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A conflict probe is one of the most important elements in a safe and efficient air traffic 

control system. It supports the human air traffic controllers by alerting to potential 

situations where aircraft may violate separation standards sometime in the future. As the 

conflict probe is upgraded, whether in the development stage or after deployment, the 

developers must be sure that its performance does not degrade. In order to test this, a 

conflict probe is analyzed by comparing it either to another conflict probe or to a previous 

version of itself. This paper presents a software program developed by FAA analysts for 

algorithmically comparing two conflict probes, using many of the methods an analyst would 

use in a manual comparison. The algorithm is presented and verified mathematically. 

Finally, a comprehensive example is presented that illustrates how the software program can 

be utilized in the development and maintenance of a conflict probe. 

I. Introduction 

HE United States National Airspace System (NAS) is the most complex aviation system in the world, servicing 

over 50,000 flights daily. This number is forecasted to increase to three times this number by the year 2025, and 

to counter this increase in air traffic density, the Federal Aviation Administration (FAA) strives for a more efficient 

approach to air traffic control while maintaining the high level of safety required of the NAS. To help maintain this 

safety while also increasing efficiency, air traffic controllers use a number of automation tools called Decision 

Support Tools (DST). The FAA is constantly researching ways of improving the current software and hardware 

tools as well as developing new ones  to ultimately create a NAS that is more efficient and safer than ever before. 

One of the main DSTs used in the NAS today is called a Conflict Probe (CP). A CP generates four dimensional 

(latitude, longitude, altitude, time) predictions of where each aircraft will fly, called trajectories. It uses the trajectory 

predictions to identify potential conflicts (i.e. loss of minimum separation) with other aircraft’s trajectories some 

time in the future. As a CP is developed, and whenever improvements are made to it, the developers and analysts 

must be sure that the CP does not degrade in its ability to predict potential conflicts. This paper presents a novel 

software tool developed by the FAA to compare the CP’s performance to another CP or a different version of itself.  

This software tool is currently being used to evaluate the performance of different releases of the conflict probe 

within the En Route Automation Modernization (ERAM) Program. ERAM is a new air traffic control system 

developed by Lockheed Martin and currently being deployed by the FAA to its en route air traffic control facilities. 

II. Background of Conflict Probe Performance 

There are two main focuses in analyzing the accuracy and effectiveness of a conflict probe. The first is to 

analyze the temporal and spatial accuracy of the trajectories it generates
1
. The second area is analysis of the conflict 

alerts it generates
2
. This paper presents a software program used to assist in the latter. 

The first step in analyzing a CP is to generate an air traffic scenario. In reality there are very little to no conflicts 

in an en route airspace, due to the fact that air traffic controllers will recognize a potential conflict and redirect 

aircraft to remove them. In order to effectively analyze a CP, the authors create an air traffic scenario that has the 

same properties seen in a real airspace, yet has induced conflict events. Typically, a good test scenario will be 

several hours in length with between 1500 to 3000 flights and over 100 conflicts that occur throughout. This 

scenario is generated by time shifting aircraft, which allows the analysts to create a test scenario with many conflicts 

while still maintaining the reality of the scenario
3
. 
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Once the scenario is generated, it is analyzed for actual conflicts and their properties
4
. Actual conflicts are 

found by analyzing the radar track data of the aircraft and locating points at which aircraft violate the minimum 

separation standards. These conflicts are recorded into a database that will later be used as a reference for analyzing 

the accuracy of the CP. 

The next step is to run the CP on the 

test scenario. The CP generates alerts 

when it sees a potential conflict. These 

alerts would then be used by an air 

traffic controller to redirect one or both 

aircraft. If the aircraft are redirected, the 

probe will detect that the conflict will no 

longer occur, and will delete the alert. 

The alert also may be updated in time or 

location of the predicted conflict. This 

can happen as the aircraft trajectory 

prediction changes. 

Finally, the resulting alerts generated 

by the conflict probe are compared to the 

reference conflicts to find how 

accurately the CP predicted the alerts. 

There are generally four possible 

situations as shown in Table 1. For more 

information on the accuracy testing of a 

conflict probe, see Ref. 2. 

