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The lateral deviation between the air traffic automation’s known horizon-
tal route of flight and the actual aircraft position is due to the typical
navigation and surveillance errors, as well as the larger atypical errors
that are mainly caused by purposeful changes in the route of flight that
are not updated. The paper presents large data analyses of the ground
automation systems of the United States and Europe, indicating errors
from 20 to 30 nautical miles are common, while airborne Australian and
more samples in the United States had errors from 100 to 800 times smaller.
Further analysis illustrated the direct impact these errors have on safety
critical separation management functions. It was concluded that airborne
derived data via Automatic Dependent Surveillance Contract reports offer
a major opportunity to improve the ground-based automation functions.

INTRODUCTION

Despite the current economic slow down, most air traffic service
providers (ATSPs) across the globe continue to expect significant
growth in air traffic demand in the future. If no action is taken, it
is generally accepted that this growth will outpace the capacity
limits of their aviation systems, resulting in greater congestion and
inefficiency. In areas of the northeastern United States as well as
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Western Europe, these conditions may already have reached their
capacity limits under peak demand. In unprecedented proportions,
industry and ATSPs have responded by developing comprehensive
plans requiring broad advances in ground-based and airborne
automation.
The interagency Joint Development Planning Office (JPDO) in the

United States foresees a traffic demand increase by 2025 up to three
times the number of flights of today’s traffic [1]. The JDPO, as
established in their charter under the “Vision-100” legislation (Public
Law 108-176) signed by President G. W. Bush in December 2003, has
mandated a next generation operational concept of the National Air-
space System (NAS) for 2025 [1]. This next generation NAS envisions
a trajectory based separation management system that requires pre-
cise management of the aircraft’s current and future position. The
separation function of today, relying heavily on the cognitive skills of
the air traffic controller to visualize aircraft trajectories on the radar
display and issue resolutions via voice instructions to pilots, will be
replaced by a distributed system of separation management compo-
nents, implementing performance-based separation standards. This
future system will rely heavily on enhanced automation with conflict
resolutions that are communicated digitally between air and ground
and between aircraft.
Beginning in July 2004, the European Commission established a

consortium of air traffic stakeholders with similar objectives for
Europe, known as the Single European Sky Air Traffic Manage-
ment (ATM) Research Initiative (SESAR). SESAR requires develop-
ment of technology, standards, and procedures over the next eight
years. The overall objective is to increase air traffic capacity by
three while cutting aviation costs in half, improving safety by a
factor of ten, and reducing the environmental impact of each flight
by ten percent [2].
While the initiatives in Europe and the United States were still

just discussions among aviation stakeholders, Australia embarked on
a world first initiative to develop an ATM Strategic Plan as early as
1999. Based on a collaborative approach with User Preferred Trajec-
tories as the ultimate goal; the ATM Strategic Plan establishes a
framework that enables Australia to keep at the forefront of the
Communications, Navigation, and Surveillance (CNS) systems and
ATM development and its associated benefits.
The successful achievement of these ambitious initiatives set forth

by multiple nations will require researchers across the globe to ques-
tion their old paradigms within the existing processes and infrastruc-
ture to develop new approaches for meeting the challenges in these
plans. With such high goals, there will be increasing demands in
schedule and cost (doing more with less) so collaboration is vital to
leverage resources and expertise.
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This paper brings researchers together from the United States,
Europe, and Australia to examine one specific, yet critical component
within the aviation system–the understanding of the impact of lat-
eral intent information within our current ATM automation and how
it may improve in the future. The lateral intent of an aircraft is
indeed only one aspect of the trajectory input information required
to predict an aircraft’s future path, but the challenge involved is a
common problem across the globe. It is also of critical importance to
the feasibility of automation that will assist in the separation man-
agement of aircraft. Therefore, global collaboration on the issues and
potential solutions is warranted. This paper will first describe the
trajectory prediction process followed by detailed explanations of the
problem of missing lateral intent. Data and analysis results are
presented in the next two sections that illustrate the magnitude of
the problem. In closure, potential solutions are proposed.

AIRCRAFT TRAJECTORY PREDICTION PROCESS

Many of the operational concepts among the JPDO, SESAR, and
Australia’s ATM Strategic Plan promote the development of decision
support tools (DSTs). These tools are envisioned to help mitigate
many of the capacity and workload constraints of the system if effec-
tively integrated with advanced automation solutions in the air
and ground systems. These tools have many purposes and typically
serve to reduce the cognitive workload of the airspace problems
faced by the current human decision makers operating the system.
They include tools that serve to predict future conflicts between
aircraft, both for ground based controllers or airborne pilots, allow-
ing more strategic separation management of aircraft. Air traffic
management DSTs include capabilities that forecast where and
when traffic workload would stress the system, allowing air traffic
supervisors to make more efficient adjustments to either avoid the
condition or alter staff and/or airspace accordingly. Such tools
also include air traffic metering tools to efficiently sequence aircraft
into en route and arrival flows, maximizing the capacity of the sys-
tem. A common thread in all these DSTs is the accurate and timely
modeling of the aircraft’s current state and anticipated future path.
This modeling function is referred to as the trajectory predictor (TP)
process.
Adapted from Reference 3, Figure 1 illustrates an example of

the trajectory prediction process as applied to a commercial flight
already en route. This example refers to a generic ground-based
trajectory prediction and generation process; some TPs may re-
quire more, different or less information. The notional trajectory
presented illustrates a simplistic trajectory prediction. A more
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complex instantiation of this process could lead to the inclusion of
more sophisticated steps such as aircraft behavior modeling, in-flight
parameter estimation, or trajectory error monitoring. The TP re-
quires access to the flight plan containing the flight number (e.g.,
AAA123), the aircraft type (B-757-200), the filed cruise speed (true
airspeed of 450 knots), the desired cruise altitude (31,000 feet), and
the route of flight (from waypoint XXX, direct to ABC, then DEF,
finally to XYZ via the BUC 7 STAR). Furthermore, the TP will have
an estimate of the initial condition (present aircraft position, alti-
tude, ground speed and ground track). Prior to conducting trajectory
prediction, the flight plan route, expressed as named waypoints,
jet routes, STARs, etc. will be converted to a series of geographical
points (e.g., latitude and longitude). This process is known as route
conversion [3].
Once the route is converted, a mechanism for joining the initial

condition to the converted route is required. This process is referred
to as lateral path initialization. This process may simply involve the
identification of the initial location on the route. At times, the initial
condition will be slightly off-route and some connection from the
initial condition to the route will be required. A more generalized
form of this trajectory service includes lateral intent modeling, in
which the lateral path is generated based on assumed operational
procedures of the pilot and/or controller.
Once the lateral path is determined, vertical and speed constraints

must be considered at different points along the route of flight. This
is the process of constraint specification. For example, speed con-
straints below 10,000 feet can be applied, as can altitude constraints
along a standard terminal arrival route. The concept of longitudinal
intent modeling, while implicit in some TPs, refers to the addition of
speed and altitude procedural considerations that reflect how the
combined controller, pilot and aircraft guidance system will “fly” the
aircraft. An example is the estimation of the top-of-descent location
or the planned descent speed.

