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I. Introduction 
Despite the current economic slow down, most air traffic service providers (ATSPs) across the globe continue to 

expect significant growth in air traffic demand in the future.  If no action is taken, it is generally accepted that this 
growth will outpace the capacity limits of their aviation systems, resulting in greater congestion and inefficiency.  In 
areas of the northeastern United States as well as Western Europe, these conditions may already have reached their 
capacity limits under peak demand.  In unprecedented proportions, industry and ATSPs have responded by 
developing comprehensive plans requiring broad advances in ground-based and airborne automation.   

In the United States, the interagency Joint Development Planning Office (JPDO) foresees a traffic demand 
increase by 2025 up to three times the number of flights of today’s traffic1. The JDPO, as established in their charter 
under the “Vision-100” legislation (Public Law 108-176) signed by President G. W. Bush in December 2003, has 
mandated a next generation operational concept of the National Airspace System (NAS) for 20251. This next 
generation NAS envisions a trajectory-based separation management system that requires precise management of 
the aircraft’s current and future position. The separation function of today, relying heavily on the cognitive skills of 
the air traffic controller to visualize aircraft trajectories on the radar display and issue resolutions via voice 
instructions to pilots, will be replaced by a distributed system of separation management components, implementing 
performance-based separation standards. This future system will rely heavily on enhanced automation with conflict 
resolutions that are communicated digitally between air and ground and between aircraft. 

A key automation component promoted in the JPDO’s operational concept is the development of decision 
support tools (DSTs).  These tools are envisioned to help mitigate many of the capacity and workload constraints of 
the system if effectively integrated with advanced automation solutions in the air and ground systems.  These tools 
have many purposes and typically serve to reduce the cognitive workload of the airspace problems faced by the 
current human decision makers operating the system. They include tools that serve to predict future conflicts 
between aircraft, both for ground based controllers or airborne pilots, allowing more strategic separation 
management of aircraft. Air traffic management DSTs include capabilities that forecast where and when traffic 
workload would stress the system, allowing air traffic supervisors to make more efficient adjustments to either avoid 
the condition or alter staff and/or airspace accordingly. Such tools also include air traffic metering tools to 
efficiently sequence aircraft into en route and arrival flows, maximizing the capacity of the system. A common 
thread in all these DSTs is the accurate and timely modeling of the aircraft’s current state and anticipated future 
path. This modeling function is referred to as the trajectory predictor (TP) process. 

A. Relationship of Trajectory Predictor to Higher Level Applications 
The aircraft trajectory is the actual or future 4-dimensional path of the aircraft. TP accuracy can be measured by 

post flight comparisons of predicted and observed aircraft trajectories. Since the predicted trajectory is the 
fundamental input that sustains the DST’s capabilities and functions, the accuracy of the trajectory prediction has a 
direct impact on the DST’s overall performance and usability. In order to attain the specified accuracy requirements 
of a DST, it is necessary to validate the DST’s TP. Ref. 2 presents a TP validation methodology that can drive the 
performance of a TP toward a targeted level. Ref. 3 defines system metrics used within this methodology and shows 
how these metrics can assess a TP’s impact on a DST. Figure 1 summarizes the process graphically by illustrating 
the connection a TP has within a client application and how the TP’s output metrics are then input for the 
application.  For example, the time or longitudinal error associated with a TP’s aircraft trajectory predictions will 
have a direct impact on the stability of a time-ordered schedule output from a metering DST.  If a flight actually 
arrives significantly later than predicted, the DST’s estimated time of arrival and associated order in the metering list 
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will be have to change.  If the changes are frequent and sufficiently large, the utility of the generated schedule and 
the entire metering function will come into question. 

The first step in improving the TP process within a DST is identifying the factors that influence performance.  
The late professor and modern management theory pioneer, Peter F. Drucker, is attributed with the famous quote, “If 
you can’t measure it, you can’t manage it.”  Consistent with these words, this paper will integrate standard statistical 
techniques, the data-driven TP validation methodology presented in Ref. 4, and the system engineering approach in 
Ref. 3.  Through several descriptive examples, it will provide detailed guidance on how to make statistical 
inferences on the TP’s prediction accuracy and resulting impact on their higher level application’s performance 
using actual recorded aircraft information. 

B. Experimental Design’s Blocking Principal 
Experiments are performed by most researchers and 

scientists in practically all disciplines. An experiment is 
defined as “a test or series of tests in which purposeful 
changes are made to input variables of a process or system 
so that we may observe and identify the reasons for changes 
in the output response.”5 To illustrate this further, Fig. 2 
presents the general model of a process under study as 
adapted from Ref. 5. An input stimulus is entered into a 
process with a set of controllable factors. These are the 
factors or independent variables in the experiment that are 
manipulated to study the output or response variables. The 
uncontrollable factors are not easily manipulated, but 
through experimental design techniques such as blocking 
and randomization can be removed from the experiment.  
The output response variables are the dependent variables of 
the experiment. They are often determined by application of 
a metric or measured by a sensor device. 

For this study, the primary experiment presented is to 
determine if the DST’s accuracy or TP’s accuracy within the 
DST has degraded or improved following the release of a new version of the system.  It is not sufficient to simply 
measure the overall performance and conclude the system is acceptable.  It is necessary to isolate the sources of any 
differences and at minimum determine the suspected factors involved.  However, variability of between 
measurement units affected by the uncontrollable/extraneous factors can make it very difficult to identify the errors 
precisely.  Randomization requires using many samples picked in an unbiased way from the population under study.  
This technique will systematically balance the extraneous factor’s effects on the experiment.   

Blocking is another experimenter technique that serves the same purpose but in a different way.  It requires 
careful analysis of the context of the experiment and sources of these extraneous factors.  A block, as defined in Ref. 
6, is a portion of experimental material (e.g. two seeds in the same pot, four tires on a single automobile, and two 
shoes on a single student) that is expected to be more homogenous than the rest of the sample population.  For 
aviation data, the central block under study is typically a single aircraft flight.  Thus, if TP accuracy measurements 
are the sample units being taken (i.e. the response/dependent variable), a factor within the flight represents the focus 
of the study (i.e. the independent variable).  For example, the within flight factor could be the two different runs of 
the system or change made in the TP algorithm.  Therefore, by focusing on the effects of factors that are within the 
block, in this case within flight, all the variability between flights that are composed of many uncontrollable factors 
are effectively removed from the experiment (e.g. aircraft model type, origin-destination path, aircraft equipage, 
etc.).  Overall, randomization should be used for time order decisions or any selection of the experimental units of 
the study, including the blocks themselves.  Blocking is needed to remove unwanted uncontrollable factors by 
aggregating alike experimental units and concentrating their variation between them.  As Ref. 6 recommends, “block 
what you can and randomize what you cannot.” 

