indicate a larger error in TOD, yet 
the descent rate error and ETA error are relatively low. As the 
descent rate is fairly accurate, the generic descent rate in the perfor­
mance tables used by the US system represents the general Qantas 
A380 operation well in this parameter. Note, however, that as JEDI 
assumes no physical link between descent rate and descent speed, 
this effectively implies that the true physics impacting the descent 
rate, e.g. speed and mass, were fairly consistent throughout the 
actual operations and little variance in this parameter. If, however, 
an aircraft flew a different speed on descent, the descent rate assumed 
by JEDI would no longer be representative of the operation and the 
variance (and bias) in the descent rate error will grow, i.e. the per­
formed tuning of the performance tables is operation specific and 
does not allow for dynamic changes. 

The large negative bias in TOD, meaning that the aircraft 
descended before the predicted point, indicates that the assumed 
speed in the performance tables ( rv300KIAS) is possibly too high for 
the Qantas A380 operations. Note that in this kinematic TP, alti­
tude and distance covered are effectively integrated independently; 
speed determines the distance covered over the descent, and descent 
rate determines the time. Thus, the higher the speed, the longer the 
distance travelled and, hence, the negative bias in TOD. A high 
speed would intuitively lead to a negative bias in the ETA which is 
not the case. Because of the independence of descent rate and 
speed, however, the physics of the system is disturbed, and it is no 
longer trivial to comprehend what constitutes the ETA error. 

The above results give insight into the typical difficulty of pre­
dicting trajectories accurately by the ground automation even when 
these trajectories are specifically chosen for consistent intent infor­
mation, i.e. no intervention from ATC or crew. Previous research 
by these authors and many others identified the lack of accurate 
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knowledge on speed intent and aircraft mass, and TP operating logic 
to be main contributors to the poor performance of current ground­
based prediction systems [Bronsvoort et al., 2011; Lopez Leones 
et al., 2013; Mondoloni, 2006]. The subsequent sections of this 
paper will demonstrate that the trajectory information down-linked 
via FANS (ADS-C) available in aircraft today can assist and provide 
significant benefit to current and future operations. 

FANS INTERMEDIATE PROJECTED INTENT 

In addition to the surveillance and communications for non-radar 
airspace, FANS data-link provides a way for the ground to access 
airborne trajectory data through ADS-C. These trajectory data are 
termed intermediate projected intent (IPI) and consists of a sequence 
of up to ten trajectory change points. A trajectory change point can 
be a profile change (e.g. top of climb [TOCJ and top of descent [TOD]), 
a bearing change, and/or a speed change. Note that an air traffic 
system (ATS) waypoint will appear in the IPI only if a trajectory 
change occurs at that point. IPI is limited to ten TCPs within a maxi­
mum look-ahead time of 4 hours. Therefore, the entire trajectory might 
not be visible to ATC with each report. Laterally, trajectory change 
points are given as a sequence of bearing and distance from the posi­
tion at which the FMS generated the ADS-C report. Each trajectory 
change point also holds an estimate for the crossing altitude and time. 

As described before, for each of the trial flights the first ADS-C 
report was taken after the arrival procedure was loaded into the 
FMS. At that time the destination was well within the look-ahead 
time, and the limit of ten TCPs was always sufficient to have a 
representation of the FMS trajectory to SXC and most often all the 
way to the runway threshold. The trajectory constituted by the IPI 
was subsequently compared against the actual track data, and 
statistics were calculated for the same set of metrics as used for 
the US ground system and summarised in Table 2. 

The information provided in the IPI from the A380 FMS is clearly 
more accurate than the predictions from the US ground system for 
this aircraft type. The TP in the Honeywell FMS models the appro­
priate relations between related variables as descent speed, mass, and 
descent rate rather than the use of a static performance table as used 
by JEDI. The most significant improvement from the down-linked 
data are in TOD prediction. This should come as no surprise as the 
trajectory computed by the FMS is used as reference for the guidance 
system. With the automation in control and the appropriate settings, 
the guidance function will command the descent at the FMS com­
puted descent point resulting in very little variation. Some of the varia­
tion observed could also be due to the logic assumed as to identify the 
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Table 2. Summary Statistics For A388 FANS IPI 

Metric Distribution Characteristics 

Standard 50% 95% 
Metric TP Mean Deviation range range 

EETA-MF US System 0.9 3.4 3.3 14.5 
[- 0.2, 2.0] [2.8, 4.5] 

[%] A388 IPI 0.9 1.4 1.6 4.9 
[0.4, 1.3] [1.1, 1.8] 

ETQD US System - 43.0 25.2 21.2 97.4 
[-51.1, -34.9] [20.5, 32. 7] 

[nmi] A388 IPI 4.1 4.1 3.5 13.8 
[2.8, 5.5] [3.3, 5.3] 

EDR US System 28 110 147 388 
[- 8, 63] - [90, 143] 

[ft/min] A388 IPI -13 74 48 286 
[- 37, 11] [61, 97] 

true TOD in the radar track data. As mentioned previously, radar 
updates are available every 12 seconds on average, at an average 
groundspeed of 8 nmi per minute; these 12 seconds contribute to 
about 1.5 nmi of noise. Interesting to note as well is that the bias in 
the ETA metric is about identical between JEDI and the IPI data 
(though different confidence levels). No plausible explanation can be 
given at this stage, and therefore, the similarity is attributed to 
coincidence considering the relatively small sample. 