III. Previous Work 

In 1996, the FAA established the Conflict Probe Assessment Team (CPAT) at the William J. Hughes Technical 

Center to evaluate the accuracy of the conflict probes in DSTs. Since its creation, CPAT has measured the conflict 

prediction accuracy of URET
5
, and measured the trajectory modeling accuracy of both URET and CTAS

5,6
. In 2004, 

the ERAM Test Group formed the Automatic Metrics Test Working Group (AMTWG). The group, led by CPAT, 

established a set of metrics to measure the performance of key functions of ERAM during developmental and 

operational testing
7
. In 2007, ERAM was accepted by the FAA having passed the performance requirements during 

the Factory Acceptance Test Run for Record (FAT RFR). 

A follow-up study was performed by CPAT after the RFR. The study involved analyzing the results of FAT RFR 

Run 4, which dealt with the trajectory prediction accuracy implemented in ERAM’s Flight Data Processing (FDP), 

and Run 5, which involved the strategic conflict prediction accuracy implemented in ERAM’s Conflict Probe Tool 

(CPT)
8
. The tools that computed trajectory accuracy metrics for Run 4 were developed by CPAT, and the tools to 

evaluate the Run 5 data were developed by LM. However, CPAT has developed its own set of tools to measure the 

accuracy of strategic conflict predictions which have been used in other tasks. A statistical approach was used to 

decide whether there was significant degradation in ERAM when compared to the legacy URET system. The 

purpose of the study was to further inspect the performance of ERAM, investigate areas where ERAM did indeed 

degrade from the legacy system, and provide an overview of the results to the FAA. 

IV. Comparer Program 

In the past, comparisons of the accuracy between two CPs were tedious tasks, since they were either performed 

by manually analyzing hundreds of conflict pairs or by making estimates from statistical methods. In the next few 

sections we present an algorithm, and a software program that implements it, that can quickly compare the accuracy 

results of two CPs. This comparison is performed using many of the same methods an analyst would use manually, 

but as will be shown in a later section, can be employed to analyze the accuracy of hundreds of conflict predictions 

associated to an entire scenario of air traffic data. This allows the analyst to focus his or her analysis resources on 

the causes of the discrepancies identified. 

In order to create a software program that could quickly perform this comparison, we first needed to develop an 

algorithm that could use quantitative properties of the conflict predictions from each CP to find the best match for 

each. 

Table 1. CP Alert and Conflict Event Combinations 
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In general, we have two arrays (A and B) of data (i.e. conflict predictions) that each have common attributes (i.e. 

same flight pair, or same conflict prediction results). Each entry in array A may or may not have similar quantifiable 

properties (i.e. time, position) to an entry in array B. Furthermore, an entry in A may have similar properties to 

multiple entries in B, and vice versa. Find the best match, if any, for each entry in A to a single entry in B, 

coincidentally finding the best match, if any, for each entry in B to a single entry in A. Solving this problem will 

find, for every conflict prediction in CP A, the corresponding conflict prediction in CP B, allowing analysts to easily 

discover differences between the two conflict probes. 

A. The Algorithm 

The first step to finding the best match for 

each conflict prediction is to choose a property 

or properties that can be compared between the 

two conflict probe results to create a score. A 

score is a value generated by some function 

performed on an entry from A and an entry 

from B. This score is then used as an element in 

the matrix. Often, the time or the location of 

where the conflict occurs, or is predicted to 

occur, is used, but any quantifiable value can be 

used. Now, we compare every entry in A with 

every entry in B, to create a matrix of values. 

Take the arrays in Fig. 1, for example. 

Now, for the compared property let us use the absolute value of the difference. So, for instance, because 7 minus 

5 is 2, the first cell of the matrix would be 2. We use A as the rows and B as the columns in the matrix, and we get a 

matrix as shown in Fig. 2. 

Next is to decide what defines a better value. In this case, we will define the best value as the maximum value 

available. Starting with the first entry in A, we search for its best match. To do this, search the first row for the 

maximum value. We call the current row that we are searching the pivot row. Doing this, we can see that there is a 

tie between B3 and B5. Since either of them will work, in order to avoid loops, we use the first we find (B3 in this 

case). We call this entry the pivot element, identified as the red cell in Fig. 3. 

Next, search the column of the pivot 

element (the pivot column) for the best 

element in that column. We do this to ensure 

that B3 does not match better with some other 

A value than it does with A1. As we can see, it 

does indeed match better with A3 with a score 

of 6, once again, identified as the red cell in 

Fig. 4. 

The element containing the value 6 now 

becomes the pivot element, and the pivot row 

is now moved to row A3. Now, once again 

search the pivot row for the best value. In this 

case, there is no better value than the pivot 

element, so this is the best possible match for 

A3 as well as the best possible match for B3 

shown in Fig. 5. 