 

                                                           
‡ Adapted from Figure 8 in Ref. 3. 
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Figure 2. General Model of a Process§ 

II. Experiments with Blocks of Size Two – Pairing 
A special case of an experiment with a block that contains only two levels is typically called a Paired Data t-Test 

or Paired t-Test for the Student t distribution used in its evaluation.6,7  As described in the previous section, a typical 
application of such a test is the evaluation of a new release of the system compared to the current operational 
system.  When dealing with systems that perform safety functions any change to the operational system must be 
sufficiently tested even if the change was intended to fix an existing problem.  For software systems, this evaluation 
is called a regression test.  It serves to provide confidence and thus reduce the risk associated in making the upgrade 
to the system.  This section will present details of these tests, the statistical approaches and considerations with a 
working example from real field data recorded from DSTs operated by the Federal Aviation Administration (FAA).  

A. Standard Two Sample Mean t-Test 
Before presenting the Paired t-Test with a block, the basic Two Sample t-Test will be presented.  It is the 

standard statistical method used in practice and will serve to highlight the merits of the paired approach.  For 
example, in the en route airspace in the United States the air traffic control system is required to predict the future 
path of an aircraft based on various inputs including radar surveillance data and submitted flight plans. To evaluate 
its accuracy, a sampling methodology and set of metrics have been documented in detail in Ref. 4.  One such metric, 
called the cross track error, measures the side-to-side or lateral error associated with the future prediction of the 
aircraft’s path.  The Two Sample t-Test compares the sample means of the two independent population means.7  For 
this example, the objective is to determine if the cross track error’s sample mean taken from the new system is 
greater than the existing operational system.  If this is true, the new system cannot be deployed and further 
evaluation is warranted. 

The statistical hypothesis test is designed to allow the experimenter to balance the two possible testing errors: 
failing the null hypothesis (Type I error orα ) when it is true and failing to reject the null hypothesis when it false 
(Type II error or β ).   

0: =− nboH μμ  (1) 

where bμ is the population mean of the baseline run of the operational system and nμ is the population mean of the 
new release run. 

The alternative hypothesis is the difference in population means is not equal to zero.  Thus, the difference is less 
than zero (degraded) or greater than zero (has improved).  The following test statistic is presented in Ref. 7. 

 

                                                           
§ Adapted from Fig. 1-1 in Ref. 5. 
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where x is the sample mean of the baseline run and y is the sample mean of the new release run, 2
bs is the sample 

variance of the baseline run and m  is the sample size of the baseline run, and 2
ns and n  are the same for the new 

release run, respectively. 
The rejection region of the Two-Sample t Test is expressed in the following Eq. (3): 
 

Reject null hypothesis if  υα ,2/ tt −≤  or υα ,2/ tt ≥  (3) 

where υα ,2/t  are parameters taken from the student-t distribution, α is the significance level of the test, and υ  is 
the degrees of freedom for this test.  The test assumes the trajectory measurements from each run are normally 
distributed random variables, and the runs are independent from one another.  We will explore both these 
assumptions in more detail in the subsequent sub-sections of this paper. 

Theυ , degrees of freedom, can be estimated from the sample data by the following Eq. (4) as defined in Ref. 7. 
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Figure 3 provides a graphic summary of the relationship of the sample size to several key elements of the test.  

Smaller effect sizes are harder for the test to detect and in turn require larger sample sizes to identify.  The smaller 
the Type I error orα  chosen for the test will require larger sample sizes as well.  The higher the power or smaller the 
Type II error ( β ) also requires larger sample sizes to achieve.  As the variability of the sampled population 
increases for a test, the larger the sample size is required.  As the test is implemented, theα , β , and effect size 
should specified considering the expected variability and sample size. 

 
 

 
 

Figure 3:  Relationship with Sample Size** 
 
Continuing with the example discussed previously, a data collection from two trajectory predictor systems using 

a common set of input was planned with an objective of collecting over 800 samples per system. A recent data 
collection from these two trajectory predictor systems produced a sample of 118 flights of mean cross track errors 
per system. The test implemented requires an α  of 0.05 and power of at least 0.90 to detect a shift of 0.1 nautical 

                                                           
**Adapted from slide 15 on page 1-13 in Ref. 8. 
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miles.  From previous tests, the expected variability (standard deviation per system) is 0.6 nautical miles.  The 
sample of the baseline or legacy system had an overall mean cross track error of 0.74 nautical miles and standard 
deviation of 0.64 nautical miles.  The new system had an overall mean cross track error of 0.64 nautical miles and 
standard deviation of 0.57 nautical miles.  By applying Eq. (2), the test statistic is 1.209.  Application of Eq. (3) with 
degrees of freedom from Eq. (4) specifies a rejection criterion of ± 1.97.  Thus, there is not sufficient statistical 
evidence to reject the hypothesis that the means are different (1.209 < 1.97 and p-value 0.113††).  However, other 
considerations should be examined.  A priori several estimates were proposed and once the test was executed 
differences were noted as listed in Table 1.  First, it was expected that over 1600 samples (800 per run) were to be 
collected, yet only 236 actually resulted.  The standard deviation of 0.6 nautical miles and mean shift to detect of 0.1 
nautical were reasonably close to what was sampled.  Thus, the difference in sample size had a considerable impact 
on the power of the final test.  The lower sample size resulted in a test with a retrospective power of only 0.25, when 
the expectation was 0.90.  This means out of 100 tests only 25 can be expected to detect a real difference in sample 
means of 0.1 nautical miles.  Therefore, the immediate conclusion would be to repeat the test and ensure a larger 
sample size is achieved on the order of the original expectation of 1600 samples.  The subsequent sections will 
examine other aspects of this data sample and may offer a better alternative. 