The results demonstrate that the information in the FANS data­
link has great potential, as was also concluded in previous work 
[Bronsvoort, et al., 2011]. Taking it a step further, this information 
can be applied to enhance the ground-based automation system. 

A GROUND PREDICTOR WITH DOWNLINKED INTENT 

The first part of this section will explain how the down-linked trajec­
tory information can be used by ground-based TPs. Subsequently 
different TPs making use of this information will be discussed and 
finally the results will be presented. 

Parameters Inferred from Down-Link Trajectory 

The previous sections and referenced literature have demonstrated 
that significant improvements can be obtained when using the FANS 
IPI information in ground-based trajectory prediction. One method is 
to make direct use of the information and "overwrite" the trajectory 
held by the ground system with the airborne one. While this will 
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synchronize the trajectories between air and ground, it would not 
support the ground in cases it would like to perform "what-if" sce­
narios [Bronsvoort, 2011; Vivona et al., 2011]. Klooster et al. provide 
more arguments against direct use of airborne trajectory informa­
tion [Klooster et al., 2010]. 

If instead, an approach is chosen where the down-linked data are 
used as input to the trajectory prediction process, different problems 
arise. As mentioned FANS IPI consists of a series of four dimensional 
TCPs, and is an output to the trajectory prediction process rather 
than an input. For example, the trajectory data might indicate 
where the aircraft has planned its TOD, but this information can 
in general not be accepted by conventional trajectory predictors as 
an input. Instead, the approach chosen in this research is to infer 
trajectory prediction input variables from the FANS IPI data. While 
many variables can be chosen, only a limited number can be suc­
cessfully inferred from the limited information provided in the IPL 
A logical choice is to infer the target speed schedule on descent and 
the mass of the aircraft at TOD. As identified before the target 
speed schedule on descent is considered a critical piece of missing 
aircraft intent. The mass of the aircraft is in general also unknown 
to ATC and knowledge of this variable would provide synchronisa­
tion to the initial conditions of the trajectory prediction process. 
Especially for climb (and also descent) operations, the mass of 
the aircraft can have a significant impact on the accuracy of the 
predicted trajectory. · 

Therefore, instead of direct application of the FANS IPI, this infor­
mation was used to infer the target speed schedule and mass of the 
aircraft with use of experimental tools developed by Airservices 
Australia [Bronsvoort, 2011]. This inferred speed schedule and/or 
aircraft mass can subsequently be used to replace the default or 
nominal information present in ground-based automation systems. 

Several previous attempts have been made to infer parameters 
relevant to the trajectory prediction process from operational data. 
Thippavong et al. followed a different approach and used preceding 
radar track data to estimate the aircraft mass from the observed 
energy rate [Thipphavong et al., 2013]. This estimated mass was 
subsequently used in a kinetic three-degree-of-freedom model to 
predict the remainder of the climb trajectory. A similar study was 
performed by Alligier et al. [Alligier et al., 2013]. The approach of 
Thippavong et al. and Alligier et al. are both related to real-time 
adaptive trajectory prediction and can be applied only if the air­
craft is performing an unimpeded steady climb as sufficient pre­
ceding track data must be available. The method could be adapted 
for descent operations, but will provide a benefit only as the air­
craft has commenced descent. Seen FANS IPI data provides infor­
mation on the aircraft's future trajectory rather than solely state 
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information, an attempt can be made to infer the mass from this 
trajectory information ahead of commencing descent. 

The algorithm developed by Airservices Australia is based on an 
optimization scheme that uses a TP to find a target descent speed 
schedule and mass that result in a computed trajectory with mini­
mum deviation from the IPI in a least squares sense. In essence the 
algorithm uses the longitudinal equations of motion to match the 
vertical profile of trial-trajectory (trajectory for a certain descent 
CAS and mass) with the IPL Because of differences between any 
of the terms in the longitudinal equations of motion between the 
FMS and the inferring algorithm, among others thrust and drag, 
the inferred mass acts as a pseudo-mass. This pseudo-mass is a 
combination of the mass assumed by the FMS and several terms 
that correct for differences between the two predictors. If, sub­
sequently, the same predictor is used to compute the trajectory with 
the inferred pseudo mass, the pseudo mass theoretically acts as 
a calibrator. 

JEDI/ERAM 

As explained previously the TP in JEDI (and ERAM) uses static 
performance tables to model aircraft behavior. The inferred infor­
mation could be used to update the performance tables to better 
reflect the operation of the aircraft, similar as to what was done in 
the ADAPT studies [Courdacher and Mouillet, 2008]. As the per­
formance tables are static, they must be updated off-line to better 
model the average aircraft behaviour. This approach is successful 
only if all operations of the aircraft type modelled by that table 
are consistent. For this study only data from Qantas A380 opera­
tions were available; very likely, another airline operates the same 
aircraft differently. 

As will be discussed in the upcoming section on NextGen Applica­
bility, the FAA has a program underway to explore major enhance­
ments for a future release of ERAM's TP. To support this initiative, 
the EUROCONTROL R&D TP CINTIA and experimental Airservices 
Trajectory Predictor (ATP) were configured for the LAX scenario to 
demonstrate how FANS technology can assist in improving the per­
formance of ground-based TPs. 

EUROCONTROL CINTIA TP 

The EUROCONTROL CINTIA TP has been developed to predict 
time constrained trajectories supporting the generation of speed 
and descent advisories for a close-loop advanced arrival manager. 
The definition of the trajectory to be computed is based on three 
threads of aircraft intent: lateral for maneuvers, vertical for altitude 
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changes, and speed. Any aircraft intent target in the vertical and 
speed threads can be linked to a target in the other threads. 

