

American Institute of Aeronautics and Astronautics

1

An Algorithmic Method for Regression Analysis of Conflict

Probe Accuracy

Andrew Crowell
*
 and Confesor Santiago III.

†

Federal Aviation Administration, William J. Hughes Technical Center, Atlantic City Int’l Airport, NJ, 08405

A conflict probe is one of the most important elements in a safe and efficient air traffic

control system. It supports the human air traffic controllers by alerting to potential

situations where aircraft may violate separation standards sometime in the future. As the

conflict probe is upgraded, whether in the development stage or after deployment, the

developers must be sure that its performance does not degrade. In order to test this, a

conflict probe is analyzed by comparing it either to another conflict probe or to a previous

version of itself. This paper presents a software program developed by FAA analysts for

algorithmically comparing two conflict probes, using many of the methods an analyst would

use in a manual comparison. The algorithm is presented and verified mathematically.

Finally, a comprehensive example is presented that illustrates how the software program can

be utilized in the development and maintenance of a conflict probe.

I. Introduction

HE United States National Airspace System (NAS) is the most complex aviation system in the world, servicing

over 50,000 flights daily. This number is forecasted to increase to three times this number by the year 2025, and

to counter this increase in air traffic density, the Federal Aviation Administration (FAA) strives for a more efficient

approach to air traffic control while maintaining the high level of safety required of the NAS. To help maintain this

safety while also increasing efficiency, air traffic controllers use a number of automation tools called Decision

Support Tools (DST). The FAA is constantly researching ways of improving the current software and hardware

tools as well as developing new ones to ultimately create a NAS that is more efficient and safer than ever before.

One of the main DSTs used in the NAS today is called a Conflict Probe (CP). A CP generates four dimensional

(latitude, longitude, altitude, time) predictions of where each aircraft will fly, called trajectories. It uses the trajectory

predictions to identify potential conflicts (i.e. loss of minimum separation) with other aircraft’s trajectories some

time in the future. As a CP is developed, and whenever improvements are made to it, the developers and analysts

must be sure that the CP does not degrade in its ability to predict potential conflicts. This paper presents a novel

software tool developed by the FAA to compare the CP’s performance to another CP or a different version of itself.

This software tool is currently being used to evaluate the performance of different releases of the conflict probe

within the En Route Automation Modernization (ERAM) Program. ERAM is a new air traffic control system

developed by Lockheed Martin and currently being deployed by the FAA to its en route air traffic control facilities.

II. Background of Conflict Probe Performance

There are two main focuses in analyzing the accuracy and effectiveness of a conflict probe. The first is to

analyze the temporal and spatial accuracy of the trajectories it generates
1
. The second area is analysis of the conflict

alerts it generates
2
. This paper presents a software program used to assist in the latter.

The first step in analyzing a CP is to generate an air traffic scenario. In reality there are very little to no conflicts

in an en route airspace, due to the fact that air traffic controllers will recognize a potential conflict and redirect

aircraft to remove them. In order to effectively analyze a CP, the authors create an air traffic scenario that has the

same properties seen in a real airspace, yet has induced conflict events. Typically, a good test scenario will be

several hours in length with between 1500 to 3000 flights and over 100 conflicts that occur throughout. This

scenario is generated by time shifting aircraft, which allows the analysts to create a test scenario with many conflicts

while still maintaining the reality of the scenario
3
.

*
 Computer Scientist, Simulation and Analysis Group, AJP-661, andrew.crowell@faa.gov, AIAA Student Member.

†
 Computer Scientist, Simulation and Analysis Group, AJP-661, confesor.santiago@faa.gov, AIAA Member.

T

AIAA Guidance, Navigation, and Control Conference
10 - 13 August 2009, Chicago, Illinois

AIAA 2009-6077

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

American Institute of Aeronautics and Astronautics

2

Once the scenario is generated, it is analyzed for actual conflicts and their properties
4
. Actual conflicts are

found by analyzing the radar track data of the aircraft and locating points at which aircraft violate the minimum

separation standards. These conflicts are recorded into a database that will later be used as a reference for analyzing

the accuracy of the CP.