 
Table 1:  Prospective versus Retrospective Results of the Test 

Parameter Prospective Retrospective 
Type I error (α) 0.05 0.05 
Standard deviation (nm) 0.6 0.64, 0.57 
Mean of baseline system (nm) 0.7 0.74 
Mean of new system (nm) 0.6 0.64 
Total sample size from both runs 1600 236 
Power ( 1 - β) 0.91 0.25 

B. Evaluating the Test Assumptions 
As previously stated, there are two major test assumptions required for the Two Sample t-Test.  The test assumes 

the trajectory measurements from each run are normally distributed random variables, and the runs are independent 
from one another.  We will examine our representative example in more detail to test these assumptions.  First a 
normal distribution is a symmetric distribution around a mean that is not skewed.  For the example, the mean cross 
track error taken for each flight was unsigned to capture the magnitude of the error and compare the two system’s 
performance.  As a result, the distributions for both systems are highly skewed as illustrated in Figures 4 and 5.   
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Figure 4: Base Run – Histogram/ 
Normal Quantile Plot 

Figure 5: New Run – Histogram/ 
Normal Quantile Plot 

                                                           
††Ref. 7 defines the p-value as the smallest level of significance at which the null hypothesis would be rejected.  If 
the p-value is small and less than the requiredα  value, the null hypothesis should be rejected. 
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Figure 4 illustrates the baseline run’s histogram in the bottom half of the figure and a normal quantile plot in the 

upper half.  From the histogram, the smooth red line is overlaid on the graph, representing an estimate of normal 
distribution curve for the sample.  In contrast the histogram is skewed to the left near zero and produces a long 
positive tail.  The normal quantile plot provides a graphical diagnostic for testing if a data sample matches a normal 
distribution.  In the top portion of Fig. 4, the dotted points are the sample means of the 118 flight samples and 
plotted on a graph matched to the estimated normal distribution.  If the data matches a normal distribution, the data 
points would fall along the red diagonal line within the dotted red lines.  It is clear from the normal quantile plot that 
the baseline data sample is not normally distributed.  The same conclusions can be drawn for the new system from 
Fig. 5.  Therefore, both system’s distributions of cross track error are not normally distributed. 

To apply the test, a possible solution is to transform the data into a normal distribution, then apply the test to the 
transformed (presumably normally distributed) data set.  Since the data is highly positively skewed, a natural log 
may provide the solution.  Thus, it was applied on all 236 measured data points.  The histograms and normal 
quantile plots are repeated and illustrated in Fig. 6 and 7 for the baseline and new runs, respectively.  In both cases, 
the log function has provided an excellent transformation producing a reasonable match to the normal distribution. 
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Figure 6: Base Run – Histogram/ 
Normal Quantile Plot 

Figure 7: New Run – Histogram/ 
Normal Quantile Plot 

 
All the calculated statistics also have to be recalculated with the transformed data set.  By applying Eq. (2) again, 

the test statistic is now 1.510.  Application of Eq. (3) and (4) remains the same and specifies a rejection criterion of        
-1.97 and 1.97, respectively.  Still as with untransformed data set, there is not sufficient statistical evidence to reject 
the hypothesis that the means are different (1.510 is less than 1.97, and p-value 0.066).  Table 2 also illustrates the 
prospective and retrospective results of the power of the test and indicates the test still lacks sufficient power to 
detect the required mean differences. It is only slightly improved with a power of 0.30 over the untransformed 0.25. 

 
Table 2:  Prospective versus Retrospective Results of the Test of Transformed Data 

Parameter Prospective Retrospective 
Type I error (α) 0.05 0.05 
Standard deviation (nm) 0.8 0.79, 0.82 
Mean of baseline system (nm) -0.35 -0.61 
Mean of new system (nm) -0.50 -0.77 
Total sample size from both runs 1600 236 
Power ( 1 - β) 0.96 0.30 

 
The violation of the normality assumption was mitigated by the transformation function, but the power of the test 

is still low and the second assumption has not been addressed.  The second assumption assumed that the two 
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samples and therefore runs are independent.  If you recall, both systems were input with the same set of flights.  If a 
positive correlation between each run exists, the assumption of independence is violated.  Discussions with our 
subject matter experts reveal that many uncontrollable factors could impact the cross track trajectory error metric.  
Both systems would be affected by these factors and they are different per flight.  These factors manifest themselves 
as large cross track errors and it is likely that both systems will exhibit similar effects.  For our example dataset, this 
is confirmed by the correlation coefficient of 0.87 calculated by comparing like flights from both runs.  This 
indicates that there is an 87 out of 100 percent chance that if the baseline system had a linear increase in cross track 
error so would the new release run.  It also requires a test that does not require the independence assumption.  
Fortunately, the Paired Data t-Test has this property.  Furthermore, it actually performs better (increased power) if 
the two samples are highly correlated as will be illustrated in the next sub-section utilizing our example. 

C. Application of the Paired Data t-Test 
Instead of taking the difference between the sample means as applied in the Two Sample t-Test for the Paired 

Data t-Test, the sample measurements are paired for the same flight.  The large variability between flights and linear 
dependence between runs is effectively blocked out of the experiment.  Taking the difference between paired 
trajectory measurements of same flight from the two runs produces a new statistic, the sample differences.  This is 
expressed in the following Eq. (5). 

iii yxD −=  (5) 

where i is the particular flight mean matched for the two runs, ix  is the mean trajectory measurement for the 

baseline run and iy  is the same for the new release run. 
The hypothesis now is reduced to a single sample mean of s'iD  assumed to equal zero on average.  In reality, 

the mean of the difference between two numbers is equal to the difference between the means of the same set of 
numbers. Referring to the difference between sample means in Eq. (2), the yx −   is equal to the sample mean of  

s'iD  or d .  The Paired t-Test’s test statistic is illustrated in the following Eq. (6).  The numerator in both Eq. (2) 
and now in Eq. (6) are equivalent, but the denominators are not the same at all.   

Test statistic: ns
dt

D
=  

(6) 

where the Ds  is the sample standard deviation of the differences (i.e. the s'iD  ) and the n is the sample size of 
these differences.  Note, the n sample size for the Paired t-Test is half the total sample size applied in the Two 
Sample t-Test. 