CINTIA uses the EUROCONTROL Base of Aircraft Data version 4 
(BADA4) (EUROCONTROL Experimental Centre, 2012) as aircraft 
performance model. BADA4 is an extension of BADA3 for better 
accuracy across the flight envelope and an extension to cover the 
non-clean configuration phases. The aircraft operating procedures 
are a combination of the default airline procedure part of BADA4 
and speed and altitude constraints resulting from the airspace. 

While CINTIA is a highly adaptable TP, modelling the 12,000 ft 
altitude constraint at GOATZ and subsequent level segment to SXC 
proved to be very difficult without performing potentially signifi­
cant and time-expensive changes to the code. The descent segment 
from cruise level to 12,000 ft was simulated by introducing a level 
deceleration at 12,000 ft from the en route descent speed to the 
intermediate descent speed (250 KIAS) but affected at SXC instead 
of FITOW (Figure 1). This modification allowed the performance 
of the CINTIA TP during the descent segment to be assessed, but 
it could not constrain the position at which 12,000 ft was reached 
(somewhere between GOATZ and SXC). 

Airservices Trajectory Predictor 

Airservices Australia has developed an experimental trajectory pre­
dictor simply referred to as ATP. The speed and mass information 
inferred from the IPI and fed to CINTIA are intermediate products of 
ATP (Figure 3). ATP currently uses BADA3 for aircraft performance. 

As shown in Figure 3, ATP can be run in two modes, traditional, 
referred to as ATP-trad, and path, referred to as ATP-path. In tradi­
tional mode ATP is very similar to CINTIA and uses the provided 
inferred speed intent to construct a descent trajectory assuming the 
speed will be held at idle thrust. During this process, speed and 
altitude constraints specified in the arrival procedure are respected. 
For example in case of the BUFIE STAR such constraints are the 
12,000ft and 280KIAS at GOATZ. 

Speed and Mass 
i , tnrerrfng 

r:::::--1.... CINTIA 
r---•~ trajectory 

Traditional Intent 
Generatio11 

Patil Descent 
Intent 
Generation 

ATP-trad 
trajectoiy 

ATP-palh 
trajeclo1y 

Figure 3. Trajectory Predictors overview and information flow. 
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In path mode ATP goes a step farther and simulates the path man­
aged descent (path-on-elevator) at idle thrust, where the FMS refer­
ence path is built from geometric segments provided by the FANS IPL 
In essence, the methodology uses those dimensions of the down-linked 
FMS computed trajectory that are controlled in closed-loop by the 
aircraft. The remaining open dimensions are predicted by ATP. In case 
of the path-managed descent (preferred by Qantas), the lateral and 
vertical path are controlled in closed-loop, leaving speed free within 
set limits, and, thus, time is open. Effectively, the methodology takes 
the FMS computed trajectory, strips off the times to reduce the trajec­
tory to a 3D path, and subsequently re-computes the times along that 
path. In this process the methodology makes use of the inferred mass 
and an extensive environmental model. The inferred target speed is 
used to set limits to the speed that is allowed to vary in the prediction 
as result of holding the FMS path at idle thrust. By integrating this 
variable speed, new times along the trajectory are predicted 
[Bronsvoort, 2011]. The ATP-path has been designed specifically to 
make optimal use of FANS IPI and can work only if IPI information 
is available, while default information can be fed to ATP-trad. 

Results 

The CINTIA TP and ATP-trad were run twice for the set of 37 sample 
flights. For the first run the BADA default information (DEF) was 
used, i.e., M0.85/300 KIAS speed schedule and 350,000 kg mass. This 
situation represents how legacy TPs would operate today by assuming 
nominal conditions for unknown aircraft intent and initial conditions. 

For the second run the FANS-inferred speed schedule and mass 
were used (INF). ATP-trad does not use the default Mach number of 
0.85, but uses the last cruise Mach number in the flight plan and 
assumes this Mach number to be propagated into the constant 
Mach part of the descent. ATP-path was run only with the provided 
FANS IPI; without IPI this method defaults to ATP-trad. The 
results in terms of the selected metrics are provided in Table 3. 

To assess the improvement achieved when using the FANS inferred 
information, Figure 4 illustrates the results graphically. The three 
graphs represent the relative ETA error, TOD position error, and 
average descent rate error, respectively. The performance of a TP in 
terms of a metric is plotted as a scatter of the respective mean and 
standard deviation. Thus, the better the performance, the closer the 
TP is to the origin of the graph, meaning zero bias and zero variance. 
The results for CINTIA and ATP-trad in "default" mode are connected 
to their respective results in "inferred" mode showing an arrow with 
the direction of the change to indicate the improvement when using 
FANS inferred information. For both CINTIA and ATP-trad the stan­
dard deviation is slightly improved (not statistically significant for the 
sample size), but the biggest improvement is in the mean. 
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Table 3. Summary Statistics For All TPs 

Metric Distribution Characteristics 

Standard 50% 95% 
Metric TP Mean Deviation range range 

tETA-MF US System 0.9 3.4 3.3 14.5 
[-0.2, 2.0) [2 .8, 4.5) 

[%] A388 IPI 0.9 1.4 1.6 4.9 
[0.4, 1.3) [1.1, 1.8) 

CINTIA (DEF) - 5.9 5.5 8.8 18.4 
[-7.6, -4.1) [ 4.4, 7.1) 