Figure 1. Trajectory generation – Adapted from [3].
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All of the above steps are typically conducted prior to the calcula-
tion of a trajectory using physics-based modeling. We refer to this
collection of information as the preparation process. The next step
is the core or computation part of aircraft trajectory prediction.
During this step, the lateral and vertical path are merged to “reflect”
the predicted behavior identified in the preparation process, includ-
ing: following the converted route, meeting specified constraints
(such as altitude and speed constraints), following appropriate air-
craft dynamics (such as turns, climbs and descents), and reflecting
environmental and aircraft-specific effects. The output of this pro-
cess is the predicted evolution of the aircraft’s state as a function
of time.

PROBLEM OF MISSING LATERAL INTENT

The accuracy of the TP process described above can be measured by
post flight comparisons of predicted and observed aircraft trajecto-
ries. Since the predicted trajectory is the fundamental input that
sustains the DST’s capabilities and functions, the accuracy of the TP
has a direct and significant impact on the DST’s overall performance
and usability.
In addition to those previously described, the TP requires many

inputs to produce an accurate trajectory prediction such as aircraft
model characteristics, surveillance position reports, wind and tem-
perature forecasts, and flight path intent information to name a
few [4]. These factors have been the subject of many scientific
studies. In [5], the National Aeronautics and Space Administration
(NASA) ran aircraft field tests to verify the operational perfor-
mance of its own TP. In a different study [6], researchers at the
MITRE Corporation developed models to evaluate their DST’s
overall performance by utilizing accuracy statistics of their TP’s
performance. In yet another effort [7], a collaborative group of
European and American researchers illustrated that the impact of
variations in these factors has significant effects on the output
trajectory’s accuracy.
Under present-day operations, as illustrated previously in Figure 1,

the flight plan message is the typical means of coding the aircraft
operator’s request and air traffic control’s clearance of the aircraft’s
horizontal path. However, as the aircraft actually executes these
maneuvers, unforeseen conditions such as the weather or the action
of other aircraft, may impact the flight and require changes to the
operation. These dynamic changes are currently not often processed
the same by the automation systems on the ground and on-board the
aircraft. As a result, these systems are often not synchronized with
respect to aircraft information.
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A common example is the heading vector. To safely avoid other
aircraft ahead, the current procedure is initiated verbally through
direct radio communications between pilot and ground controller.
Either to add delay or spatial distance to the aircraft’s path, the
air traffic controller instructs the aircraft pilot to deviate from the
previously cleared flight plan to an alternate path. A specified
heading is given for an indeterminate time or to capture a down-
stream position on the original flight plan. This information,
although confirmed verbally between controller and pilot, is often
not digitally transcribed for the automation on the ground. The
result is aircraft predictions with missing lateral intent in the ground
automation.
Heading vectors are not the only example of situations where

ground automation lacks the horizontal clearances just issued to an
aircraft. Flights may be verbally cleared to proceed direct to a down-
stream fix along its flight plan, presumably cutting time and distance
off its overall route for improved efficiency and fuel savings. In the
United States, MITRE Corporation published a study in 2000 that
reported that only about 30% of the lateral maneuvers within an en
route facility were entered into the ATM automation [8].
In other cases, the flight may be deviated to fly one or more hold

maneuvers or parallel offset from the current route. This next exam-
ple describes a flight entering a hold maneuver. An operational
recording was made in March 2005 of a civilian airliner traveling
through the United States’ Washington Air Route Traffic Control
Center (ARTCC), referred to as ZDC. It originated from Dallas Fort
Worth, Texas with the destination of John F. Kennedy International
Airport (JFK) in New York. Figure 2 illustrates the top down stereo-
graphic view of the aircraft’s horizontal path overlaid on the ZDC
high-altitude sectors, which it travels through. On its journey to
JFK, the sample flight is traveling in a northeasterly direction where
ZDC accepts air traffic control for the flight at 20:14 UTC (Coordi-
nated Universal Time) from adjacent Indianapolis ARTCC.
The focus of this example is the ground automation’s trajectory

built at 74005 seconds (20:33:25 UTC). This trajectory is illustrated
in both Figure 2 and Figure 3 (darker segmented line) and overlaid
with the surveillance track positions (light gray thicker line). Of
particular interest is the complete hold maneuver performed later in
the flight beginning roughly at 20:50 UTC. Clearly, the trajectory
does not reflect this event, which is suspected to be a result of
a verbal air traffic control clearance not entered into the automation
system. An extraction of the trajectory metrics calculated for the
74005 second trajectory is listed in Table 1. A sample was taken at
74040 seconds (20:34:00) with a look-ahead time every five minutes
up to 20 minutes in the future. At the first measurement time at look-
ahead time of zero, the horizontal error (i.e. straight-line unsigned
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error) was nearly half a mile with zero vertical error. However, as the
look-ahead time progresses and approaches the turn as depicted
in close-up view in Figure 3, the horizontal errors increased sig-
nificantly. Due to the missed maneuver, the error reaches up to
32 nautical miles horizontally. The clearly visible cross-track error
(i.e. side-to-side lateral error) is approximately 12 nautical miles,
but the bulk of the error is found in the along-track error (i.e. longi-
tudinal or along the route error). The additional travel time caused
by the hold maneuver manifests in a -32 nautical mile along-track
error, which translates to as much as 4.4 minutes lag in the trajectory
prediction.
Clearly, if such lateral maneuvers in the form of heading vectors,

holds, or changes in the horizontal path of an aircraft are not known
by the ground based TP, they can cause large errors in trajectory
predictions as shown by this example in Table 1. In the next section,
metrics will be defined and the results of a large data analysis effort
will further illustrate the magnitude of these lateral errors through-
out the ATM system today.