The rejection region of the Paired t-Test is expressed in the following Eq. (7). 
 

Reject null hypothesis if  1,2/ −−≤ ntt α  or 1,2/ −≥ ntt α  (7) 

Back to the example of two runs and their flight’s mean cross track errors, the paired d and Ds are 0.095 
nautical miles and 0.317 nautical miles, respectively.  Application to Eq. (6) produces a test statistic of 3.26 and Eq. 
(7) produces a rejection region of values of (-2.27, 2.27).  Thus, unlike the previous Two Sample t-Tests, the Paired 
t-Test does reject the hypothesis (with same exact difference measured) and has a very small p-value of 0.0015.   

 
Table 3:  Prospective versus Retrospective Results of Paired Data t-Test 

Parameter Prospective Retrospective 
Type I error (α) 0.05 0.05 
Standard deviation (nm) 0.3 0.317 
Mean of baseline system (nm) 0.7 0.74 
Mean of new system (nm) 0.6 0.64 
Total sample size from both runs 800 118 
Power ( 1 - β) 1.0 0.92 

 
The prospective versus retrospective power analysis of the Paired t-Test produces much better results. The 

retrospective power of the Paired Data t-Test is a very acceptable 0.92.  Again this was due to blocking on the 
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extraneous factors in the experiment and pairing the flight means between runs.  It did not require more samples 
only a different approach in the analysis.  The property of the Paired Data t-Test to have much higher precision and 
thus power to detect a difference in the sample means of the test is explained in Eq. (8).  It is derived in Ref. 6 and 7, 
but simply illustrated in this paper to explain precision improvement by pairing the data.  Since the correlation 
coefficient term, ρ , in Eq. (8) reduces the overall variance of differences, a highly positively correlated set of runs 
will have a significantly reduced variance.  The variance is the denominator in the test statistic in Eq. (6) and the 
smaller its value increases the power of the test. 

n
21

2
2

2
1i 2

n
)V(D)Y-XV( σρσσσ −+
==  

(8) 

where )Y-XV( is the variance of the difference in means of the two samples, 
n

)V(Di is the sample variance of the 

paired differences, 2
1σ and 2

2σ  are the variances per sample mean for each run, and ρ is the correlation coefficient 
between paired differences (it measures the direct linear relationship between two variables). 

There is a trade off between reduction in sample size and lowering effect of the variance.  By pairing the data, 
half of the flight samples are pooled and it becomes a test of “n” versus “2n” from the previous test.  Thus, if the two 
runs and associated flights were truly uncorrelated (small ρ ), then the Two Sample t-Test would be preferable.  
However, for analysis of trajectory data where two systems are input with the same flights, the samples are typically 
highly correlated and thus the Paired Data t-Test is preferred. 

D. Application of Non-Parametric Paired Hypothesis Test 
Even though the working example had sufficient power by using the Pair Data t-Test correctly, the result in the 

previous example is interesting, since the difference in sample means was only 0.1 nautical miles.  Further 
inspection of the data showed that about ten measurements of the 118 total were more than 2 to 3 standard 
deviations larger than the sample mean of the differences.  Removal of these ten outliers produced even better 
results with a test statistic of only 4.61, well below the rejection criterion.  The power to detect a 0.1 difference had 
improved even further to 0.997. 

Devore in Ref. 7 offers some insight into why the Pair data t-test was so sensitive to the outliers in the example.  
The underlying student-t distribution used in the test statistic is approximately normally distributed with large 
sample sizes, which is often the case with trajectory accuracy measurements.  Normally distributed parametric tests 
can perform poorly when the underlying distribution has heavy tails.  These tests depend on sample mean that can 
be very unstable in the presence of heavy tails caused by outliers.  Alternative non-parametric approaches relax the 
assumption of normality and rely on a more robust metric, the sample median of the observed values. 

If the null hypothesis is true, both the baseline and new release will have equally likely positive and negative 
measurements.  Thus, it can be assumed that the sample differences of trajectory accuracy from the baseline and 
new release measurements are symmetric around a point of symmetry, namely the median.  For both sets of 
measurements to be equally likely, the null hypothesis has a median equal to zero.  A procedure is presented in Ref. 
7 that provides a non-parametric technique to test the median and requires only that the distribution of differences is 
continuous and symmetric.  This procedure is called the Wilcoxon Signed-Rank Test.  To perform this procedure, 
the signed rank sum is calculated, which includes the following: 

1. First, the absolute values of the trajectory accuracy differences are calculated and ranked in ascending order. 
2. Next, the ranks of the positive measurements are summed, referred to as S+. 
The S+ statistic is a random variable that can be calculated exactly if the sample size is small.  It is approximates 

a normal distribution if the number of samples is greater than twenty.  For trajectory accuracy measurements, the 
samples are often in the hundreds.  The test statistic for a S+ calculated from a large sample is expressed in the 
following Eq. (9). 

24/)12)(1(
4/)1(

++

+−
= +

nnn
nnS

Z  
(9) 

where S+ is the ranked sum defined above and n is the sample size of trajectory differences. 
The rejection region of the Wilcoxon Signed-Rank Test with a large sample size is expressed in the following 

Eq. (10): 
Rejection the null hypothesis: 2/or   2/ αα zZzZ −≤≥  (10) 

where 2/αz  or 2/αz−  are parameters taken from the normal distribution, and α is the significance level of the test. 
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For the working example of 118 flights paired between the two system runs, from Eq. (9) the Wilcoxon Signed-
Rank test statistic Z is 1396.5 and extremely significant with a p-value of 0.0001. 

The key benefit to the pairing the data and using the Wilcoxon Signed-Rank test as the statistical test is both the 
independence and normality assumptions are relaxed.  Ref. 7 indicates that not much is lost in terms of detection 
power for using this test when the underlying distribution is normally distributed and it is significantly improved 
when it deviates.  Ref. 7 also reports on a metric called the asymptotic relative efficiency (ARE).  It is the limiting 
ratio of sample sizes necessary to obtain identical error probabilities for the two tests.  For large sample size, the 
ARE for the Wilcoxon test is approximately 0.95 if the underlying distribution is normal.  This means that only 
about five percent more samples are required to get the same performance as the Paired t-Test.  Ref. 7 also states 
that if the underlying distribution is any distribution, the Wilcoxon test will be at least 0.86 but is often larger than 1 
(more efficient than a test knowing the underlying distribution).  Therefore, the additional complexity in calculating 
the Wilcoxon Signed-Rank test statistic is outweighed by the robustness it provides when the underlying 
distributions departure significantly from the normal distribution.  Most off-the-shelf software packages calculate 
both tests with little effort for the analyst, so test complexity is not a significant concern. 