CINTIA (INF) -3.4 5.3 7.7 18.4 
[ -5.1, - 1.6) [4.3, 6.9) 

ATP-trad (DEF) - 3.1 0.9 1.3 4.0 
[ -3.4, - 2.8) [0.8, 1.2) 

ATP-trad (INF ) 0.1 0.9 1.2 3.3 
[-0.2, 0.4) [0.7, 1.2) 

ATP-path - 0.1 0.8 1.0 3.1 
[-0.4, 0.2) [0.7, 1.1) 

t TOD US System -43.0 25.2 21.2 97.4 
[-51.1, - 34.9) [20.5, 32. 7) 

[nmi] A388 IPI 4. 1 4.1 3.5 13.8 
[2.8, 5.5] [3 .3, 5.3] 

CINTIA (DEF) 48.9 8.2 9.3 30.8 
[46.2, 51.5] [6.7, 10.7] 

CINTIA (INF) 41.3 8.8 9.9 32.1 
[38.5, 44.1] [7.2, 11.4] 

ATP-trad (DEF) 11.3 4.9 4.3 17.2 
[9.8, 12.9] [4.0, 6.3] 

ATP-trad (INF) 2.4 5.0 4.7 16.6 
[0.8, 4.1] [4. 1,6.5] 

ATP-path 4.2 4.0 3.5 13.8 
[2.9, 5.5] [3.2, 5.2] 

t DR US System 28 110 147 388 
[- 8, 63] [90, 143] 

[ftJmin] A388 IPI - 13 74 48 286 
[-37, 11] [61, 97] 

CINTIA (DEF) 495 106 98 431 
[460, 529] [86, 138] 

CINTIA (INF) 190 101 107 372 
[157, 222] [82, 131] 

ATP-trad (DEF ) 294 93 104 285 
[264, 324] [75, 121] 

ATP-trad (INF) -25 75 92 291 
[-49, 0] [61, 98] 

ATP-path 2 63 44 255 
[ -19, 22] [51, 81] 
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Figure 4. Trajectory predictors performance overview. 
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Figure 5 provides an overview of the inferred descent CAS and mass 
against the BADA and US system default values. BADA default values 
were used by both CINTIA and ATP-trad. Note that no default mass 
is provided for the US system as predictions performed by its kine­
matic trajectory engine do not depend on mass. The large difference 
between the default speed (300 KIAS) and the average inferred speed 
(280 KIAS) explains the shift in the mean TP performance. In terms 
of mass, the default value (350,000 kg) falls within the variance of 
the inferred mass (mean 380,000 kg, standard deviation 24,000 kg). 
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The variance in the inferred mass is quite large, and some values 
are likely to be unrealistic. For some of the 37 flights, Qantas provided 
aircraft recorded Quick Access Recorder (QAR) data that validated the 
inferred parameters. In terms of the inferred descent CAS the mean 
error is 2 kt too slow with a standard deviation of 2 kt. In terms of 
inferred mass however, the mean error is 11,300 kg too heavy with a 
standard deviation of 24,000 kg. The benefit of the inferred informa­
tion is therefore most likely contributed to the inferred descent speed. 
Figure 5 shows the operations were quite consistent in terms of descent 
speed, an observation that was suggested in earlier sections of this 
paper, but now supported with the inferred descent speed information 
and verified by true operational data provided by Qantas QAR. Note 
that ATP does not infer descent speed and mass independently, but as 
a combined set of unknowns. In addition the accuracy of the inferred 
information depends on the difference between the support models 
used by the FMS and the inferring algorithm as illustrated earlier. 
As the inferred descent speed is quite accurate, this could indicate 
that in this scenario the predictions are more sensitive to descent 
speed than mass, and as such, the larger error in the mass is irrele­
vant. Further research into this observation will be conducted. 

After application of the inferred information the remaining bias in 
ATP-trad is statistically insignificant, but a statistically significant 
bias remains present for CINTIA in all metrics, though significantly 
smaller than without the inferred information. These biases for 
CINTIA are most likely the result of the difficulty in modelling 
the level segment from GOATZ to SXC on the BUFIE procedure, as 
is mainly reflected in the cToD metric bias shown by the trajectories 
it computes. Further experiments in which the vertical and horizon­
tal profiles computed by CINTIA were shifted relative to one another 
to match the 12,000 ft constraint at GOATZ indicated that the 
TP adapted to handle the level segment would have produced cToD 

results similar to ATP-trad. This "correction" could not be extended 
to the cETA-MF metric: as soon as the aircraft reaches 12,000 ft, 
CINTIA starts to decelerate the aircraft to intermediate descent 
speed (250 KIAS) and then continue the descent. The high variance 
for the cETA-MF metric can be explained by the strong correlation 
between the results and the wind errors due to the way CINTIA 
handles weather data: it accepts a single dataset composed of verti­
cal bands between which weather conditions are interpolated and, for 
this research, the data used were taken close to the TOD. Note that 
some difference could also result because ATP infers information using 
BADA3 and CINTIA uses BADA4 and, therefore, there is limited (if 
any) calibration effect of the pseudo-mass as discussed previously. 