Since each entry can only be matched 

once, both A3 and B3 are removed from the 

matrix, resulting in the matrix shown in Fig. 

6. 

We repeat the process now, again 

searching the first row for the best match. A 

best match is found when there is no better 

element than the pivot element in the pivot 

row or the pivot column. How “better” is 

 
Figure 2. The matrix of compared values 

 
Figure 3. The pivot row and pivot element of the first 

iteration 

 
Figure 4. The pivot column and new pivot element of the 

first iteration 

 

 
Figure 1. Arrays of values to be matched. 
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defined is chosen by the matching strategy used, and can vary greatly among different strategies. This process will 

continue until one or both arrays have no entries 

left. As mentioned earlier, every element in A 

does not necessarily have a match in B and vice 

versa. In this example, B has one more entry 

than A, and since each entry can only match 

once, this will leave the final entry in B with no 

match.   

Another case in which there can be a “no 

match” is if a threshold is set. Take the matrix 

in Fig. 7 for example, and let us set a threshold 

of 5. This means no match can have a score less than a value of 5. 

As we can see, A1 will match with B1. However, the score of this match is 3 which is below the threshold of 5. 

Due to the nature of this algorithm, we know for certain that this is the absolute best match available for A1 as well 

as the absolute best match for B1. Given this fact, we can remove row A1 and column B1 from the matrix, confident 

that neither A1 nor B1 has any match that is above or equal to the threshold value. The full algorithm is detailed in 

the Appendix. 

This problem is very similar to the Stable Marriage Problem (SMP)
‡
. However, the SMP has several key 

requirements that this problem is not limited to.  First, in the SMP, there is always the same number of men as there 

are women. In this problem, there is no 

guarantee that we have a square matrix. 

Second, there are no ties in the SMP. Since 

every male ranks every female from 1 to n, and 

vice versa, there can be no ties.  In the problem 

of matching conflict predictions, however, there 

is a possibility of ties. Also, the SMP 

algorithms are biased toward a single gender. 

That is, whereas males may receive their most 

preferred partner, the females may receive their 

least preferred partner that would still leave 

them stable. In matching conflict predictions we want the 

matches to be as balanced as possible with no bias toward 

one CP or the other. SMP algorithms ensure that everyone 

is matched to a partner. We cannot ensure this, and only 

wish to match a conflict prediction if it is a feasible match. 

A feasible match would be one with a score better than a 

certain user specified threshold. 

Because of these limitations that our problem does not hold to, the SMP algorithms cannot solve this problem. It 

is indeed very similar to a SMP problem, however, and, in fact, can be considered an extension of the SMP problem. 

Although SMP algorithms cannot solve the CP matching problem, our CP matching algorithm can solve the Stable 

Marriage Problem. However, there are far more efficient algorithms for solving the SMP. 

B. Implementing the Algorithm 

Using this algorithm a software program can match each conflict prediction result (i.e. MA, VA, or FA) in CP A 

to its corresponding conflict prediction in CP B and vice versa. The program was developed in Java and retrieves 

data for each CP from an Oracle database. A matrix is created for each unique flight pair in the set of conflict 

predictions that is the union of CP A and CP B. Because the conflict pairs are separated in this way, the algorithm is 

applied, separately, to many different matrices. Multithreading is used for this and each thread is given several 

matrices to process.   

An object oriented design pattern
9
 called the Strategy Pattern is followed. This pattern’s purpose is to separate 

the algorithm from its context. The particular algorithm that is separated in this case is the algorithm used for 

determining the score of a matched pair. The context is the search algorithm in which the scores are compared to 

find the best score in the matrix. This best score can be a maximum score, a minimum score, a proximity score, or 

any other quantifiable comparison, dependent on the strategy used (the matching method). 

                                                           
‡
 Weisstein, Eric "Stable Marriage Problem," Wolfram MathWorld. http://mathworld.wolfram.com/StableMarriageProblem.html 

 
Figure 5. The pivot row and the matched element of the 

first iteration 

 
Figure 6. The new matrix after the matched entries are 

removed 

 
Figure 7. This matrix’ first iteration results in a 

match below the threshold value of 5 



 

American Institute of Aeronautics and Astronautics 

 

5 

The Factory Pattern was also used, which is an object oriented design pattern with the purpose of entrusting the 

creation of all objects to a single “factory” object, allowing new objects to be added with very little change to a 

program. Because of the low coupling and high cohesion of this object oriented structure, it allows many different 

scoring methods to be used, and allows new scoring methods to be implemented easily with very little effort by a 

computer scientist, and then added into the system with only a simple library update, completely transparent to the 

user. 