III. Implementation of Paired Hypothesis Test in Practice 
The application of the statistical analysis approach presented in Section II of this paper provides guidance on 

how to organize your analysis and data.  It is useful to put the analysis approach in context of the study objectives.  
The previous section assumed the main objective was comparative in nature.  One system was being compared to 
the performance of another.  For the example, the legacy system was being tested against a new release.  The 
strength of the approach was the common input data (i.e. flight data) being provided to both systems and the pairing 
process on the output measurements.  The method was an example of an experimental design approach called 
blocking as described in Section I.A. and its strength rests in the variance reduction property in Eq. (8).  The method 
effectively removes extraneous or nuisance factors from the experiment.  The method can be used for a larger set of 
test objectives.   

A critical objective of evaluation of aircraft trajectory predictions is not only knowledge on the performance of 
the TP, but the decision support tool the TP supports.  Fig. 1 illustrates this graphically by drawing a linkage 
between the TP performance and the broader client functions.  The primary example is the relationship of aircraft-
to-aircraft conflict prediction to the trajectory predictions that drive them.  If the forecasted future path of the aircraft 
provided by the TP is perfectly realized for a pair of aircraft that happen to come close together, then the conflict 
predicted should be more accurate than another conflict prediction of the same event with some level of TP error.  
Thus, the paired trajectory differences as measured in Eq. (5) can be correlated to differences in the conflict 
predictions that are realized by the same aircraft flights involved.  This method could be applied to other client 
services such as metering, capacity forecasting tools, or any higher level application with a functional relationship 
with its TP trajectory predictions. 

A.  Recommended Steps for TP and Associated Higher Level Application Evaluation 
From quality engineering domain, the process improvement model of Plan-Do-Study-Act (PDSA) provides a 

high level four step process of iteratively improving a system or process.9 As illustrated in Fig. 8, it has been adapted 
as the high level framework for studying the TP and higher level client application functions discussed in this paper.  
The first is the planning step. It begins by defining one or more focused objectives of the study and expands to 
listing the questions that the study needs to answer.  Still within the planning stage, the appropriate experiment is 
designed to achieve the objectives and answer the research questions proposed.  This includes defining the factors 
and levels of those factors to test and associated response variables to measure.  The next stage is the study 
execution step, labeled “Do”.   It includes development of a set of air traffic scenarios and other associated input 
data and then the actual operation of running the TP and client application.  It also includes the data collection effort 
that parses and organizes the output from the TP and client application.  The third step is the study, composed of the 
statistical analysis of the TP output.  The statistical analysis was subject of the previous Section II.  It includes two 
powerful analysis approaches: observational and experimental data analysis.   

Observational data analysis is the examination of differences between data observed in the past in an attempt to 
make inferences based on these observations.  Since the data may be confounded by many uncontrolled or nuisance 
factors that were captured as well, the analyst must take special care to either block out these influences.  Section 
II’s presentation of the Paired Data t-Test is an example of such a technique.   



10 
American Institute of Aeronautics and Astronautics 

 

 
 

 
 

Figure 8:  Recommended TP’s PDSA Evaluation Process 
 
Experimental data analysis is the approach where the analyst directly manipulates the dependent variables 

(factors) to determine the influence on the response variables.  The design of the experiment can not only eliminate 
the influence of nuisance factors but maximize the efficiency of the data collected by simultaneously altering the 
levels of the factors under study.  As a result, experimental data analysis can estimate both the main effects and 
interactions of the factors.  For the TP, screening experiments can help determine which factors have statistically 
significant effects.  This technique is beyond the scope of this paper and left for future work. 

In Fig. 8, the final stage, labeled “Act”, requires the analyst to synthesize the statistical results into a set of 
conclusions and recommendations based on the original objectives and questions from the planning stage of the 
study.  The steps are notional, so the process can iterate within the stage internally and then expand to publications, 
presentations and input from the larger community.  This stage could also seek out subject matter experts to aid in 
the interpretation of results.  The process does not necessarily end if the feedback indicates otherwise and the 
analysis can return to the first stage with the lessons learned from the previous iteration.  The process is iterative and 
only ends when the analyst determines it is warranted or like many real world projects the budgeted resources has 
been exhausted or gains associated with continuing are diminished below the cost of continuing. 
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B. Important Considerations for the Evaluation Process 
When applying this PDSA evaluation in practice, there are several important considerations to follow besides the 

main steps illustrated in Fig. 8.  Listed below are several key lessons documented in the literature and found to be 
critical in the author’s experience to accomplish a successful study. 

• As discussed by both Ref. 5 and 6, the analysis should utilize non-statistical knowledge when defining and 
analyzing the problem as much as possible.  For TP and higher level applications, there are subject matter 
experts that can help explain the relationship of the various factors and response variables.  The statistical 
approaches alone are not likely to explain the relationships between variables.  The physical understanding 
of the factors and their interactions is invaluable in determining the level ranges, number of replications, and 
in general interpretation of the results under study.  For example in Section II.D, several outliers were 
discussed that represented flights that had significantly larger differences between the two systems under 
study.  Further analysis indicated that these flights exhibited differences in the airspace adaptation between 
the two systems. 

• Ref. 5 and 7 both highlight the difference between practical and statistical significance.  Statistical 
significance is determined by the acceptable Type I error of the test and associated to the sample size and 
design characteristics of the experiment.  Practical significance requires knowledge of the context of the test.  
It is the actual effect size that matters for the system under study.  For example, if Section II’s example had 
reported on vertical trajectory error with a statistically significant effect below 100 feet, the result could have 
been discarded based on practical significance.  The source of altitude data used in the study is reported in 
100 foot increments, so an effect below has little meaning.   