Another interesting observation is that ATP-trad in inferred mode 
shows no significant bias in ETA error while the original IPI informa­
tion did. This finding would indicate that the bias in the IPI is not the 
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result of any intent error (assuming that the FMS is fully aware of its 
intent), but maybe the result of a bias in the forecast assumed by the 
FMS (note that all flights came from a similar direction with similar 
prevailing wind conditions). Also, ATP-trad has a smaller standard 
deviation in ETA error than the original IPI data. For the current 

· sample size this improvement over the FMS is just significant at a 
95% confidence level. The improvement is likely the result of better 
knowledge of speed intent and initial conditions combined with a 
more accurate, detailed forecast weather model available to ATP. 
Interesting to note is the small error in TOD position after applying 
the inferred information. The bias appears even smaller than for 
the FMS derived TOD. The noise related to determining the "actual" 
TOD position as explained previously makes judgment of these small 
figures difficult. In any case the improvement is substantial. 

ATP-path is clearly the best performer of the different TPs. This 
TP was used in the study published in [Bronsvoort et al., 2012] where 
the theory was first applied to a sample of more than 400 FANS­
equipped Boeing 737-800 flights and where the improvement over 
the original FMS IPI data was proven statistically significant. The 
identical performance of ATP-path and the FMS in terms of TOD 
position is not a surprise, as ATP-path uses the geometric path 
established from the IPI. The improvement of ATP-path over the 
FMS in terms of the other two metrics is related to the use of the 
inferred mass and predicting ahead what the speed variations of 
the aircraft will be as result of holding the path at idle thrust (path­
on-elevator) when using a more accurate and detailed forecast than 
available to the FMS. For the investigated sample an average speed 
deviation of 4 kt too slow with a standard deviation 1.5 kt was 
observed. The reduction in ETA error between ATP-path and ATP­
trad is not that large when compared against the performances of 
the other TPs. A larger sample would be required as to claim the 
improvement as statistically significant. 

Thus, the benefit of the inferred information is mostly a shift in the 
mean due to the consistent Qantas operations. If other airlines with 
different operating procedures (even for the same aircraft) were to be 
added, the inferred operation will likely not only result in a significant 
reduction in bias, but also a significant reduction in variance. 

APPLICATION 

The previous section showed the significant improvements to ground­
based trajectory prediction when enhanced with aircraft derived 
information from FANS. Once again, it needs to be emphasized that 
FANS is standard equipment on any wide-body aircraft being made 
today. The two work horses of short- to medium-range fleets, the 
Boeing 737NG and Airbus A318-A321, are easily capable of being 
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fitted with FANS. In case of the B737NG airlines must only purchase 
the FANS-1 Service Bulletin (SB). The SB will include activation of 
the FANS applications already in the FMS and will also identify other 
equipment changes needed for the aircraft, if any (depending on air­
line standard equipment). Qantas and former Continental Airlines 
(now United Airlines), have activated FANS on their Boeing 737-
800 fleet. The process for A318-A321 is slightly different as on top 
of the FANS A+ SB some additional equipment is required. A few 
airlines like Silk Air, Gulf Air, and China Eastern have equipped their 
A320 fleet with FANS. Currently, about 20% of arrivals into LAX 
specify in their flight plan being data-link (FANS) equipped. In 
Australia there is a similar percentage, but this grows significantly 
when one considers the FANS capable Boeing 737-800 fleets of Qantas, 
United, and others, as the equipment is not yet used by ATC. 

With a growing number of aircraft capable of down-linking tra­
jectory information, this section continues to discuss some possible 
applications within the domains of NextGen, SESAR, and the 
Australian ATM Strategic Plan (AATMSP). 

NextGen Applicability 

While the operational TP in ERAM cannot make direct use of 
inferred intent from ADS-C today, on-going work in support of the 
FAA's NextGen Program is exploring major enhancements for a 
future release of ERAM's TP. The project has already developed a 
kinetic-based TP model in the laboratory and was scheduled for 
comprehensive evaluations in late 2013 supported by the data from 
this study. This paper's demonstration in utilizing airborne intent 
in a ground-based TP is one of several motivations for developing 
such an upgrade for ERAM and offers decision makers further 
reason for making the investment [Torres et al., 2012]. 

In addition, the FAA is investigating enhancements to improve 
the operational system's trajectory predictions and in turn provide 
ATC better strategic aircraft-to-aircraft conflict predictions. As 
documented in a recent study [Crowell et al., 2011] , the FAA and 
industry researchers developed and tested a prototype algorithm 
that detects in-trail overtaking conflict predictions. The prototype 
makes better use of radar surveillance speed estimates to reduce 
errors under this common operational situation. However, the 
resulting benefits are constrained due to the limitations of existing 
aircraft intent. The authors believe that the aircraft speed profile 
that can be inferred through FANS ADS-C would significantly 
enhance this algorithm and reduce a long-standing source of error 
in the operational system. Applying inferred intent to improve the 
core trajectory prediction in the US ground automation will impact 
many functions in operation today like conflict prediction, as illus­
trated here, and future capabilities such as conflict resolution, 
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automated coordination, and arrival sequencing tools like path 
arrival management (3D-PAM). 

SESAR Applicability 

SESAR Step 1, time-based operations, relies on the capability of the 
ATM system to build a reference business trajectory at a level of 
time accuracy such that it can be flown in most cases. Introducing 
time constraints into present ATC operations aims at getting the 
traffic better organized, especially when converging to extended 
terminal areas. 