The next step is to run the CP on the

test scenario. The CP generates alerts

when it sees a potential conflict. These

alerts would then be used by an air

traffic controller to redirect one or both

aircraft. If the aircraft are redirected, the

probe will detect that the conflict will no

longer occur, and will delete the alert.

The alert also may be updated in time or

location of the predicted conflict. This

can happen as the aircraft trajectory

prediction changes.

Finally, the resulting alerts generated

by the conflict probe are compared to the

reference conflicts to find how

accurately the CP predicted the alerts.

There are generally four possible

situations as shown in Table 1. For more

information on the accuracy testing of a

conflict probe, see Ref. 2.

III. Previous Work

In 1996, the FAA established the Conflict Probe Assessment Team (CPAT) at the William J. Hughes Technical

Center to evaluate the accuracy of the conflict probes in DSTs. Since its creation, CPAT has measured the conflict

prediction accuracy of URET
5
, and measured the trajectory modeling accuracy of both URET and CTAS

5,6
. In 2004,

the ERAM Test Group formed the Automatic Metrics Test Working Group (AMTWG). The group, led by CPAT,

established a set of metrics to measure the performance of key functions of ERAM during developmental and

operational testing
7
. In 2007, ERAM was accepted by the FAA having passed the performance requirements during

the Factory Acceptance Test Run for Record (FAT RFR).

A follow-up study was performed by CPAT after the RFR. The study involved analyzing the results of FAT RFR

Run 4, which dealt with the trajectory prediction accuracy implemented in ERAM’s Flight Data Processing (FDP),

and Run 5, which involved the strategic conflict prediction accuracy implemented in ERAM’s Conflict Probe Tool

(CPT)
8
. The tools that computed trajectory accuracy metrics for Run 4 were developed by CPAT, and the tools to

evaluate the Run 5 data were developed by LM. However, CPAT has developed its own set of tools to measure the

accuracy of strategic conflict predictions which have been used in other tasks. A statistical approach was used to

decide whether there was significant degradation in ERAM when compared to the legacy URET system. The

purpose of the study was to further inspect the performance of ERAM, investigate areas where ERAM did indeed

degrade from the legacy system, and provide an overview of the results to the FAA.

IV. Comparer Program

In the past, comparisons of the accuracy between two CPs were tedious tasks, since they were either performed

by manually analyzing hundreds of conflict pairs or by making estimates from statistical methods. In the next few

sections we present an algorithm, and a software program that implements it, that can quickly compare the accuracy

results of two CPs. This comparison is performed using many of the same methods an analyst would use manually,

but as will be shown in a later section, can be employed to analyze the accuracy of hundreds of conflict predictions

associated to an entire scenario of air traffic data. This allows the analyst to focus his or her analysis resources on

the causes of the discrepancies identified.

In order to create a software program that could quickly perform this comparison, we first needed to develop an

algorithm that could use quantitative properties of the conflict predictions from each CP to find the best match for

each.

Table 1. CP Alert and Conflict Event Combinations

American Institute of Aeronautics and Astronautics

3

In general, we have two arrays (A and B) of data (i.e. conflict predictions) that each have common attributes (i.e.

same flight pair, or same conflict prediction results). Each entry in array A may or may not have similar quantifiable

properties (i.e. time, position) to an entry in array B. Furthermore, an entry in A may have similar properties to

multiple entries in B, and vice versa. Find the best match, if any, for each entry in A to a single entry in B,

coincidentally finding the best match, if any, for each entry in B to a single entry in A. Solving this problem will

find, for every conflict prediction in CP A, the corresponding conflict prediction in CP B, allowing analysts to easily

discover differences between the two conflict probes.

A. The Algorithm

The first step to finding the best match for

each conflict prediction is to choose a property

or properties that can be compared between the

two conflict probe results to create a score. A

score is a value generated by some function

performed on an entry from A and an entry

from B. This score is then used as an element in

the matrix. Often, the time or the location of

where the conflict occurs, or is predicted to

occur, is used, but any quantifiable value can be

used. Now, we compare every entry in A with

every entry in B, to create a matrix of values.

Take the arrays in Fig. 1, for example.