Figure 2. Sample flight, top down view.
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LATERAL DEVIATION METRICS

As described in the previous section, missing lateral intent data are
often the result of various maneuvers being initiated without proper
updates to the TP (typically located in the ground automation system
utilized by DSTs). This error can be detected in post processing or
even operationally by measuring the difference between the automa-
tion’s known horizontal position and the coincident surveillance posi-
tion. In a study conducted in [9] and in another in [10], the overall
adherence to the current air traffic control clearance is defined as

Table 1. Sample Flight’s Trajectory Metrics

Measurement
Time

Look-Ahead
Time

Horizontal
Error

Cross-track
Error

Along-track
Error

Vertical
Error

HH:MM:SS Seconds
Nautical
Miles

Nautical
Miles

Nautical
Miles Feet

20:34:00 0 0.4 0.3 -0.3 0
20:39:00 300 0.1 -0.1 0.0 793
20:44:00 600 1.2 -0.5 -1.0 0
20:49:00 900 2.1 -0.1 2.1 2096
20:54:00 1200 34.6 11.9 -32.5 6952

Figure 3. Close-up view of actual versus trajectory X-Yplot.
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the status of whether the aircraft is following its known clearance at
each instance of time during its flight. As with any definition, it is
subject to interpretation, but focusing only on the lateral dimension
discussed in [10], it is interpreted to mean that the surveillance radar
position (or global positioning satellite position if available) for an
aircraft should be declared out of lateral adherence when it is deter-
mined that the aircraft’s intent was to deviate laterally from its
known cleared route.
Figure 4 shows the geometry associated with determining lateral

adherence of a surveillance data point for an aircraft. The figure shows
an aircraft at a specific position and flying along a path in a specific
direction. The figure also shows the current route segment for the air-
craft with a triangle depicting the next fix on this route. Identified in
this figure are twokey parameters that canbeused todefinewhether or
not an aircraft is in lateral adherence at a specific position. They are:

1. dr - The normal distance from the aircraft’s actual position point to
the aircraft’s current route segment.

2. b–The angle between the aircraft’s direction of flight and a line
drawn from the aircraft’s actual position point to the next fix. (This
will be referred to as bearing to the next fix in this paper although
an aircraft’s direction of flight may not be equal to its heading.)

Based on the geometry depicted in Figure 4, the actual position of an
aircraft would be considered to be in “perfect” lateral adherence when
both the b angle and dr distance are equal to zero. Operationally,
aircraft rarely, if ever, exhibit such behavior. Therefore, if these values
are within certain predetermined thresholds, it could be stated that
the aircraft is in lateral adherence to the current known route.
Even though these metrics and their measured distributions are

universal, the combinations of thresholds chosen to determine if
an aircraft is in a state of lateral adherence are truly dependent
on the DST application being supported. For this paper the thresh-
olds utilized were developed originally in [11] to support a non-
operational conflict probe. Furthermore, a heuristic method was

Figure 4. Geometry of lateral deviation – Adapted from [10].
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implemented in [11] to determine if the DST’s TP should utilize the
flight plan or base its prediction strictly on course heading informa-
tion from radar surveillance data. This heuristic approach provides
descriptive states of lateral adherence and non-adherence that can be
utilized to quantify operational data.
The heuristic algorithm is illustrated in the following Figure 5. It

begins by calculating the normal distance to the route, dr, (or simply
the lateral deviation) and the angle b to the next fix position on the
route. If at the end of the route, immediately end the calculation and
label the state, endOfRoute. This is an indeterminate case when the

Figure 5. Lateral adherence heuristic states.
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aircraft has gone past the end of the flight plan route and thus lateral
intent is unknown. If not at the end of the route, the lateral deviation
is checked and if below a threshold, D1, is labeled to be in a state of
innerInConf.
If the lateral deviation is larger than the threshold D1, then it is

checked against a larger threshold D2. If it exceeds this threshold, it
is labeled outerNonConf for the first out of lateral conformance state.
If the lateral deviation is below, both the lateral deviation and angle b
are checked against thresholds D3 and P1, respectively. If both mea-
sures are below their respective threshold, the state is labeled
midInConf for the last in conformance state or not as midNonConf
as the last out of conformance state. The thresholds used in this
paper are listed in Table 2.

LATERAL INTENT RESULTS ON OPERATIONAL DATA

The late professor and modern management theory pioneer, Peter
F. Drucker, is attributed with the famous quote, “If you can’t measure
it, you can’t manage it.” Following this advice in perspective of the
TP, intent, and deviation information subsequently presented, the
previously described metrics are applied to a large set of operational
data from the United States, Australia, and Europe. This section
provides a guide to the magnitude of the error in various contexts on
the ground and in the air. For the ground automation data, it also
includes an analysis of aircraft conflict predictions.

Lateral Deviation Results for Ground-Based Automation

This paper utilizes United States air traffic data collected for a recent
study in [11]. It includes seven hours of air traffic messages, amount-
ing to approximately 50,000 flights, and associated adaptation
(i.e. detailed definitions of airspace boundaries and fix locations for
expanding the flight plans) collected on April 3, 2008 for all twenty en
route ARTCCs within the continental United States. The air traffic
messages were retrieved from the Host Air Traffic Management Data
Distribution System (HADDS). The messages record each ARTCC’s
air traffic control clearances and surveillance radar track positions.

Table 2. Thresholds for Lateral Adherence States

Threshold Value (units)

D1 0.5 (nm)
D2 1.5 (nm)
D3 1.0 (nm)
P1 30 (deg)
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Next, the messages are parsed and planned routes are expanded
from the flight plan amendments into a series of geographic posi-
tions. The data sample captures the afternoon peak traffic schedule
including the traffic messages recorded from 17:00:00 to 23:59:59
UTC (Coordinated Universal Time). The selected expanded routes
and associated surveillance radar positions are the input data source
for generating the lateral intent error metrics defined earlier. Table 3
provides the listing of ARTCC code versus location and the flight
count per sample.
For the European data discussed in this paper, the statistics are

cited from the EUROCONTROL Flight Data Management Metrics
project, published in [12]. The project’s objective is to measure the
quality of flight data available to stakeholders, including data consis-
tency, accuracy and other measures. The data set represents a large
European flight sample collected for one day in November 2006.
Approximately 27,000 flights from EUROCONTROL’s Central Flow
Management Unit were supplied by 31 European Air Navigation
Service Providers (ANSPs) across Europe [12].