As concluded in previous work by these authors, however, the time 
accuracy of present ground-based TPs does not allow the immediate 
introduction of time-based operations [Bronsvoort et al., 2011]. Air­
borne enhancements are foreseen as being essential to a successful 
implementation of Step 1 in two ways: 

• The use of the airborne controlled/required time of Arrival (CTA/ 
RTA) capability to guarantee that an aircraft meets a given time 
constraint over a point 

• The use of airborne-derived data to improve the accuracy of the 
ground TP 

Concerning the second item, an enhancement to ADS-C, Extended 
Predicted Profile (EPP), is being developed and includes climb/cruise/ 
descent speed schedules, take-off and top of descent weights and a list 
of a maximum of 128 4D points from present position to destination. 

The temporal accuracy of the data-link enhanced ATP-trad and 
ATP-path for SXC is close to what was achieved during the 2010-2011 
Boeing 737 RTA trials into Seattle for a comparable fix on the arrival 
procedure (9.4 seconds standard deviation for the RTA trials versus 
14.8 seconds (0.8%) for ATP-path) [Bell, 2012]. Most wide-body aircraft 
are yet unable to control to an RTA for a point on descent, but are 
equipped with FANS. This technique might therefore assist to handle 
initial mixed equipage scenarios. 

As FANS was first introduced in the early 1990s, it has taken 
more than 20 years to reach the equipment levels earlier quoted in 
this section. Without an ADS-C EPP mandate, fitting this equip­
ment could be similarly slow. This problem is compounded by little 
knowledge of what equipment levels are required to provide a bene­
fit to operations. The i4D+CTA Step A Validation studies showed 
that even with 40% of aircraft equipped, controller workload remains 
negatively affected [SESAR JU, 2012]. Therefore, the work presented 
in this paper is of critical interest to SESAR Step 1, as it shows what 
improvements can be achieved on ground TP accuracy, both longitu­
dinally and vertically during the descent, using a source of airborne 
data, FANS 1/A, already available today. The authors believe that the 
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work presented in this papers can assist in providing a transition 
concept towards more advanced technologies and a potential method 
to handle mixed equipage. 

Australian Applicability 

Both SESAR and NextGen propose that aircraft will be assigned times 
at waypoints that they must achieve within set limits (RTA func­
tionality). Any speed change by an aircraft in attempt to meet the 
assigned time will cause increased workload to ATC, as the impact of 
such a change is assessed. A concept relying on airborne equipment 
to meet time constraints therefore still requires continuous monitor­
ing by ATC. In addition, problems will result from slow equipment 
fitting as mixed equipage will need to be handled for many years. 

Therefore, in Australia a concept is researched in which aircraft 
are permitted and expected to operate consistently without unex­
pected changes to their operation. The concept envisions aircraft to 
conduct a continuous descent in the airline-preferred path managed 
mode. In path managed mode the aircraft can conduct a continuous 
descent along a consistent descent profile with the uncertainty con­
tained in the temporal dimension of the trajectory. ATC is subse­
quently supported by accurate ground-based trajectory prediction to 
manage this temporal uncertainty through metering at strategically 
chosen points along the aircraft's trajectory [McDonald and Bronsvoort, 
2012]. The ATP-path system is specifically designed to support this 
concept, and its capability was demonstrated in this paper. 

CONCLUSION 

This paper demonstrated that significant improvement in ground­
based trajectory prediction can be achieved with use of FANS tra­
jectory information. Results demonstrated how critical elements of 
trajectory information useful to ATC such as descent speed schedule 
and aircraft mass can be inferred using FANS and applied in a format 
accepted by different ground-based TPs. 

The method was applied to Qantas Airbus A380 operations in 
Los Angeles conducting optimised profile descents. Results from the 
data-link enhanced TPs were compared against baseline predictions 
provided by current operational systems and TPs without the use of 
data-link. Because of the consistency of the Qantas A380 operations, 
improvements mainly emerged in reduction, or even elimination, of 
the bias in the baseline predictions, as the inferred speed schedule 
replaced the default values used by these systems. Even though 
most of the aircraft in the sample conducted a descent according 
to a similar descent speed schedule, the inferring algorithm was able 
to detect the cases where a faster or slower descent was anticipated. 
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This finding suggests that even when the operations are inconsis­
tent, the method might further improve on the variance in the 
trajectory prediction error. The ability of the inferring algorithm to 
estimate the aircraft mass was found to be less accurate, but the 
predictions appeared not as sensitive to this. 

Some of the investigated data-link enhanced TPs proved to be more 
accurate than the original downlink predictions on which the inferred 
information was based. This finding is partly due to the ground-based 
TP combining the down-linked trajectory data in an effective way with 
an extensive weather forecast. Results of this paper, therefore, pro­
vide arguments for a combined air-ground solution to trajectory 
prediction rather than sole reliance on airborne trajectory data. 

FANS is standard equipment on most wide-body aircraft and fitting 
options exist on the major single-aisle aircraft fleet. Therefore, as the 
infrastructure to obtain the required data are already in place, both in 
the air as on the ground, the approach proposed in this paper is imme­
diately feasible with minimum investment and systems changes. Use 
of FANS intent capability provides an interim solution to improve 
operations today until the data-link standards proposed under SESAR 
and NextGen are deployed and reach sufficient equipage levels. 
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ACRONYMS 