Now, for the compared property let us use the absolute value of the difference. So, for instance, because 7 minus

5 is 2, the first cell of the matrix would be 2. We use A as the rows and B as the columns in the matrix, and we get a

matrix as shown in Fig. 2.

Next is to decide what defines a better value. In this case, we will define the best value as the maximum value

available. Starting with the first entry in A, we search for its best match. To do this, search the first row for the

maximum value. We call the current row that we are searching the pivot row. Doing this, we can see that there is a

tie between B3 and B5. Since either of them will work, in order to avoid loops, we use the first we find (B3 in this

case). We call this entry the pivot element, identified as the red cell in Fig. 3.

Next, search the column of the pivot

element (the pivot column) for the best

element in that column. We do this to ensure

that B3 does not match better with some other

A value than it does with A1. As we can see, it

does indeed match better with A3 with a score

of 6, once again, identified as the red cell in

Fig. 4.

The element containing the value 6 now

becomes the pivot element, and the pivot row

is now moved to row A3. Now, once again

search the pivot row for the best value. In this

case, there is no better value than the pivot

element, so this is the best possible match for

A3 as well as the best possible match for B3

shown in Fig. 5.

Since each entry can only be matched

once, both A3 and B3 are removed from the

matrix, resulting in the matrix shown in Fig.

6.

We repeat the process now, again

searching the first row for the best match. A

best match is found when there is no better

element than the pivot element in the pivot

row or the pivot column. How “better” is

Figure 2. The matrix of compared values

Figure 3. The pivot row and pivot element of the first

iteration

Figure 4. The pivot column and new pivot element of the

first iteration

Figure 1. Arrays of values to be matched.

American Institute of Aeronautics and Astronautics

4

defined is chosen by the matching strategy used, and can vary greatly among different strategies. This process will

continue until one or both arrays have no entries

left. As mentioned earlier, every element in A

does not necessarily have a match in B and vice

versa. In this example, B has one more entry

than A, and since each entry can only match

once, this will leave the final entry in B with no

match.

Another case in which there can be a “no

match” is if a threshold is set. Take the matrix

in Fig. 7 for example, and let us set a threshold

of 5. This means no match can have a score less than a value of 5.

As we can see, A1 will match with B1. However, the score of this match is 3 which is below the threshold of 5.

Due to the nature of this algorithm, we know for certain that this is the absolute best match available for A1 as well

as the absolute best match for B1. Given this fact, we can remove row A1 and column B1 from the matrix, confident

that neither A1 nor B1 has any match that is above or equal to the threshold value. The full algorithm is detailed in

the Appendix.

This problem is very similar to the Stable Marriage Problem (SMP)
‡
. However, the SMP has several key

requirements that this problem is not limited to. First, in the SMP, there is always the same number of men as there

are women. In this problem, there is no

guarantee that we have a square matrix.

Second, there are no ties in the SMP. Since

every male ranks every female from 1 to n, and

vice versa, there can be no ties. In the problem

of matching conflict predictions, however, there

is a possibility of ties. Also, the SMP

algorithms are biased toward a single gender.

That is, whereas males may receive their most

preferred partner, the females may receive their

least preferred partner that would still leave

them stable. In matching conflict predictions we want the

matches to be as balanced as possible with no bias toward

one CP or the other. SMP algorithms ensure that everyone

is matched to a partner. We cannot ensure this, and only

wish to match a conflict prediction if it is a feasible match.

A feasible match would be one with a score better than a

certain user specified threshold.

Because of these limitations that our problem does not hold to, the SMP algorithms cannot solve this problem. It

is indeed very similar to a SMP problem, however, and, in fact, can be considered an extension of the SMP problem.

Although SMP algorithms cannot solve the CP matching problem, our CP matching algorithm can solve the Stable

Marriage Problem. However, there are far more efficient algorithms for solving the SMP.

B. Implementing the Algorithm

Using this algorithm a software program can match each conflict prediction result (i.e. MA, VA, or FA) in CP A

to its corresponding conflict prediction in CP B and vice versa. The program was developed in Java and retrieves

data for each CP from an Oracle database. A matrix is created for each unique flight pair in the set of conflict

predictions that is the union of CP A and CP B. Because the conflict pairs are separated in this way, the algorithm is

applied, separately, to many different matrices. Multithreading is used for this and each thread is given several

matrices to process.