In summary, the utilization of object oriented design patterns in the implementation of the matching algorithm 

supports exploration of various matching criteria and scoring methods.  In some cases, different methods may be 

suited to different types of CPs and different objectives of the analyst.  Some of this will be presented later in the 

paper when the software tool is applied to two operational CPs. 

C. Matches 

As discussed earlier, there 

are generally four possibilities 

for the type of a conflict 

prediction result. The 

comparison program, however 

matches two conflict 

predictions to each other, 

making fifteen general 

possibilities, as shown in Table 

2. There are only fifteen instead 

of sixteen because a No Call (NC) means there is no alert or actual conflict. A NC in both conflict probes would be 

of no interest to analysts and therefore is skipped by the software tool. 

There is one last category that is not shown in either table. This category is designated as DISCARD.  

DISCARDs are alerts that are disregarded from the analysis for some reason, usually as a result of not having 

enough data of some type for that particular alert. Discard events are mainly false alerts or actual alerts that are 

removed for some reason due to artifacts of the testing environment. The alert and the reason it was removed is 

recorded in the database and will show up in some later data tables, but, since they are designated as discarded, we 

will ignore them. 

Several scoring methods have been implemented to date. 

The most accurate and most commonly used scoring method, 

currently, is the maximum overlap time scoring method, 

illustrated graphically in Fig. 8. This method compares the start 

and end times of each conflict in A to the start and end times of 

each conflict in B to find the amount of time that the two 

conflicts overlap each other. A negative score indicates that the 

conflicts have no overlap in time and are separated by that 

many seconds. A positive score indicates that the two conflicts 

overlap by that amount of time in seconds. A score of zero means that one conflict ends at the instant the other 

begins. 

There are two different styles of matching available based upon the relationship of the two conflict probes. This 

style is decided based on whether the two CPs use the same ground truth. The ground truth is the radar data received 

from the Host Computer System (HCS), usually smoothed in order to remove gaps and jumps in data, since radar is 

far from perfect
10,11,12

. Since the data is smoothed, this means that it is possible for two different systems to get two 

different resulting flight paths for a single particular aircraft. The new challenge requires the algorithm to correctly 

match the two CPs’ conflict prediction results with different reference data.  In some cases, one system may not 

even record any data for a particular aircraft whereas the other does. Comparing these two CPs to each other, based 

upon two scenarios that differ in many ways may at first seem a difficult task but, in fact, proved to be very simple 

with the matrix algorithm presented in this paper. 

D. Same Ground Truth 

The major difference between a run of the algorithm on two CPs with the same ground truth and a run on two 

CPs without the same ground truth is the possibilities of the matching. When the two CPs have different ground 

truths it is possible that an actual conflict exists in one and not in the other. However, when the two have the same 

ground truth, then every actual conflict in one must match with an actual conflict in the other.  This is due to the fact 

Table 2. The matching possibilities of the comparer. The shaded matches can 

only occur in a “Different Ground Truth” run. 

 

 
Figure 8. The overlap time scoring method 
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that actual conflicts are based on the physical track of aircraft. If the ground truth is the same, then these physical 

tracks are the same, and therefore, the conflicts must be the same. In order to ensure this result, we split the lists of 

conflict predictions into two lists for each CP. This is illustrated in Fig. 9. List 1 provides for only actual conflicts 

(MAs and VAs) and list 2 for only false conflicts (FAs and Discards). This results in two matrices for each aircraft 

pair.  

 

 
Figure 9.  When the CPs have the same ground truth, each list of alerts is split into two lists: (1) Actual 

conflict alerts (MA, VA) and (2) False conflict alerts (FAs, Discards) 

E. Different Ground Truth 

Comparing two CPs with different ground truths proves to be a simple task to accomplish for  the matrix search 

algorithm. However, our first attempt at this had several issues. The main issue involved the differing data available 

for each type of alert. Missed Alerts, for instance, may not have notification time, because the Air Traffic Control 

was never notified of this alert, hence the reason it is a MA. False Alerts, on the other hand, may have no actual 

conflict start time, because they are not associated with any actual conflict. This was not an issue in the same ground 

truth run since false alerts could not match with actual alerts. However, in a different ground truth run, it is possible 

for an actual alert (VA, MA) to match with a false alert. 