• Removing uncontrollable or nuisance factor effects in the test can provide increased power to detect actual 
factor effects for the same sample size and Type I error.  This was illustrated in the example in Section II 
where the Paired Data t-Test provided a significant improvement in sensitivity to detect a shift in the process 
mean. 

• Analysis for TP and their higher level applications, like all good statistical investigations, using the 
techniques presented is an iterative process.9  Graphically this was re-enforced in Fig. 8 by the return arrow 
following the feedback step and returning back to the planning stage.  Ref. 5 argues in favor of an iterative 
and sequential approach to performing the study.  This approach maximizes the analyst’s chances of meeting 
the original objectives and even adjusting them if necessary to meet the broader goals that initiated the study 
from the start.  The PDSA Evaluation Process presented assumes a ‘learn-as-you-go’ principle of discovery 
with the discipline of a focused and organized process. 

IV. Trajectory Performance Correlated with their Higher Level Application 
As illustrated in Fig. 1 and stated in Section I, the accuracy of the TP has a direct impact on the DST’s overall 

performance and usability.  Using the statistical methods from Section II and applying the PDSA Evaluation Process 
from Section III, TP performance can be validated and thus improved and these gains in turn can improve the higher 
level application’s function.  One very important higher level application is a strategic conflict probe (CP).  At its 
core, the CP has a dedicated TP, producing aircraft trajectory predictions.   These forecasts of the aircraft path are 
used to predict when aircraft pairs could potentially violate safe separation distances – the higher level CP function.  
A fundamental function of the entire air traffic control system is the safe and efficient operation of aircraft within the 
airspace of the National Airspace System, so the role of the conflict probe to support the human air traffic controller 
is an important one.  Thus, others have estimated the relationship of CP performance based on the uncertainty 
associated with TP performance.10,11 These studies focused on the mathematical modeling of these relationships 
which are important and consistent with the use of non-statistical subject matter knowledge of the process under 
study.  Others have used simulation modeling to estimate the impact on conflict prediction uncertainty based on 
trajectory predictability.12 The focus in this paper is on measuring their relationship empirically through sampling 
and experimentation. 

A. Sample of Accuracy Metrics for TP and CP Functions 
The term accuracy is the condition of being correct, exact, or free from error.13 Accuracy metrics serve to 

measure the degree of correctness or exactness of a process.  For trajectory and conflict prediction of aircraft within 
the FAA’s air traffic control system, accuracy metrics estimate the error in these predictions by comparing the 
prediction of the event to the actual event.  TP accuracy metrics were defined in detail in Ref. 4.  To summarize, 
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time coincident and spatially coincident metrics were defined as well as an un-biased sampling technique to capture 
these metrics.  Table 4 provides a summary of four selected metrics that cover both the horizontal and vertical 
dimensions of the trajectory prediction.  For example, the cross track error is the same metric used in the example 
presented in Section II. 

 
Table 4: Summary of Sample TP Accuracy Metrics‡‡ 

Metric Definition Units 
Horizontal Error Time coincident straight-line planar distance between the 

predicted trajectory position and actual aircraft position 
Nautical Miles 

Cross Track Error Spatially coincident side-to-side planar distance between the 
predicted trajectory position and actual aircraft position 

Nautical Miles 

Along Track Error Spatially coincident longitudinal on path planar distance between 
the predicted trajectory position and actual aircraft position 

Nautical Miles 

Vertical Error Time coincident altitude distance between the predicted 
trajectory position and actual aircraft position 

Feet 

 
A conflict probe predicts when two aircraft will violate separation standards some time in the future. A violation 

of separation standards is typically called a conflict. An event where two aircraft pass near each other but not close 
enough to violate separation standards is labeled an encounter in this study. As documented in Ref.’s 14-17, the 
conflict probe is not perfect and does make mistakes. For example, it can miss a conflict (Missed Alert) or it can 
predict a conflict that never occurs (False or Nuisance Alert). The four possible situations are shown in Table 5.  

For a real time system, it is important that an alert be given sufficiently earlier in time of the actual conflict so 
corrective action can be taken. In other words, an alert must be timely as well as accurate. To ensure timeliness in 
conflict predictions, a conflict probe is often required to have some lead-time or actual warning time. This Minimum 
Warning Time (MWT) ranges from 1 to 5 minutes depending on the particular type of conflict probe being 
evaluated. For this study, 5 minutes was required unless the conflict was determined to be a pop-up event. A pop-up 
conflict occurs if the probe is not provided with MWT threshold of continuous surveillance data or prediction for 
either of the associated flights. Detailed descriptions of the different situations that cause this to occur are described 
in Ref. 17. 

Table 5: CP Alert and Conflict Event Combinations (adapted from Ref. 14 and 17) 
 CONFLICT OCCURS CONFLICT DOES NOT OCCUR 
ALERT CP predicts conflict and it occurs 

 
(VA – valid alert) 

CP predicts conflict and it does not 
occur 
(FA -- false alert) 

NO ALERT CP does not predict conflict and it 
occurs 
(MA -- missed alert) 

CP does not predict conflict and it 
does not occur 
(NC -- correct no-calls) 

Total Number 
of Alerts 

Total Number of Conflicts Total Number of Non-Conflicts 
(Encounters that did not have 
conflicts) 

 
For this paper, the conflict prediction accuracy metrics consist of counts of the error events, including the false 

alerts (FA) and missed alerts (MA) in context of the correctly predicted events of valid alerts (VA) and correct no-
calls (NC).  The focus in this paper and subsequent sub-sections will illustrate the correlation between these events 
and the TP metrics in Table 4. 

B. Observational Data Analysis of TP and CP Performance 
Following the PDSA Evaluation Process described in Section III, assume for illustrative purposes that the “Plan” 

and “Do” stages of the study have been completed and the study stage has begun.  The objective of the analysis was 
the development of performance requirements for the CP.  To accomplish this, one of the resulting research 
questions includes determining how much the TP performance effects CP performance.   The observational data 
analysis can utilize some or all the metrics in Table 4 and their associated statistics like sample mean, standard 
deviation, maximum, or median to name a few. However, a convenient statistic that combines all the three 
dimensions (i.e. lateral, longitudinal, and vertical) is the ratio of large sampled trajectory errors of the associated 
aircraft with TP error metrics listed in Table 4 up to 20 minutes prior to the predicted conflict event’s (alert) start 
                                                           
‡‡ See Ref. 4 for the detailed mathematical definitions of the listed metrics. 
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time.  The ratio is the quantity of trajectory accuracy sampled positions that exceeded a threshold to the total number 
of events sampled within the same time interval.  The various types of alert events defined in Table 5 then can be 
compared as a group difference.  For example, the difference between missed alert events and valid alert events or 
difference between false and valid events can be statistically tested.  This difference can also be compared between 
two systems (i.e. different CPs with their own TP). 