Lateral Deviation Statistics. As cited in [12], the European data
collection was conducted with the aid of the EUROCONTROL Flight
Information Consistency Analysis Tool (EFICAT). For the two-dimen-
sional route analysis in [12], the field data was grouped into two
categories: major lateral deviations from the route of 50 nautical

Table 3. U.S. ARTCC Codes & Flight Count

ARTCC Code Location Sample Flight Count

ZAB Albuquerque 2014
ZAU Chicago 3163
ZBW Boston 1915
ZDC Wash DC 3348
ZDV Denver 2157
ZFW Fort Worth 2570
ZHU Houston 2617
ZID Indianapolis 2946
ZJX Jacksonville 3074
ZKC Kansas City 2366
ZLA Los Angeles 2586
ZLC Salt Lake City 1619
ZMA Miami 2138
ZME Memphis 2751
ZMP Minneapolis 2228
ZNY New York 2597
ZOA Oakland 1613
ZOB Cleveland 3393
ZSE Seattle 1106
ZTL Atlanta 3818

Total: 50019
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miles and a minor category between 20 and 50 nautical miles. There
were 27,300 measurements taken. Of them, 5,264 were determined
to be minor deviations with an average lateral deviation from their
flight plan of 30 nautical miles; 761 were cataloged as major devia-
tions with an average lateral distance of 73 nautical miles. This
translates to about 19% of the total flights having an average lateral
deviation of 30 nautical miles and 3% with an average deviation of
73 nautical miles indicating that significant deviations do take place
in the European airspace. The study also examined the reason for
these deviations and the main cause was attributed to flights cleared
to fly direct to a downstream position for fuel and time savings.
For the United States data set, the lateral deviation between route

and aircraft position, dr, was calculated for each ARTCC recording as
described above for all the aircraft radar track positions within the
associated ARTCC’s area of control. The result is a total of 8,111,087
measurements taken from about 50,000 flights. Table 4 summarizes
the results by ARTCC. The sample sizes are large but so are the errors.
The variability of the data in the form of standard deviation metric
ranged from about 10 to 45 nautical miles of lateral deviation. The
sample means ranged from about 1 to 7 nautical miles, however the
medians (50th percentile) only ranged from -0.01 to 0.08 nautical miles.

Table 4. Lateral Deviation Statistics by ARTCC

Descriptive Summary Statistics

Airspace
Source

Sample
Size

Percentiles (nm)
Mean
(nm)

Std Dev
(nm)25th 50th 75th

United States Airspace: Center Data
ZAB 427361 -0.399 0.014 0.562 1.352 15.326
ZAU 435974 -0.406 0.050 0.846 2.238 15.706
ZBW 303583 -0.570 0.081 1.700 3.727 22.329
ZDC 565728 -0.319 -0.013 0.356 1.795 13.964
ZDV 490275 -0.267 0.063 0.765 3.770 29.597
ZFW 384097 -0.809 0.039 0.951 1.266 12.797
ZHU 421271 -0.607 0.045 0.890 2.151 20.797
ZID 430507 -0.376 0.059 0.671 1.371 10.867
ZJX 540701 -0.714 0.056 1.100 1.361 11.486
ZKC 443290 -0.571 0.041 0.977 2.943 24.252
ZLA 367723 -0.337 0.014 0.743 5.652 26.665
ZLC 348567 -0.458 0.015 0.545 2.704 22.985
ZMA 377355 -1.000 0.068 2.100 6.397 44.761
ZME 437666 -0.481 0.034 0.844 2.333 18.434
ZMP 404147 -0.417 0.043 0.845 3.548 23.644
ZNY 258725 -0.352 0.057 0.723 1.803 13.986
ZOA 227412 -0.412 0.037 0.726 4.075 22.201
ZOB 472835 -0.418 0.005 0.630 1.356 10.306
ZSE 207031 -0.360 0.038 0.536 2.113 20.574
ZTL 566839 -0.535 0.048 0.820 1.734 13.964

Avg 405554 -0.493 0.039 0.857 2.579 20.816
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The difference between the sample median and mean statistics indi-
cates the heavy tailed nature of these distributions. The sample mean
is substantially increased by the presence of large lateral deviations
on the order of hundreds of nautical miles, while the median
is typically unaffected. This observation is not uncommon. In [13],
it was independently reported that large tails were present in the
lateral measurements collected from flights off the West coast of the
United States in Oakland Oceanic and ZLA. In the same paper, a
parametric model was successfully fit to the measurements that
described two distinct events occurring. Interestingly, it showed some
measurements were simply effected by typical deviations from center-
line of an aircraft’s intended route, while others (large deviations in
the tails) were generated by atypical events where aircraft changed
route and the automation lacked the updated information.
A reasonable indicator of the magnitude of the typical error be-

havior described above is the interquartile range (IQR). IQR is the
difference between the 75th and 25th percentiles as listed in Table 4.
By definition, IQR contains 50% of the distribution. For all 20
ARTCCs, the IQR was on average about 1.4 nautical miles. This is
in contrast to the much larger standard deviation which captures
both the typical and atypical behavior because it quantifies the
entire spread of the distribution. In this case, it captures both the
large deviations from the heavy tails and the typical behavior near
the center. For this data sample, the standard deviation and IQR
are poorly correlated further justifying this claim. Thus, ARTCCs
with large standard deviations may not have large IQRs and vice
versa.
Cluster analysis is the classification of similar objects into groups

[14-15]. For this data set, the 20 ARTCCs are clustered into similar
groups in terms of the standard deviation and IQR statistics. This
allows us to select a subset of data for detailed analysis to infer claims
about a group of ARTCCs. More importantly, it may indicate some
common characteristics of clusters associated to the lateral intent
process. Lateral intent is one of many input sources for a TP, but it
does play a key roll as described previously, and may predict the
overall performance of a DST. Graphically, Figure 6 illustrates a two
dimensional bubble plot with y-axis in terms of standard deviation
and x-axis in terms of IQR statistic. The bubble’s size is proportional
to the sample size from Table 4 and the three shades denote the three
identified clusters.
There are many mathematical approaches in determining the

clusters for continuous data [14-16]. Hierarchical clustering divides
the data in a successive number of steps where at each step the
number of clusters increases until all the data remains in a single
group. Utilizing JMPW statistical software package, Ward’s mini-
mum variance technique is applied here to produce a number of
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clusters [16]. Figure 7 provides a graphic representation of the
results of this technique. This type of figure is called a denogram. It
represents a horizontal tree structure with single points as leaves,
the final single cluster as the trunk, and the intermediate clusters as
branches. The clusters and their grayscale shading in Figure 7 are
logically consistent with the illustration in Figure 6.
As shown in Figure 8, the dark gray cluster of ARTCCs (the cluster

with the lowest standard deviation) is concentrated in the East coast
of the United States. Interestingly, also in the east coast, Miami
ARTCC (ZMA) represents the lone cluster with both the largest stan-
dard deviation and IQR relative to the other ARTCCs. There could be
a number of reasons for this result. Convective or some other severe
weather on this particular day could have caused increased reroutes
in some areas of the country. The nature of operations and composi-
tion of the airspace may play a role in differentiating some facilities
or matching them. ZMA in particular may be affected by oceanic
traffic from the Atlantic and Caribbean and the limitations of radar
coverage over these areas.