In order to accomplish this, we needed to decide on a common start and end time to match for both CPs under all 

conditions. There are 3 different times that may or may not be available: notification time (the time at which the air 

traffic controller was notified of the alert), predicted conflict time (the time at which the CP predicts the aircraft will 

be in conflict), and actual conflict time (the time at which the aircraft actually is in conflict). Table 3 lists the times 

each type of alert has available. 

Since there are so many different combinations of 

what times a conflict pair may have and may not have, 

each pair should choose its best available times. The 

times are rated from best to worst based on which 

types of alerts the pair contains. For example, when 

the pair contains one actual alert and one FA, 

Predicted Conflict is the highest rating. After that, 

notification time is the highest, and finally, the FA’s 

predicted conflict times compared to the actual alert’s 

actual conflict times. If both are FAs, the best times to 

use are notification times. If both are actual conflicts, the best to use would be actual conflict times.  By using these 

times for the scoring, we are now guaranteed to have the best values to compare. However, since we are using 

different times based on the different pair types, another problem arises. 

Table 3. The times contained by each alert type 
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Generally, actual conflicts last for a relatively short duration, ranging on average from twenty seconds to several 

minutes in duration. A notification, however, can last for a very long time, often being over ten minutes in duration. 

By using the notification time when comparing FAs to VAs, we are likely to get a very large overlap time, whereas 

the VA to VA comparison may give us a very small overlap (see Fig. 10), since it is using actual conflict times. 

In the case of Fig. 10, the FA in A will be 

matched with the VA in B. As a human, we can 

see that the VA in A and the VA in B are in fact 

the same conflict and should be matched with 

each other. However, the algorithm is based only 

on the values defined, and cannot logistically 

make this determination. So, in order to correct 

this, we need to add a weighting factor. It was 

decided that, if any actual alert is matched within the user-defined threshold to another actual alert, that match 

should always be chosen over a match to a false alert, no matter what the numbers are. To accomplish this, without 

any modification to the high level algorithm, we created a new strategy that weights the values of an actual alert to 

actual alert match that is within the user-defined threshold by an entire day. That means, if the user-defined 

threshold is -300 seconds, then any pair of an actual alert in CP A and an actual alert in CP B that matches with a 

score greater than -300, will have 86400 seconds added to its score. This will result in guaranteeing that the matrix 

search algorithm will choose to match an actual alert pair. However, since every actual alert pair is weighted by the 

same amount, if there are multiple actual alert pairs, the weights will not interfere with the matrix search choosing 

the correct one. 

We now have a way of correctly matching different ground truth scenarios. Since we are only using time to 

match, the fact that the aircraft may be spatially shifted will not affect matching.  However, this raises concern about 

matching conflict pairs that should not be matched. It is possible that an aircraft in one scenario is so far spatially 

shifted that it really should not be included in a comparison to the other scenario. These flights should be removed 

from both scenarios and the analyst should be notified of their removal.  

In order to do this properly, we need to perform some analysis prior to running the algorithm. The first step is to 

compare the track of each aircraft in Scenario A to its respective track in Scenario B. In a typical scenario there are 

over two thousand flights, so this comparison needs to be done statistically, since manual comparison of each flight 

track would be very time consuming. We use two statistics for comparison: horizontal cross track deviation and 

vertical track deviation. 

Horizontal cross track deviation is the difference in nautical miles, laterally between a track point in Scenario A 

and the closest track point in Scenario B. If this number is 0, this would mean that the aircraft is at this point in 

space sometime in Scenario A as well as sometime in Scenario B. Vertical track deviation follows the same idea on 

the vertical plane in feet. Each of these metrics is measured at every track point, and then the maximum of each 

metric is used for the statistics. Any aircraft with a maximum horizontal cross track greater than 1.25 nm or a 

vertical deviation greater than 800 ft is considered an outlier and is removed from the dataset. These thresholds are 

chosen because they are, on average, at the outer 2.5 percentile of the dataset.  

By using this method at the beginning, we remove any flights that are too different spatially in the compared 

scenarios to even be considered in a regression analysis. These removed flights can be analyzed further to find why 

they were so different, but that analysis is beyond the scope of this paper. The remaining flights, no less than 95% of 

the original scenario, are compared using the previously explained algorithm with no further changes. By removing 

the spatial as described, the matrix algorithm produces far lower numbers of NOMATCH pairs and NC pairs. On 

average, there was a 73% decrease in NOMATCH pairs and an 18% decrease in NC pairs. 