For example, two CP tools were provided the same input traffic scenario using the techniques defined in Ref. 18 
and 19. This process includes generation of a recorded aircraft traffic scenario that is time shifted to induce test 
conflict events and then used to test the CP.  For this example, the trajectory predictions are sampled using the 
interval based sampling technique defined in Ref. 4, and the unsigned cross track, along track, and vertical errors as 
listed in Table 4 were counted that exceeded the thresholds 1.5 nautical miles, 2.5 nautical miles, and 500 feet, 
respectively.  This was applied to the entire set of false alert (FA), valid alert (VA), and missed alert (MA) events 
detected for the two CP tools evaluated.  The null hypothesis claims that the average ratio for these three groups of 
alert types is equivalent.  The alternative hypothesis claims that they are not equivalent.  Subject matter knowledge 
of the TP and CP algorithms suggest that events that exceed the thresholds of trajectory deviations in any of the 
three dimensions will increase the likelihood of producing false and missed alerts and lower the chance of making 
valid alerts.   

As the mean value of the ratio of trajectory deviations increases, the slope of the cumulative distribution function 
(CDF, integral of the probability density function) should increase.  This is illustrated in Fig. 9 and Fig. 10 by the 
two example CP tools’ cumulative probabilities as a function of the ratio of trajectory deviation per alert type.  For 
both CPs, the blue farthest left curve is composed of the correct prediction events or valid alerts (VAs).  The VA 
events are farthest to the left because for a given average ratio of trajectory deviation they are more likely to occur at 
a lower ratio than a higher value relative to the two other alert types.  The green curve for the missed alert (MA) 
events is farthest to the right for both CPs.  It is constructed from a very small sample size of events (i.e. five for the 
CP A and six for CP B) and as a result produced a discrete step function instead of a smooth curve like the other two 
alert types.  Regardless of the discreteness of the curves, both CDF lines in Fig. 9 and 10 for the MA events illustrate 
the relationship of missed alert events and their associated trajectory deviations.  The curves are steep and more to 
the right than the other alert types indicating the more trajectory deviations are present in the missed alert events.  
Finally, the third alert type formed from FA events is illustrated as a red colored line in both Fig. 9 and 10.  The 
curves for both example CPs is to the right of their VA CDF curves.  Both VA and FA events include conflict 
predictions by the CP.  VA alert types are situations when the prediction can be matched to a test conflict.  The 
prediction is therefore both accurate and timely.  However, FA alert types cannot be matched to a test conflict or 
represents situations where the CP prematurely removed an alert for the test conflict.  It represents situations where 
the CP is falsely presenting an alert or prematurely removing them.  The difference between the VA and FA curves 
is proportional to the difference in quantity of trajectory deviations present in the two sub-groups of conflict 
predictions.  Thus, the FA’s CDF that is shifted to the right of the VA CDF indicates that FA events have more 
trajectory deviations. 
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Figure 9: CP A - CDF of Ratio of Trajectory   
Deviations Per Alert Type 

Figure 10: CP B - CDF of Ratio of Trajectory 
Deviations Per Alert Type 

Key:  FA,  MA,  VA Key:  FA,  MA,  VA 
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The CDFs give us some indication of the distribution of trajectory deviations as a function of alert type but does 
not provide a means of testing whether these differences are statistically significance.  For the three groups in the 
current example, there are three pairwise comparisons: FA to VA, MA to VA, and FA to MA.  Fig. 11 and Fig. 12 
illustrates the comparisons graphically using the SAS JMP® statistical package.  The figures present the individual 
event ratios for each alert type group and summary statistics per group.  Specifically, this includes black dots as the 
ratio of trajectory prediction for each individual event grouped by alert type, a red box plot with 75th, 50th (median), 
and 25th percentiles for each alert type, blue lines indicating the sample mean and standard deviations for each alert 
type group, and green diamonds are centered on the sample mean with height proportional to the upper and lower 
bounds of a 95th level confidence interval.  As expected, both Fig. 11 and 12 illustrate the differences in alert type 
populations.  In both CPs, the FA and VA confidence intervals are not overlapping, yet the MA overlaps with the 
other two.  MA has the highest mean and median ratio of trajectory deviations, while FA has the second largest and 
VA the smallest of the three. 
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Figure 11:  CP A – Comparison of Multiple Group 
Means and the Tukey-Kramer Test 

Figure 12:  CP B – Comparison of Multiple Group 
Means and the Tukey-Kramer Test 

 
A specific multiple comparison method is employed to compare which pairs of means are statistically different 

and which are not.  The Tukey-Kramer HSD (Honestly Significant Difference) Test is a conservative test in that it 
considers all comparisons to control the experimentwise Type I error.20  It ensures that the entire test as a whole has 
a specified Type I error.  Graphically, the circles that are not overlapping are significantly different, and others that 
do overlap are not statistically different.  For both CPs, the small sample size and large variability of MAs 
contributes to producing a large circle encompassing the other two alert types.  In contrast, the circles for the FA and 
VA alert types do not overlap indicating there is a statistically significant difference between them.  Therefore, still 
only observational in nature, all four figures from Fig. 9 to 12 consistently show evidence that both CPs have higher 
incidents of trajectory deviations (trajectory errors exceeding specified thresholds) for MA events, then FA events 
and then VAs.  They also give statistical evidence on the magnitude of these differences.  However, the results do 
not provide evidence that trajectory error induces the conflict prediction errors only that they are correlated.  Also, it 
does not directly compare the two CPs only provides relative information on both systems.  The next sub-section 
will present techniques to compare both CPs directly and utilize the paired data techniques presented in Section II. 