An object oriented design pattern
9
 called the Strategy Pattern is followed. This pattern’s purpose is to separate

the algorithm from its context. The particular algorithm that is separated in this case is the algorithm used for

determining the score of a matched pair. The context is the search algorithm in which the scores are compared to

find the best score in the matrix. This best score can be a maximum score, a minimum score, a proximity score, or

any other quantifiable comparison, dependent on the strategy used (the matching method).

‡
 Weisstein, Eric "Stable Marriage Problem," Wolfram MathWorld. http://mathworld.wolfram.com/StableMarriageProblem.html

Figure 5. The pivot row and the matched element of the

first iteration

Figure 6. The new matrix after the matched entries are

removed

Figure 7. This matrix’ first iteration results in a

match below the threshold value of 5

American Institute of Aeronautics and Astronautics

5

The Factory Pattern was also used, which is an object oriented design pattern with the purpose of entrusting the

creation of all objects to a single “factory” object, allowing new objects to be added with very little change to a

program. Because of the low coupling and high cohesion of this object oriented structure, it allows many different

scoring methods to be used, and allows new scoring methods to be implemented easily with very little effort by a

computer scientist, and then added into the system with only a simple library update, completely transparent to the

user.

In summary, the utilization of object oriented design patterns in the implementation of the matching algorithm

supports exploration of various matching criteria and scoring methods. In some cases, different methods may be

suited to different types of CPs and different objectives of the analyst. Some of this will be presented later in the

paper when the software tool is applied to two operational CPs.

C. Matches

As discussed earlier, there

are generally four possibilities

for the type of a conflict

prediction result. The

comparison program, however

matches two conflict

predictions to each other,

making fifteen general

possibilities, as shown in Table

2. There are only fifteen instead

of sixteen because a No Call (NC) means there is no alert or actual conflict. A NC in both conflict probes would be

of no interest to analysts and therefore is skipped by the software tool.

There is one last category that is not shown in either table. This category is designated as DISCARD.

DISCARDs are alerts that are disregarded from the analysis for some reason, usually as a result of not having

enough data of some type for that particular alert. Discard events are mainly false alerts or actual alerts that are

removed for some reason due to artifacts of the testing environment. The alert and the reason it was removed is

recorded in the database and will show up in some later data tables, but, since they are designated as discarded, we

will ignore them.

Several scoring methods have been implemented to date.

The most accurate and most commonly used scoring method,

currently, is the maximum overlap time scoring method,

illustrated graphically in Fig. 8. This method compares the start

and end times of each conflict in A to the start and end times of

each conflict in B to find the amount of time that the two

conflicts overlap each other. A negative score indicates that the

conflicts have no overlap in time and are separated by that

many seconds. A positive score indicates that the two conflicts

overlap by that amount of time in seconds. A score of zero means that one conflict ends at the instant the other

begins.

There are two different styles of matching available based upon the relationship of the two conflict probes. This

style is decided based on whether the two CPs use the same ground truth. The ground truth is the radar data received

from the Host Computer System (HCS), usually smoothed in order to remove gaps and jumps in data, since radar is

far from perfect
10,11,12

. Since the data is smoothed, this means that it is possible for two different systems to get two

different resulting flight paths for a single particular aircraft. The new challenge requires the algorithm to correctly

match the two CPs’ conflict prediction results with different reference data. In some cases, one system may not

even record any data for a particular aircraft whereas the other does. Comparing these two CPs to each other, based

upon two scenarios that differ in many ways may at first seem a difficult task but, in fact, proved to be very simple

with the matrix algorithm presented in this paper.

D. Same Ground Truth

The major difference between a run of the algorithm on two CPs with the same ground truth and a run on two

CPs without the same ground truth is the possibilities of the matching. When the two CPs have different ground

truths it is possible that an actual conflict exists in one and not in the other. However, when the two have the same

ground truth, then every actual conflict in one must match with an actual conflict in the other. This is due to the fact

Table 2. The matching possibilities of the comparer. The shaded matches can

only occur in a “Different Ground Truth” run.