AATMSP 
ADAPI' 
ADR 
ADS-B 
ADS-C 
ATA 
ATC 
ATM 
ATP 
ATS 
BADA 
CMS 
CNS 
CPD LC 
CTA/RTA 
DEF 
EDR 
EPP 
ERAM 
ETA 

Australian ATM Strategic Plan 
Aircraft Data Aiming at Predicting the Trajectory 
actual descent rate 
Automatic Dependent Surveillance Broadcast 
Automatic Dependent Surveillance Contract 
actual time of arrival 
air traffic control 
air traffic management 
Airservices Trajectory Predictor 
air traffic system 
Base of Aircraft Data 
common message set 
Communication Navigation and Surveillance 
Controller Pilot Data Link Communication 
controlled/required time of arrival 
default information 
estimated descent rate 
extended predicted profile 
En Route Automation Modernization 
estimated time of arrival 
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FANS 
FMS 
Fpm 
HCS 
INF 
IPI 
JEDI 
KIAS 
KZAK 
LAX 
QAR 
SB 
STAR 
sxc 
TBO 
TOC 
TOD 
TP 
TRACON 
ZLA-ARTCC 

Future Air Navigation Systems 
flight management system 
feet per minute 
host computer system 
inferred information 
intermediate projected intent 
Java En Route Development Initiative 
knots indicated air speed 
Oakland Oceanic Airport 
Los Angeles International Airport 
Quick Access Recorder 
service bulletin 
Standard Terminal Arrival Route 
Santa Catalina 
trajectory based operations 
top of climb 
top of descent 
trajectory predictors 
terminal radar approach control 
Los Angeles air route traffic control center 

REFERENCES 

379 

Alligier, G., Gianazza, D., and Durand, N. (2013), "Ground-based Estimation of the 
Aircraft Mass, Adaptive vs. Least Squares Method," Proceedings of the Tenth 
USA/Europe Air Traffic Management Research and Development S eminar 
(ATM2013), Chicago, IL. 

Australian Strategic Air Traffic Management Group (ASTRA) (2007), The ATM 
Strategic Plan (Part A) . 

Bell, A (2012), "Developing Standards for Time-Based Sequencing and Separation 
of Aircraft," Proceedings of the 2012 Integrated Communications Navigation and 
Surveillance (!CNS) Conference , Herndon, VA 

Bronsvoort, J. (2011), "Improved Ground-Based Trajectory Prediction for Air Traffic 
Management," MSc Thesis. Submitted to Department of Air Transport Opera­
tions CATO), Faculty of Aerospace Engineering, Delft University of Technology, 
Delft, The Netherlands. 

Bronsvoort, J ., McDonald, G.N., Paglione, M.M., Garcia-Avello, C., Bayraktutar, I., 
and Young, C.M. (2011), "Impact of Missing Longitudinal Aircraft Intent on 
Descent Trajectory Prediction," Proceedings of the 30th Digital Avionics Systems 
Conference, Seattle, WA 

Bronsvoort, J., McDonald, G.N., Lopez-Leones, J ., and Visser, H.G. (2012), "Improved 
Trajectory Prediction for Air Traffic Management by Simulation of Guidance Logic 
and Inferred Aircraft Intent using Existing Data-Link Technology," Proceedings of 
the AIAA Guidance Navigation and Control Conference, Minneapolis, M. 

Courdacher, T., and Mouillet, V. (2008), "ADAPT Aircraft Data Aiming at Predicting 
the Trajectory" EUROCONTROL. 

Crowell, A, Fabian, AJ., Young, C.M., Musialek, B., and Paglione. M. (2011), "Evalu­
ation of Prototype Enhancements to the En Route Automation Modernization's 
Conflict Probe" (No. DOTIFAAITC-TN12/3): Federal Aviation Administration. 

Joint Planning and Development Office. (2007), "Concept of Operations for the 
Next Generation Air Transportation System," Washington: Joint Planning and 
Development Office. 



380 BRONSVOORT ET AL. 

Klooster, J., Torres, S., Castillo-Effen, M., Subbu, R., Kanmer, L., Chan, D., and 
Tomlinson, T. (2010), "Trajectory Synchronization and Negotiation in Trajectory 
Based Operations," Proceedings of the 29th Digital Avionics Systems Conference, 
Salt Lake City, UT. 

Lopez Leones, J., Del Amo, A., Bronsvoort, J., Bayraktutar, I., Perez Lorenzo, M.A., 
Dierks, H., and McDonald, G. (2013), "Air-Ground Trajectory Synchronization 
through Exchange of Aircraft Intent Information" Air Traffic Control Quarterly, 
Vol. 20(4), p. 311-339. 

McDonald, G.N. and Bronsvoort, J. (2012), "Concept of Operations for ATM by 
Managing Uncertainty through Multiple Metering Points," Proceedings of the 
Air Transport and Operations Symposium, Delft, The Netherlands. 

Mondoloni, S. (2006), "Aircraft Trajectory Prediction Errors: Including a Summary 
of Error Sources and Data (Report)," CSSI Inc. 

Paglione, M., Bayraktutar, I., McDonald, G.N., and Bronsvoort, J. (2010), "Lateral 
Intent Error's Impact on Aircraft Prediction," Air Traffic Control Quarterly, 
Vol. 18(1), p. 29-63. 

Roberts, C.J . (2009), ATC Data Link News, Retrieved January 10, 2011, from 
http://www.members.optusnet.com.au/~cjr/index.html. 

SESAR Consortium. (2007), The ATM Target Concept (D3). 
SESAR JU. (2012), i4D+CTA Validation Report - Step A. 
Thipphavong, D.P., Schultz, C.A., Lee, A.G., and Chan, S. (2013), "Adaptive Algo­

rithm to Improve Trajectory Prediction Accuracy of Climbing Aircraft," Journal 
of Guidance, Control, and Dynamics, 36(1), p. 15-24. 