V. Validation 

As with any algorithm, our matching algorithm must be validated. In this case, however, not only must it be 

proven to be correct for the general algorithm, but it also must be analyzed and proven to work for the specific job of 

comparing conflict probes. The general algorithm is a rather simple algorithm, and is equally simple to prove. 

A. Algorithm Proof 

The purpose of the general algorithm is to find the best available match for each entry. A match is available if 

neither its row nor its column has been removed yet. Recall that when a match is made, both its row and its column 

are removed, and therefore neither can be matched to another entry. Because of this fact, we can state Eq. (1). 

 
Figure 10. Notification time overlap is greater than 

actual time overlap 
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So, we can remove a and b, knowing that the element at (a, b) is the best available value in both the column and 

the row. Since the algorithm always moves to the best value in whichever row or column it is searching, it is 

guaranteed to find the best available value. However, there is no rule for ties. If there are multiple best values in a 

single row or column, the answer is arbitrary. To avoid entering an infinite loop, the algorithm always takes the first 

value it sees. So, if the matrix is reorganized, it will return a different result. 

Though this algorithm is sufficient for the small matrices created by comparing conflict probes, it can become 

very inefficient with a larger matrix. The best case scenario for this algorithm is shown in Eq. (2) for an n x m 

matrix. 
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This would require each match to be found on the first iteration of the algorithm, and therefore each row and 

each column is searched only once. The worst case scenario, however, is shown in Eq. (3). 
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This would mean that the entire matrix is searched every time before a match is found. This is a very rare case, 

but it shows how inefficient the algorithm can be. The matrices created by the CP comparison are rarely larger than 

4x4 matrices, so this inefficiency is not a concern. However, it is by no means a perfect algorithm and certainly has 

plenty of room for improvement. 

B. Proving the Overlap Time Strategy 

As mentioned earlier, the most accurate and commonly used strategy available to date is the overlap time 

strategy. This strategy compares the start and end times of each conflict prediction in each CP to find the best match 

based on the maximum 

overlap time of the 

predictions. A concern was 

raised, however, that often 

the conflict probes we are 

comparing are slightly time 

shifted. 

It is not uncommon to see a ten second difference across all conflicts and conflict predictions in a run of the 

algorithm with differing ground truths. So, the concern was how likely it would be that a conflict prediction would 

match incorrectly due to this time shift. First of all, in order for the conflict prediction to match incorrectly, it would 

have to have another conflict prediction to match incorrectly with. These conflict predictions would have to be time 

shifted by enough in CP B that the algorithm would find the maximum overlap time to be with the incorrect conflict 

prediction. It would have to look something like Fig. 11. 

It is true that this can occur. However, it is very unlikely, as it would require a rather significant time shift that is 

not often seen. To prove this, consider Fig. 12, and the following equations, where Cd1 and Cd2 are the durations of 

 
Figure 11. The timeshift in CP B would cause these conflict predictions to 

match incorrectly using the overlap time strategy. 
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conflicts 1 and 2 respectively. 

Oln is the amount of time 

overlap as shown in Fig. 12, 

Mt is the amount of time 

between the conflicts, and Ts 

is the amount of time Run B 

has been time shifted. 

It is possible that, using 

time-based matching, the first 

conflict could be incorrectly matched with the second conflict. However, using the overlap time strategy, Eq. (4) and 

Eq. (5) must both hold true in order for an incorrect match to occur. 

 12 OlOl ≥  (4) 

 32 OlOl ≥  (5) 

This means that the overlap time of Cd2 in A and Cd1 in B must be the best score for each of these conflict 

predictions. Equations (6), (7), and (8) solve for the three overlap times. 
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We can substitute these 3 equations into the original inequalities (Eqs. (4), (5)), and solve for Ts as shown in Eq. 

(9) and Eq. (10). 
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Finally, combining these two inequalities, we get Eq. (11). So, in order for these conflict predictions to match 

incorrectly, the amount of time the conflict predictions are shifted by must be greater than half of the sum of the 

maximum conflict prediction duration and the time between the conflict predictions. For actual conflicts, the 

minimum conflict duration possible is 20 seconds, and the minimum time between conflicts is 310 seconds. This 

means a time shift of at least 165 seconds would be required in order to match actual conflicts incorrectly. A time 

shift of that large is very unlikely, and is large enough that the aircraft would most likely be removed from the 

dataset as outliers. 