C. Observational Comparison of Two System’s TP and CP Performance 
The Paired Data t-Test presented in Section II compared two releases of the TP with the same input traffic 

scenario.  This allowed the same aircraft to be paired and differences calculated reducing the overall test variability 
and increasing the power of the test.  In a similar manner, it was shown in Ref. 18 and 19 that conflict predictions 
could be paired between runs as well.  The process involves matching the FA, MA, and VA events between the two 
runs.  This results in the list of combined results given in Table 6.  If the TP accuracy influences the CP accuracy as 
expected, the matched results where both CPs have equivalent performance (both VA, MA, or FA) should have 
negligible TP accuracy differences, compared to when the CPs do not have equivalent performance (e.g. MA_VA, 
FA_NC).  Furthermore, the techniques presented from Section II can be used. 
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Table 6:  Matched Conflict Prediction Results 

Conflict Probe A Result Conflict Probe B Result Matched Result 
VA – valid alert VA – valid alert SAME_VA 
FA – false alert FA – false alert SAME_FA 
MA – missed alert MA – missed alert SAME_MA 
VA – valid alert MA – missed alert VA_MA 
MA – missed alert VA – valid alert MA_VA 
FA – false alert NC – correct no-call FA_NC 
NC – correct no-call FA – false alert NC_FA 

 
For example, using the same two CP’s presented in the previous sub-section, let’s contrast the paired differences 

of the ratio of trajectory deviations for events when both systems had valid alerts (SAME_VA) and contrast this 
with the situation when a false alert occurs in CP A and CP B correctly does not make a prediction (correct no-call) 
to produce the FA_NC matched result.  Fig. 13 and 14 presents the SAME_VA and FA_NC paired data results for 
the ratio of trajectory deviations as defined in the previous Section IV.B.  Unlike the previous example, the 
distributions in Fig. 13 and 14 are the paired differences in ratio of trajectory deviations for the same aircraft pairs 
matched by event type.   
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Figure 13: SAME_VA – Paired Data  
Histogram/Normal Quantile Plot 

Figure 14: FA_NC – Paired Data 
Histogram/Normal Quantile Plot 

 
For the Fig. 13, the distribution is approximately normally distributed as illustrated by the normal quantile plot 

and symmetric histogram.  The mean difference in ratio of trajectory deviations is 0.003 and p-value from the Paired 
Data t-Test is 0.43, indicating the difference is not statistically significant.  Thus, for matching valid alert events 
there is no evidence to conclude the quantity of trajectory deviations is different between runs. 

For Fig. 14, the distribution is reasonably symmetric as illustrated by the histogram.  However, there is reason to 
believe the data is not normally distributed as shown by the quantity of data points in the tail regions illustrated as 
deviations in the normal quantile plot.  Thus, for this data set the non-parametric Wilcoxon Signed-Rank Test, 
presented in Section II.D, should be employed to confirm any results from the Paired Data t-Test.  The mean 
difference in ratio of trajectory deviations is 0.008 and p-value for the Paired Data t-Test is 0.006 and Wilcoxon 
Signed-Rank Test is 0.004.  Thus, both are consistent indicating for the FA_NC data set, the mean difference of 
trajectory deviations of approximately one percent was statistically significant.  Overall, there is may be a question 
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to whether a one percent different in the quantity of trajectory deviations has practical significance, but the approach 
of using paired data tests, matching by alert types for the CP, and in general the PDSA Evaluation Process was 
repeatedly illustrated using observational data analysis techniques. 

V. Conclusions 
In unprecedented proportions, industry and ATSPs have come together to mitigate the forecasts of increased 

demand resulting in a capacity constrained aviation system that could potentially degrade in efficiency and 
ultimately safety if nothing is done.  Thus, comprehensive plans requiring broad advances in ground-based and 
airborne automation have been developed in the United States and as well as in Europe.  The 4-dimensional 
prediction and management of the aircraft path is at the heart of the concepts envisioned by the next generation 
aviation system (NextGen).  Many of the decision support tools will rely on these trajectory predictions and their 
performance are tightly coupled.  This paper showed the linkage between the accuracy of the TP’s predictions to 
higher level applications like a CP which predicts when aircraft will potentially violate separation standards.  
Notionally, the relationship between the inner functions of the TP and its higher level application is illustrated in 
Fig. 1. 

Powerful statistical analysis concepts should be employed to help quantify the relationship between TP and its 
higher level functions.  This is critical at several levels.  First, to derive valid technical requirements for the TP and 
its higher level applications, it is important to specify both in context of the other.  Second, as NextGen functions are 
developed the current performance of our air traffic control automation will be required to improve to achieve the 
benefits being proposed.  By employing the various TP metrics in Ref. 4, CP metrics from Ref. 19, and statistical 
methods presented in this paper, the process provides a means to discriminate where improvement is needed and 
thus can be targeted for re-engineering and re-design. 

Utilizing the experimental design technique of blocking out uncontrollable factors out of the study by pairing the 
data by flight, the Paired Data t-Test and its non-parametric counter part, the Wilcoxon Signed-Rank Test, provide a 
strong foundation of analysis techniques to validate TP performance from one upgrade to the next.  The broader 
concept of continuous improvement is then presented in Fig. 8 to guide the analyst in all phases of the study.  The 
process is broken up by simple stages adapted from the quality engineering literature, called PDSA or Plan-Do-
Study-Act.  A key feature of the approach is the iterative nature of the technique.  The process promotes an 
exploratory and incremental approach to study a new or existing system.  The study phase encompasses both 
observational and experimental statistical techniques.  The paper focuses on the observational data analysis where 
inferences are made based on what can be observed from runs of the TP and CP tools.   

Future work will leverage on the metrics and analysis techniques presented and illustrate the PDSA Evaluation 
Process using experimental data analysis.  This type of analysis allows direct manipulation one or more independent 
variables, called factors, and inferences can be drawn on the influence on the dependent or response variables being 
studied.  While the observational analysis presented in this paper does provide evidence of these relationships for the 
main factors, experimental design techniques take it a bit further in tightly controlling any additional bias or 
confounding nuisance factors and allow estimation of interaction effects among these variables.  Both techniques 
form a balanced study approach to achieve the research objectives defined in the planning phase of the activity. 
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