Figure 8. The overlap time scoring method

American Institute of Aeronautics and Astronautics

6

that actual conflicts are based on the physical track of aircraft. If the ground truth is the same, then these physical

tracks are the same, and therefore, the conflicts must be the same. In order to ensure this result, we split the lists of

conflict predictions into two lists for each CP. This is illustrated in Fig. 9. List 1 provides for only actual conflicts

(MAs and VAs) and list 2 for only false conflicts (FAs and Discards). This results in two matrices for each aircraft

pair.

Figure 9. When the CPs have the same ground truth, each list of alerts is split into two lists: (1) Actual

conflict alerts (MA, VA) and (2) False conflict alerts (FAs, Discards)

E. Different Ground Truth

Comparing two CPs with different ground truths proves to be a simple task to accomplish for the matrix search

algorithm. However, our first attempt at this had several issues. The main issue involved the differing data available

for each type of alert. Missed Alerts, for instance, may not have notification time, because the Air Traffic Control

was never notified of this alert, hence the reason it is a MA. False Alerts, on the other hand, may have no actual

conflict start time, because they are not associated with any actual conflict. This was not an issue in the same ground

truth run since false alerts could not match with actual alerts. However, in a different ground truth run, it is possible

for an actual alert (VA, MA) to match with a false alert.

In order to accomplish this, we needed to decide on a common start and end time to match for both CPs under all

conditions. There are 3 different times that may or may not be available: notification time (the time at which the air

traffic controller was notified of the alert), predicted conflict time (the time at which the CP predicts the aircraft will

be in conflict), and actual conflict time (the time at which the aircraft actually is in conflict). Table 3 lists the times

each type of alert has available.

Since there are so many different combinations of

what times a conflict pair may have and may not have,

each pair should choose its best available times. The

times are rated from best to worst based on which

types of alerts the pair contains. For example, when

the pair contains one actual alert and one FA,

Predicted Conflict is the highest rating. After that,

notification time is the highest, and finally, the FA’s

predicted conflict times compared to the actual alert’s

actual conflict times. If both are FAs, the best times to

use are notification times. If both are actual conflicts, the best to use would be actual conflict times. By using these

times for the scoring, we are now guaranteed to have the best values to compare. However, since we are using

different times based on the different pair types, another problem arises.

Table 3. The times contained by each alert type

American Institute of Aeronautics and Astronautics

7

Generally, actual conflicts last for a relatively short duration, ranging on average from twenty seconds to several

minutes in duration. A notification, however, can last for a very long time, often being over ten minutes in duration.

By using the notification time when comparing FAs to VAs, we are likely to get a very large overlap time, whereas

the VA to VA comparison may give us a very small overlap (see Fig. 10), since it is using actual conflict times.

In the case of Fig. 10, the FA in A will be

matched with the VA in B. As a human, we can

see that the VA in A and the VA in B are in fact

the same conflict and should be matched with

each other. However, the algorithm is based only

on the values defined, and cannot logistically

make this determination. So, in order to correct

this, we need to add a weighting factor. It was

decided that, if any actual alert is matched within the user-defined threshold to another actual alert, that match

should always be chosen over a match to a false alert, no matter what the numbers are. To accomplish this, without

any modification to the high level algorithm, we created a new strategy that weights the values of an actual alert to

actual alert match that is within the user-defined threshold by an entire day. That means, if the user-defined

threshold is -300 seconds, then any pair of an actual alert in CP A and an actual alert in CP B that matches with a

score greater than -300, will have 86400 seconds added to its score. This will result in guaranteeing that the matrix

search algorithm will choose to match an actual alert pair. However, since every actual alert pair is weighted by the

same amount, if there are multiple actual alert pairs, the weights will not interfere with the matrix search choosing

the correct one.

We now have a way of correctly matching different ground truth scenarios. Since we are only using time to

match, the fact that the aircraft may be spatially shifted will not affect matching. However, this raises concern about

matching conflict pairs that should not be matched. It is possible that an aircraft in one scenario is so far spatially

shifted that it really should not be included in a comparison to the other scenario. These flights should be removed

from both scenarios and the analyst should be notified of their removal.