Figure 6. Bubble plot of U.S. ARTCC statistics.
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Other metrics may give insights into the resulting clusters and
distribution of lateral deviations among the ARTCCs. Each flight
plan route as described earlier is composed of a series of fix positions
and airways. Some of these positions along the route represent turns.
More frequent turns in theory may correlate to increased lateral de-
viations. Aircraft in turns follow more variable curved paths versus

Figure 7. Denogram tree diagram of clusters.

Figure 8. United States map of ARTCC clusters.
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straight paths on the rest of the trajectory. Thus, measurements were
calculated quantifying the fraction of turn fixes (positions on the
flight plan route which formed a turn greater than 30 degrees) com-
pared to the total number of fixes for each ARTCC. The results for
our 20 ARTCC sample ranged from 11% to 21%, where the largest
was indeed ZMA. However, overall the values did not align with the
defined clusters or correlate to a significant degree with the standard
deviation or IQR. Between these two statistics, they were slightly
more correlated with the IQR values. Since IQR is postulated to be a
better estimate of the typical lateral deviation and not a change in
route itself, the result is consistent.
It was also postulated that if more amendments were entered, then

it would be more likely to capture the lateral intent and lower the
resulting errors. To test this, the average number of unique route
amendments recorded per flight per ARTCC was calculated. It
ranged from approximately 3 to 11 routes per flight with an average
of 5 for all ARTCCs. However, the results indicated no correlation to
the standard deviation and IQR metrics. Also, there seemed to be no
noticeable relationship to the clusters identified. Thus, if amend-
ments have an effect, it is the non-recorded variety that is the
suspected cause for the errors being measured in this paper.
Convective weather could play a role on the number of re-routes

and thus could influence the lateral intent. Figure 9 illustrates a
weather map for the same date of the traffic recording, downloaded
from the United States National Oceanic and Atmospheric Adminis-
tration [17]. It shows the precipitation areas and amounts in North

Figure 9. North America weather map from [17].
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America during the 24 hours ending at 1200 UTC, with amounts to
the nearest hundredth of an inch. From the shading, ZMA did have
significant precipitation during the sample date, yet so did other
ARTCCs in the southern part of the country and some in the Midwest
as well as the west coast.
To get a better understanding within these clusters and the vari-

ance between them, ZID, ZMA, and ZMPARTCCs were selected from
each of the three clusters and a detailed comparison of their lateral
distributions was performed. This is illustrated in Figure 10. A box
plot is depicted that illustrates the spread of the data. The shaded
histograms also portray the spread with height proportional to fre-
quency. The inner box represents the 25th, 50th, and 75th percentiles
and extending lines referred to as whiskers are 1.5 times the IQR
values (length of the box). The separate horizontal lines are the mean
values. It is clear from Figure 10 that ZMA has significantly more
variability than the other two ARTCCs with ZID having the lowest in
terms of total spread, IQR and mean.

Lateral Adherence State Statistics. Lateral adherence states
were defined earlier. Figure 11 illustrates the relative frequencies of
each adherence state for a subset of ARTCCs. It presents the three
selected ARTCC’s ZID, ZMP, and ZMA. As shown earlier, the ZMA
contains the largest amount of lateral deviation with 58% of the
measurements out of conformance overall (i.e. sum of outerNonConf

Figure 10. Detailed view on selected ARTCCs.
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and midNonConf measurements), while ZID has only 34% out of
conformance, and ZMP 41%.
These states are intended to provide guidance on the current state

of the aircraft in terms of conformance to its current route of flight.
The thresholds were already presented in Table 2, they ensure that
aircraft labeled in conformance are laterally within one nautical mile
of their route. The average IQR reported in Table 4 is reasonably
close to the thresholds D1 to D3 in Table 2. The lateral adherence
results are useful in [11] to determine the type of TP algorithm to
apply. In the next section, it is very useful to quantify the impact of
lateral deviations on conflict prediction.

Impact of Lateral Error on Conflict Predictions. A conflict
occurs when two or more aircraft fly within a defined, typically
legally required, separation distance. One of air traffic controllers’
core functions is to prevent these events from happening by clearing
aircraft to fly trajectories where conflicts cannot occur or amending
them to ensure they are resolved. This requires a significant cogni-
tive load involving the controller to maintain a positive mental pic-
ture of where the aircraft currently is and where it will fly sometime

Figure 11. Sample of lateral adherence states.

LATERAL INTENT ERRORS ON AIRCRAFT PREDICTION 47



in the future. The task load is increased by multiple aircraft traveling
in different directions both vertically and horizontally. A class of
DSTs, called conflict probes (CPs), can aid in this challenging mental
process by making automated trajectory predictions, notifying when
a conflict may occur in the future, and in more advanced tools offer-
ing resolutions. However, these predictions need to be accurate and
timely to have utility for the air traffic controller. Furthermore, the
JPDO, SESAR, and Australian initiatives all require various conflict
probes to perform well for their operational concepts of the future.
Metrics have been defined that quantify the errors associated with

these conflict predictions [18-20]. A missed alert error is a conflict
between a pair of aircraft not detected at all or not notified within a
minimum warning time prior to the conflict’s start time, typically
five minutes for strategic conflict predictions. A false alert error is a
non-conflict event between two aircraft (called an encounter in this
paper) that is detected by the CP or represents an alert of a conflict
but is removed prior to the conflict occurring. Thus, alerts must be
timely and stable to be counted as valid (i.e. correctly detecting an
aircraft conflict event with a required lead time).
A CP testing methodology was developed in the late 1990s and

documented in [21] that time shifts the recordings of actual aircraft
position messages and air traffic control clearances to induce pseudo
or test conflict events. The modified traffic recording is then run
through the CP as if it were real data. The resulting alerts are
matched with the test conflicts generated by the methodology to
determine the rates of missed and false alert events from the sample
recording. To further illustrate the impact of lateral deviations in this
paper, the technique was applied on a flight plan based CP originally
developed in [11] and run on a sample scenario taken from Indianap-
olis ARTCC (ZID).
The sample scenario contains four hours of time-shifted traffic

data, amounting to approximately 1100 flights with 139 test conflict
pairs for the CP to detect. The overall missed, false, and correct or
valid alert quantities are as follows:

• 98 events were valid alerts (VA)
• 41 events were missed alerts (MA)
• 903 events were false alerts (FA)