 
Figure 12. The relationship of conflict duration and overlap times in 

compared conflict probes. 
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False alerts, however, can have a much smaller time between them. However, they generally have longer 

durations. In the three datasets analyzed for this study, and the nearly two thousand false alerts analyzed, only one 

case was found that would have matched incorrectly with a time shift of less than one hundred seconds. So, although 

it is possible for conflict predictions to be matched incorrectly due to time shift, it is very unlikely and requires a 

relatively large time shift. 

VI. Case Studies 

In this section, we present several case studies emphasizing how this program is being utilized today.  Both of 

the following case studies are real examples, using real aircraft data and actual operational conflict probes. The first 

example compares the current operational CP, User Request Evaluation Tool (URET) to the newer replacement 

version developed by Lockheed Martin, referred to as En Route Automation Modernization (ERAM) system. Those 

two scenarios have a different ground truth, and the program is used to find those differences in track. The second 

example compares the current operational CP (URET) to a laboratory research CP developed in Java that intends to 

simulate URET as closely as possible. These two scenarios use the same ground truth, and so, we use our program to 

find where the conflict predictions of the laboratory CP differ from the operational CP. 

A. Different Ground Truth: URET and ERAM 

This particular case study will compare a URET scenario to the same 

scenario in ERAM. Since the radar data is processed differently in each 

system, the ground truth will differ between the two systems, even though 

the input scenario is the same. The affect of these ground truth differences 

will result in NOMATCH pairs in the final comparison result. 

There are 2242 common flights in the scenarios. The URET scenario has 

2275 flights, whereas the ERAM scenario has 2243. Any flights not in both 

scenarios are removed from the comparison
§
. Next we preprocess the 

scenarios to remove the flights that have a track that differs between the two 

systems greater than 800 ft vertically or 1.25 nm horizontally. This results in 

removing 3.97% of the flights due to this preprocessing and gives a final 

flight count of 2153. 

Finally we run the comparison program on these two scenarios, using 

the overlap time strategy and a threshold of -300 seconds. A summary of the 

results can be seen in Table 4. Immediately we can notice several indications 

of a difference in ground truth.  There are 3 different NOMATCH pairs and 

several actual alert to false alert pairs. Overall, the two conflict probes 

performed very similarly, though we can see several more false alerts in 

Scenario A (URET). 

These results can be used to analyze discrepancies between the systems. 

As an example, we will analyze the first entry in the table: the 

NOMATCH_VA pair. This pair was a valid alert in the ERAM scenario, but 

was not even a conflict in the URET scenario. This means that the radar data 

was processed differently in some way that caused a conflict to appear in 

ERAM but not appear in URET. This is a very important issue and can tell a 

developer a lot about the performance of ERAM’s radar processing 

algorithms, yet it is not a conflict probing issue directly. 

At first glance, Figure 13a shows that the tracks of both aircraft in each system appear to be very similar. There 

is a small difference near where the conflict occurred, on the horizontal plane, for Aircraft 1, but it does not appear 

to be a large enough difference to make the aircraft avoid the conflict. However, upon further analyses we discover 

several issues that, together, caused the difference in ground truths and, ultimately, the difference in the conflict 

probes. First, there is a large gap in the URET data for Aircraft 2 right at the time the conflict occurred in the ERAM 

                                                           
§
 Differences in the ground truth resulting in missing flights between the two CP runs is not a conflict prediction 

matching problem but a ground truth matching problem.  The details are beyond the scope of this paper, but a 

separate analysis should be initiated to determine the cause of the mismatch. 

Table 4. The results of the 

matching algorithm on URET 

and ERAM scenarios 
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data. A gap occurs when there is no recorded track data for an aircraft over a period of time. This can be due to 

either a loss in radar data or by the radar tracking algorithm. This case is clearly caused by processing the radar data, 

since ERAM does not contain this gap. 

Now, looking at the vertical profile over time, we can see why this gap occurred in URET and why the conflict 

occurred in ERAM. As seen in Fig. 13b, there is a large spike in altitude at time 68900 in the ERAM scenario. This 

is the time at which the gap begins in URET. Likewise, the time at which the altitude spike ends in ERAM is the 

same time the gap ends in URET. The result of the analysis of this pair is that the radar data was inaccurate.  Each 

system handled the inaccuracy in a different way. URET’s algorithm chose to remove the flight for the duration, 

whereas ERAM’s algorithm chose to make due with whatever radar track data was available and do the best it 

could. 

 

              
a)                                                                                            b) 

Figure 13. URET tracks (Red/Orange) compared to ERAM tracks (Blue/Green) for the aircraft pair that 

caused the NOMATCH_VA pair on the (a) X,Y plane and (b) altitude over time. 