Torres, S., Little, J., McKay, E.G., and Dehn, J . (2012), "ERAM Vertical Trajectory 
Model Enhancement using a Kinetic Approach," No. FAA-ERAM-2012-027). 

Vivona, R.A., Cate, KT., and Green, S.M. (2011), "Comparison of Aircraft Tra­
jectory Predictor Capabilities and Impacts on Automation Interoperability," Pro­
ceedings of the 11th AIAA Aviation Technology, Integration, and Operations 
(ATIO), Virginia Beach, VA. 

Young, C.M., Fabian, A.J., Kuo, V., and Idris, H.R. (2012), "Trajectory Based 
Operations Conflict Advisories: Fast-Time Simulation Study Investigating 
Benefits from Improved Intent Entry," No. DOT/FAA/TC-TN12/50): Federal 
Aviation Administration. 

BIOGRAPHIES 

Jesper Bronsvoort is an Aerospace Engineer at Airservices Australia, Melbourne. 
He works on several initiatives involved in the transition to Trajectory Based Oper­
ations in Australia. He holds a BSc degree (2006) and an MSc degree (2011) in 
aerospace engineering, both from Delft University of Technology, The Netherlands. 
Currently he is a PhD candidate at Universidad Politechnica de Madrid, supported 
by Airservices. 

Greg McDonald is an Air Traffic Controller with in excess of 30 years experience 
in all facets of the craft. Since 1998 has been involved in the Australian ATM 
Strategic Plan and implementing efficiencies for airlines including AUSOTS flex 
tracks. His work managing the Tailored Arrivals program for Australia has lead to 
his interest in improving ground based trajectory prediction to efficiently manage 
the increasing air traffic. 

Mike Paglione is the Branch Manager of the FAA's Concept Analysis Branch at 
the FAA W. J. Hughes Technical Center, Atlantic City, NJ. Before taking the current 



DEMONSTRATION OF IMPROVED TRAJECTORY PREDICTION 381 

management position in 2012, he had served as a FAA engineer and project lead 
for 13 years. He has extensive experience in air traffic control automation algo­
rithms, simulation problems, analysis of decision support software, applied statis­
tics, and general systems engineering. The Concept Analysis Branch (ANG-C41) 
conducts research to validate new aviation concepts' technologies, investigate system 
capacity issues, and evaluate the performance of both emerging and existing systems 
within the National Aviation System (NAS). Mr. Paglione has supported the develop­
ment, testing, and evaluation of FAA air traffic management software and also 
served as a NextGen program manager. He was FAA's Rutgers University Fellow 
from 1994-1996, Accuracy Test Lead for the FAA's User Request Evaluation Tool, 
Program Manager for the Joint University Program from 1999 to 2004, Lead for the 
Automation Metrics Test Working Group (a cross organizational team developing and 
implementing metrics for the En Route Automation Modernization Program, ERAM), 
and a program manager supporting a NextGen project investigating improvement 
to the separation management functions in the en route automation. He holds B.S. 
and M.S. degrees in Industrial and Systems Engineering from Rutgers University. 

Christina M. Young received the B.S. degree in Industrial Engineering from 
Rutgers, The State University of New Jersey. She worked on FAA research projects 
under a fellowship grant while earning graduate degrees: M.S. in Statistics and Ph.D. 
in Industrial and Systems Engineering. Since completing her doctorate in 2010, she 
has worked on NextGen projects at the FAA William J . Hughes Technical Center at 
the Atlantic City Airport in NJ. Dr. Young is part of the Concept Analysis Branch 
(ANG-C41), which conducts research to validate new aviation concepts technologies 
and evaluate the performance of both emerging and existing systems within the NAS. 

Andrew J. Fabian has been working since 2008 on NextGen projects at the FAA 
William J. Hughes Technical Center at the Atlantic City Airport in NJ. He started 
as a student intern while in pursuit of the B.S. degree in Mathematics and the B.S. 
degree in Computer Science from Rowan University, both of which he received in 
2009. He continued as an intern and earned the M .S. in Computer Science from 
Rowan University in 2011. Mr. Fabian is now part of the Concept Analysis Branch 
(ANG-C41), which conducts validation studies of new aviation technologies and 
analyzes performance of both emerging and existing systems within the NAS. 

Jean Boucquey graduated from Universite Libre de Bruxelles in Belgium with a 
B.S. degree in Computer Science in 1984. He obtained a M.S. degree in Computer 
Science from the same university in 1986 and a special M.S. degree in Business 
Administration from Solvay Business School, in Brussels, Belgium in 1988. From 
1992 on, working for EUROCONTROL, he has been active in ATM system proto­
typing and simulation with a constant focus on improving and adapting trajec­
tory prediction. Currently working in EUROCONTROL's Directorate SESAR 
and Research, he supports and provides expertise to several SESAR operational, 
system and long t erm research projects in the fields of Trajectory Manage­
ment, Trajectory Predict ion and Complexity Assessment and Resolution. He is, 
amongst others, member of the ACM (Association for Computing Machinery), AMS 
(American Mathematical Society) and the AAAI (Association for the Advancement 
of Artificial Intelligence) 

Carlos Garcia Avello, Mechanical engineer from Universite Catholique de Louvain, 
Belgium, has been working on R&D activities in the fields of aircraft perfor­
mances modeling, trajectory prediction, ATC simulation and the development of 
ATM advanced automation (complexity management, arrivals/departures manage­
ment). He retired from EUROCONTOL Agency, Brussels. 