The overall performance reported is slightly larger than normal
because aircraft deviating significantly from the route are normally
excluded from the error event counts for strategic or intent based CPs
[19-20]. However, this particular study’s objective is to quantify the
impact of lateral intent errors so excluding them would not allow
their measurement.
To evaluate whether lateral deviations influence the CP’s

accuracy performance, the analysis first examined the two sets of
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conflict events: those that were correctly predicted (VAs) and those
that were missed (MAs). The analysis focused first on the distribu-
tion of maximum lateral deviation distance at the start of the con-
flict for these two sets of data for each of the flight pairs in conflict.
However, each event was further partitioned by the reason category
in which there are four. A missed alert is an error if no alert was
present at all at the actual conflict start time. This was labeled as
“NO_CALL_MA”. The alternative is the CP did present an alert but
within a threshold (five minutes for this study) time of the conflict
start time. This is labeled as “LATE_MA”. The valid alerts had the
remaining two sub-cases. If the alert is presented before the con-
flict start time but again within the threshold time (same five
minutes value as above) yet had a verified reason for being late,
its labeled “LATE_VA”. These late valid alerts are artifacts of the
testing environment, such as a conflict that begins at the start of
the traffic sample or within a threshold of a recorded clearance
event. These conflicts are considered “pop-up” events and the time-
liness requirement is relaxed only for them. The remaining VA
events are the standard correct alerts that were correctly matched
to a conflict and had the required warning time. These are labeled
“STD_VA”.
Figure 12 displays the box plot and data points for the maximum

lateral deviation for each aircraft pair involved in the four categories
of VA and MA events. The late VA events and the no-call MA events
had the largest lateral deviations indicating the possible impact lat-
eral deviation has on the CP. Most notably was the contrast of the no-
call MA events to the others. The no-call MA had an IQR (range of the
box plot) of about 9 nautical miles, while the standard VA was only
2.5 nautical miles.
Like the MA versus VA analysis above, a false alert (FA) analysis

was performed as well. The total set of VA events has a lateral devi-
ation mean and standard deviation of 11 and 17 nautical miles
contrasted with the FA events of 18 and 29 nautical miles. As illus-
trated in Figure 13, the IQR (height of the box) is significantly larger
for FA events compared to VA events. This provides evidence to sup-
port the hypothesis that false alert predictions are induced in part to
the lateral deviations of the aircraft the CP is processing.
To further explore the impact that lateral deviations have on the

conflict prediction process, a categorical statistical analysis was per-
formed by first generating a 2 by 2 contingency table, illustrated in
Table 5. The table partitions conflict events by their lateral adher-
ence state and whether the event was predicted (alert or no alert) by
the CP. These alert counts represent the VA and MA events
partitioned by their lateral adherence state at the conflict start time.
If either flight of the conflict pair was in a state of out of adherence, as
defined earlier, then the conflict event was labeled “Out”, and “In”
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otherwise. Of the total 98 alert events (VAs) 38 were “In” and 60 were
“Out”. In contrast, the 41 conflicts without alerts (MAs) had 14 that
were “In” and 27 were “Out”. If the lateral deviations classified by
lateral adherence state did not impact the CP’s conflict predictions,
then the ratio of alerts and non-alerts (VA and MAs) would be the
same for both subsets of true conflicts. This can be tested statistically
as defined in [22-23] and expressed in equation (1) by calculating the
ratio of the squared difference between the expected value of each
count and the observed value. If the hypothesis is true, this ratio will
follow a chi-squared distribution with one degree of freedom. The
expected value is calculated by determining the proportion of total
conflict events by the ratio of alert events. For example, the expected
VA count is calculated by multiplying the proportion of total conflicts
that were in adherence (52 from Table 5) by the total ratio of VA

Figure 12. Lateral deviation distribution for VA and MA reasons.
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events (98/139). This results in 37 and listed in the upper right corner
cell in Table 5. Thus, application of (1) to all values in Table 5 pro-
duces a p-value larger than 0.1, and thus the hypothesis cannot be
rejected that the number of MA events are not correlated to an out of
adherence state at 0.1 significance level.
The test statistic is w2, defined as follows:

w2 ¼
X4

i¼1

Oi � Eið Þ2
Ei

ð1Þ

Figure 13. Lateral deviation distribution for VA and FA.

Table 5. Contingency Table for Conflict Events
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Where,

Oi is the observed frequency in category i

Ei is the expected frequency in category i

Table 6 illustrates the opposite result for the analogous encounter
events (non-conflict) and associated alerts (FAs). The result indicates
that more encounter events are alerted than expected for the propor-
tion of encounters that were labeled “Out” and less for “In” adher-
ence. Thus, there is statistical evidence with a p-value near zero
to reject the hypothesis that FA events are not affected by lateral
adherence.
One additional analysis was performed on the FA events to illustrate

an even more direct and overall impact that lateral deviations have on
the CP’s predictions. A unitless ratio called the min-max ratio was
calculated for all non-conflict encounter events and matched to the
associated FA events. The min-max ratio is defined in detail in [18].
To summarize, the maximum ratio between horizontal separation and
the horizontal separation standard (e.g. 5 nautical miles) and the ver-
tical separation and vertical standard (e.g. 1000 feet) is calculated for
each time coincident surveillance position between the aircraft of the
encounter. The minimum of all values represents the minimum dis-
tance in both dimensions the aircraft pair were separated. Also, if the
ratio is less than one, the encounter would be a conflict event. Themin-
max ratio provides a guide to how close the aircraft came in terms of
the separation standards and combines both horizontal and vertical
dimensions into one parameter.
For the Figure 14 below, the total number of encounters between

each 0.5 min-max ratio starting at 1 was calculated and the associ-
ated FA events as well. The fractions of associated FA events to the
total encounters per bin were calculated. In Figure 14, the results are
plotted with the y-axis as the fraction (estimate of probably of alerts
for the bin) and the x-axis is the min-max ratio from 1 to 5.5. The
figure’s fit curves are power series best fits for these data points.

Table 6. Contingency Table for Encounter Events
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The slope of the curve is proportional to the overall sensitivity of the
CP to the separation of the encounters it is predicting and the area is
roughly equal to the total false alert probability.
Figure 14 fit three curves. The dark gray square labeled curve

represents the predictions for alerts that are in lateral adherence at
notification time. The light gray triangle labeled curve is for the out
of adherence version and the curve with black diamonds represents
all the alerts, both in and out of adherence. It is clearly shown that
the steepest curve is the in adherence version and least is the out of
adherence version with the all curve in between. This gives a good
indication that lateral adherence affects the overall sensitivity and
thus performance of the CP. It provides direct empirical evidence on
the impact of lateral adherence on conflict prediction.