B. Same Ground Truth: Operational (URET) and Laboratory 

In this example, we compare URET, the operational CP currently being used in the NAS, to a laboratory CP. 

This laboratory CP is written in Java, developed by a third party contractor, and is intended to simulate the 

performance of URET. The tool was developed using many of the base algorithms of URET. However, many of 

these algorithms have been altered over the years as the maintainers of the operational URET system discovered 

new ways of improving it. As will be seen, these differences in the current 

URET algorithms have made a considerable difference in performance. As a 

result, the laboratory system, still using unaltered algorithms, is no longer at 

par with the current operational system.  

Our program proved to be a powerful tool in analyzing this laboratory CP 

and finding where it differs from the operational system. It was found that the 

main difference between the laboratory version and the operational system was 

in the amount of false alerts produced. Although both produced a considerable 

number of alerts that differed from the other system, it was found that the 

laboratory system would produce approximately 35% more false alerts than the 

operational system. It was also found that, although the number of missed 

alerts in each system was very close, only about 50% of the missed alerts in 

each system were matched with each other, and the other 50% were matched to 

valid alerts in the opposite system. 

Upon further analysis it was found that each of these mismatched missed 

alerts is an intrail conflict. An intrail conflict occurs when both aircraft are 

flying at the same altitude, in almost the same direction, with one aircraft 

following behind the other. The conflict occurs when the aircraft in the rear has 

Table 4. The results of the 

matching algorithm on URET 

and ERAM scenarios 
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a speed too fast so that it gradually moves closer to the leading aircraft, eventually encroaching on the leading 

aircraft and breaking the separation limit of five nautical miles. This type of conflict is traditionally very hard to 

predict and is a common type of conflict. It is not surprising that the algorithm for predicting this type of conflict has 

changed considerably since the operational system was originally introduced. 

If the analyst was to only compare the numbers of each type of alert in each system, this issue with the intrail 

conflicts never would have been found. There is only one extra MA in the laboratory system that is not in the 

operational system. Without comparing the two systems using our program, it likely would have been assumed that 

the missed alerts in the operational system were the same as those in the laboratory system. 

VII. Conclusion 

The program presented in this paper has proven to be a powerful tool in the testing and development of conflict 

probes. It allows the analyst to quickly generate an accurate report of the differences between two conflict probes. It 

has been used at the FAA for discovering discrepancies in several in-house conflict probes, as well as verifying the 

accuracy of ERAM and the laboratory CP. Not only has it helped find differences in the CP portion of Decision 

Support Tools, but it has also helped find differences in how radar track data is processed between systems. 

As validation, we presented a proof that the algorithm accomplishes what it is intended for, and for further 

validation we presented a proof of accuracy of the most commonly used scoring formula. Although the algorithm is 

currently somewhat inefficient, it is the only known algorithm for accomplishing the intended purpose. Future work 

in this area includes improving the efficiency of this algorithm, as well as researching other matching strategies.  

Currently, all matching strategies developed have been time-based formulas. The overlap time strategy is very 

accurate, but a spatial matching strategy may be more appropriate for some scenarios. 

Appendix 

This section describes the matrix search algorithm in detail, in its generic use. In theory, the algorithm can be 

used to compare any two datasets with similar attributes that have quantitative properties of each entry that can be 

used in a scoring formula. However, the scope of this paper is the use of the algorithm in comparing conflict 

predictions, and no other use has been tested. 

Consider the matrix in Fig. 14. 

 

best(X, Y, Z, …) = Returns the best number as defined by the strategy 

threshold = A number, defined by the user, that all matches must be at least as good as 

x[a, b]n = Pivot Element 

a = Pivot Row 

b = Pivot Column 

x[a, b]0 = Not a Number 

 

 

For each iteration n from 1 to min(NA, NB): 

 If n is odd → x[a, b]n = best(a_B1, a_B2, a_B3, a_B4,…, a_BNB) 

 Else If n is even → x[a, b]n = best(A1_b, A2_b, A3_b, A4_b, …, ANA_b) 

 

 If x[a, b]n = x[a, b]n-1 → pair(x[a, b]); remove a, b 

End iteration 

  
Figure 14. A generic NB by NA comparison matrix. 
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pair (x[a, b]): 

 if best(x[a, b], threshold) = x[a, b] → a & b are matched 

 else → a is matched to none; b is matched to none 

end pair 
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