Lateral Deviation Results from Airborne Automation

As envisioned by the JPDO, SESAR, and Australian ATM Strategic
planners to some degree, the large lateral errors described in this
paper for the ground-based automation systems in both the American
and European airspaces have relatively near term solutions. Specifi-
cally, an alternate approach to aviation automation both air and
ground is to exchange trajectory information constructed and
contained within the aircraft’s Flight Management System (FMS)

Figure 14. False alert probability curves for lateral adherence state.
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computer then utilize this data in the ground system TP. The impact
as presented in the CP, described in this paper, is just one example of
many of the potential improvement opportunities.
One currently available source of aircraft derived trajectory

information is the Automatic Dependent Surveillance Contract
(ADS-C). ADS-C is a dependent form of surveillance in which a
ground station initiates a contract (dynamic agreement) with an
aircraft such that the aircraft will automatically report information
obtained from its onboard equipment according to conditions speci-
fied in the contract. A Future Air Navigation System (FANS)
equipped aircraft can have up to four individual contracts with
specific ground stations plus a contract with the Airline Operations
Center (AOC).
The current positions in the ADS-C data are based on very precise

(relative to ground based radar reports) Global Satellite System
(GPS) position reports, and the route positions are exactly what the
guidance system within the aircraft’s FMS is currently flying to. Like
the ground based counterpart presented in the previous sections,
lateral deviations between the current ADS-C positions and route
positions were calculated from two different sources. This section will
report on the lateral deviations supplied by Airservices Australia
using data from Australian controlled airspace and similar data in
the United States from the FAA’s Separation Standards Analysis
Team from air traffic collected off the West coast of the United States.
ADS-C’s periodic contract specifies the reporting rate and what

data groups are requested in each ADS Basic Periodic Report. The
following groups can be requested:

• Basic Group containing current position, altitude and time.
• Earth Reference Group containing groundspeed, true track and

vertical rate.
• Air Reference Group containing Mach number, true heading and

vertical rate.
• Meteorological Group containing aircraft measured wind speed,

wind direction and temperature.
• Predicted Route Group (PRG) containing a position and arrival

time estimate for the next waypoint and a position estimate for
the waypoint that follows.

• Intermediate Projected Intent (IPI) containing position and arrival
time estimates for a maximum of ten trajectory change points (not
necessarily waypoints, e.g. Top of Descent) ahead of the aircraft.

Besides periodic contracts, there are event contracts and demand
contracts. The event contract specifies that for a particular event (e.g.
waypoint change event or altitude range deviation event) an ADS
report needs to be down linked. The demand contract is a one-time
request for an additional Basic Periodic Report.
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Australian ADS-C Lateral Deviations. The Australian ADS-C
data extracted for this study was collected between February 2008
and January 2009 during the Tailored Arrivals trial performed by
Airservices Australia and participating partners. The primary focus
of the Tailored Arrivals research is to determine the accuracy and
consistency of the aircraft’s intended trajectory provided by the Inter-
mediate Projected Intent of the ADS Basic Periodic Report. To elimi-
nate external variables to the maximum extent possible, it was
important for the onboard automation (FMS) to fly the aircraft in
both lateral and vertical navigation (i.e. LNAV and VNAV) control
modes without human intervention.
The ADS-C data was obtained from flights arriving in the early

morning, which due to the relative low traffic density were highly
unlikely to be subject to air traffic control (ATC) intervention for
the arrival. Coupled with the published runway linked Standard
Terminal Arrival Routes at the destination, the trajectory of these
aircraft can be stable in excess of two hours prior to destination.
The consistency of processing these aircraft permits the extraction
and analysis of intent data from these flights commencing signifi-
cantly prior to destination. For consistent results the flight crew
were issued with instructions to operate in both LNAV and VNAV
modes and ATC were asked not to intervene unless absolutely nec-
essary. The FMS and onboard automation was permitted to operate
the aircraft as optimally as possible1. Without ATC or pilot inter-
vention the ADS-C position reports of these flights form a consis-
tent and valid data set to analyze lateral deviations from the FMS
intended track. The intended or planned track of the aircraft can
be constructed from the PRG of the ADS Basic Periodic Report
which is consistent with the ground based flight-planned track and
actually includes any direct-to clearance programmed into the
FMS2.
To extract the data from these in service aircraft an unmanned

duplicate ATC system was established to initiate ADS contracts
specifically tailored to the data collection via a separate and addi-
tional ADS-C connection. The ADS contract for data collection pur-
poses differed from the ATSP operational contract by an increased
reporting rate at two minutes plus supply of all downloadable data.
The high reporting frequency was required to analyze the accuracy
and consistency of the Intermediate Projected Intent (IPI) over sub-

1Operating optimally in this context means operating to a flight-specific Cost Index
(CI) determined by the AOC to achieve maximum efficiency in overall network
operations.
2For purposes of this study it is preferred to construct the reference track from which
to determine the lateral deviation from the PRG over the IPI, because of the fixed
position of the waypoints in the PRG.
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sequent reports3. During the two hour data extraction, at least 60
ADS-C Basic Periodic Reports were received per flight.
All ADS-C data used in this study were obtained from east-

bound flights departing from Dubai and Singapore to Melbourne
and Adelaide. Data extraction commenced when the aircraft was
approximately two hours from destination, typically somewhere
around 1000 nautical miles travel distance. The flights were per-
formed by Airbus A330-300, Airbus A340-500, Boeing 747-400 and
Boeing 777-300 aircraft (all Honeywell FMS). The data included a
total of 778 flights with an average of 34.4 reports per flight. The
following lists the break down of flights per aircraft type:

• There were 58 flights of type Airbus A330-300.
• There were 168 flights of type Airbus A340-500.
• There were 258 flights of type Boeing 747-400.
• There were 294 flights of type Boeing 777-300.

As listed in the Table 7 in row labeled A.A., a total of 26,731
ADS-C position reports were analyzed and processed for lateral de-
viation between the ADS-C Basic Group current position and prop-
erly matched the previous PRG next and next plus one route
positions. Thus, the lateral deviation is calculated between the air-
craft’s precise GPS position to the aircraft’s matched current FMS
known route segment. The results are tremendously accurate com-
pared with the ground-based version reported on in Table 4. The
standard deviation and IQR are approximately 800 and 40 times
smaller than the U.S. ground-based data results. Translated to feet,
the standard deviation amounts to approximately 160 feet and
IQR about 200 feet. The histogram depicted the distribution of
these errors is illustrated in Figure 15. It forms a fairly symmetric

Table 7. Airborne Lateral Deviation Statistics

Descriptive Summary Statistics

Airspace
Source

Sample
Size

Percentiles (nm)
Mean
(nm)

Std Dev
(nm)25th 50th 75th

United States Airspace: ADS-C Dataa

U.S. 39012 -0.018 -0.002 0.007 -0.001 0.184

Australian Airspace: ADS-C Data
A.A. 26731 -0.019 -0.002 0.015 -0.003 0.026
aAdapted from Table 4 in [13]

3The position estimates of the trajectory change points in the IPI are given by
bearing and distances from the aircraft’s current position. The subsequent dynamic
conversion to latitude and longitude causes these positions to vary per ADS report.
This variation directly influences the lateral deviation as determined with respect to
the IPI track.

56 PAGLIONE et al.



distribution about the slightly negative mean and sharply peaked
like previous studies [13].

American ADS-C Lateral Deviations. A separate analysis of
ADS-C lateral deviations was conducted in 2007 by the FAA’s Sepa-
ration Standards Analysis Team from air traffic collected off the West
coast of the United States. The detailed results are published in [13].
The results are summarized in Table 7 within the table row labeled
U.S. Like the Australian results, the performance is orders of magni-
tude improved over the ground based version The sample standard
deviation is over 100 times smaller than the ARTCC results, and the
IQR is as much as 60 times smaller as well. In units of feet, the
standard deviation and IQR translate to about 1100 and 150 feet,
respectively. The detailed study in [13] not only reports on descriptive
statistics but fits the distribution of errors to a specific parametric
model. This model is the beyond the scope of this paper, but indicates
that the errors being studied can be mathematically modeled and
utilized for simulation experiments of a future ATM system where
synchronization of these data sources can be studied further.
Comparing the two sources of ADS-C results indicate some of the

differences between the two samples. The Australian data was col-
lected on a sub-set of flights and ATC intervention was purposely
excluded by the study or removed in analysis. Additionally, pilots
were restricted in the FMS mode of operation they could use for the
flights. Thus, large deviations due to changes in the ATC cleared
flight plan were typically not present in the Australian data set. For

Figure 15. Histogram of lateral deviations of Australian ADS-C data.
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the United States version, the data was collected for 105 days
between January and early June of 2007. The data consisted of
trans-oceanic flights leaving Oakland oceanic ATC control center
and entering the west coast airspace of ZLA (Los Angeles ARTCC).
The data was not purposely filtered for ATC deviations or coordi-
nated beyond the normal operational ADS-C process. Thus, the
larger difference between IQR and standard deviation in the United
States data set and in general larger standard deviation indicates
that these outlier events most likely did occur and increased
the variance to several times the quantity measured in Australia.
However, both ADS-C data sets provide strong evidence of the
tremendous improvement in the form of lateral accuracy compared
to the ground based versions reported on in the United States and
Europe.

CONCLUSIONS

Fostered by the broad next generation ATM initiatives from
JPDO, SESAR, and Australia’s ATM Strategic Plan, the overall
objective of this study was two fold: quantify the lateral deviations
between known flight plan routes within the ground and air auto-
mation systems across the globe and second determine the impact
of these errors on some of the DST functions required for ATC
operations. The collaboration of American, European, and Austra-
lian researchers provides a broad international perspective and
relevance to both the analysis and the source data collected.
Besides the need to collaborate for savings in resources, the partic-

ular problem being studied, error of lateral intent in our ATM auto-
mation system, is clearly a global issue for all ATSPs. The results
from the large United States data collection of 50,000 flights and over
eight million measurements reported a standard deviation of approx-
imately 21 nautical miles. The European results cited from [12]
reported an average lateral deviation of 30 nautical miles for 19% of
the flight measurements taken from a broad data collection of about
27,000 flights across European airspace.
The ground-based results are contrasted with airborne FMS navi-

gated route positions and GPS generated current positions collected
using ADS-C. Airborne systems do offer improvements in position
accuracy over ground systems, but the dominating factor of improve-
ment is that these systems are more readily updated. This is illus-
trated from results exhibited in both the United States and
Australia, where reported lateral deviation errors are 100 to 800
times smaller than the ground-based version. Australian ADS-C data
as listed in Table 7 had standard deviations of approximately 0.03
nautical miles, which translates to less than 200 feet.
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ATC personnel as defined in the broad ATM initiatives previously
cited will need accurate DSTs to support the complex and safety
critical operations they perform. The CP is a DST that directly
supports the separation management function by notifying when
two or more aircraft are predicted to violate separation standards
(i.e. have a conflict) in the future. As described in [24], the uncer-
tainties in aircraft predictions have significant impacts on these ATC
functions. To illustrate the lateral error sources in this study, a flight
plan or intent based CP was input a set of test scenarios with slightly
altered field recordings of actual aircraft flights. About 140 test con-
flicts and 1100 flights were evaluated to determine if the lateral
adherence state had statistically significant impacts on the CP’s con-
flict predictions. For lateral deviations between zero and one nautical
mile contrasted against events with larger deviations, the CP’s per-
formance had indeed degraded. Other results indicated marginal or
inconclusive results for missed alert (not detecting a conflict that
really occurs), but the overall sensitivity of the CP’s predictions as a
function of the separation distance between aircraft was significant
and illustrated in Figure 14.
Therefore, the large ground-based deviations reported and impact

demonstrated on a CP tool show lateral deviations are a key source of
error in our ground-based TP process, core to many of our DST func-
tions. Synchronization with airborne data sources like ADS-C offers a
reliable and tremendously accurate solution to improving aircraft
predictions in air traffic control.
Overall, the international collaboration that took place to perform

this study is the type of global cooperation that will be needed to
address the challenging ATM problems faced by all nations and
ATSPs. The study reports on one aspect of the TP process highlighted
earlier. Vertical deviations, time based errors, and weather forecasts
mark only a few that can continue to be studied in the same manner
set forth in this paper.

ACRONYMS

AA Airservices Australia
ADS-C Automatic Dependent Surveillance–Contract
ANSP Air Navigation Service Providers
AOC Airline Operations Center
ARTCC Air Route Traffic Control Center
ATC Air Traffic Control
ATM Air Traffic Management
ATSP Air Traffic Service Providers
CNS Communications, Navigation, and Surveillance
CP Conflict Probe
DST Decision Support Tools
EFICAT EUROCONTROL Flight Information Consistency Analysis Tool

LATERAL INTENT ERRORS ON AIRCRAFT PREDICTION 59



FA False Alert
FANS Future Air Navigation System
FMS Flight Management System
GPS Global Satellite System
HADDS Host Air Traffic Management Data Distribution System
IPI Intermediate Projected Intent
IQR Interquartile Range
JFK John F. Kennedy International Airport
JPDO Joint Development Planning Office
MA Missed Alert
NAS National Airspace System
NASA National Aeronautics and Space Administration
Nm Nautical miles
PRG Predicted Route Group
SESAR Single European Sky ATM Research Initiative
TP Trajectory Predictor
US United States
UTC Coordinated Universal Time
VA Valid Alert
ZDC Washington ARTCC
ZID Indianapolis ARTCC
ZLA Los Angeles ARTCC
ZMA Miami ARTCC
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