In order to do this properly, we need to perform some analysis prior to running the algorithm. The first step is to

compare the track of each aircraft in Scenario A to its respective track in Scenario B. In a typical scenario there are

over two thousand flights, so this comparison needs to be done statistically, since manual comparison of each flight

track would be very time consuming. We use two statistics for comparison: horizontal cross track deviation and

vertical track deviation.

Horizontal cross track deviation is the difference in nautical miles, laterally between a track point in Scenario A

and the closest track point in Scenario B. If this number is 0, this would mean that the aircraft is at this point in

space sometime in Scenario A as well as sometime in Scenario B. Vertical track deviation follows the same idea on

the vertical plane in feet. Each of these metrics is measured at every track point, and then the maximum of each

metric is used for the statistics. Any aircraft with a maximum horizontal cross track greater than 1.25 nm or a

vertical deviation greater than 800 ft is considered an outlier and is removed from the dataset. These thresholds are

chosen because they are, on average, at the outer 2.5 percentile of the dataset.

By using this method at the beginning, we remove any flights that are too different spatially in the compared

scenarios to even be considered in a regression analysis. These removed flights can be analyzed further to find why

they were so different, but that analysis is beyond the scope of this paper. The remaining flights, no less than 95% of

the original scenario, are compared using the previously explained algorithm with no further changes. By removing

the spatial as described, the matrix algorithm produces far lower numbers of NOMATCH pairs and NC pairs. On

average, there was a 73% decrease in NOMATCH pairs and an 18% decrease in NC pairs.

V. Validation

As with any algorithm, our matching algorithm must be validated. In this case, however, not only must it be

proven to be correct for the general algorithm, but it also must be analyzed and proven to work for the specific job of

comparing conflict probes. The general algorithm is a rather simple algorithm, and is equally simple to prove.

A. Algorithm Proof

The purpose of the general algorithm is to find the best available match for each entry. A match is available if

neither its row nor its column has been removed yet. Recall that when a match is made, both its row and its column

are removed, and therefore neither can be matched to another entry. Because of this fact, we can state Eq. (1).

Figure 10. Notification time overlap is greater than

actual time overlap

American Institute of Aeronautics and Astronautics

8

 If 1],[],[
+

= nn baxbax , where n = iteration number

 Then)_,...,_3,_2,_1()_,...,3_,2_,1_(],[bANbAbAbAbestBNaBaBaBabestbax AB ==

 Where]_,...,3_,2_,1_[_ BBNaBaBaBaaRow = (1)

 And]_,..._3,_2,_1[_ bANbAbAbAbColumn A=

 Therefore)_()_(],[bRowbestaRowbestbax ==

So, we can remove a and b, knowing that the element at (a, b) is the best available value in both the column and

the row. Since the algorithm always moves to the best value in whichever row or column it is searching, it is

guaranteed to find the best available value. However, there is no rule for ties. If there are multiple best values in a

single row or column, the answer is arbitrary. To avoid entering an infinite loop, the algorithm always takes the first

value it sees. So, if the matrix is reorganized, it will return a different result.

Though this algorithm is sufficient for the small matrices created by comparing conflict probes, it can become

very inefficient with a larger matrix. The best case scenario for this algorithm is shown in Eq. (2) for an n x m

matrix.

))()((
1

0

∑
−

=

−+−
N

i

iminO , where),min(mnN = (2)

This would require each match to be found on the first iteration of the algorithm, and therefore each row and

each column is searched only once. The worst case scenario, however, is shown in Eq. (3).

 ∑
−

=

−−
1

0

)))(((
N

i

iminO , where),min(mnN = (3)

This would mean that the entire matrix is searched every time before a match is found. This is a very rare case,

but it shows how inefficient the algorithm can be. The matrices created by the CP comparison are rarely larger than

4x4 matrices, so this inefficiency is not a concern. However, it is by no means a perfect algorithm and certainly has

plenty of room for improvement.

B. Proving the Overlap Time Strategy

As mentioned earlier, the most accurate and commonly used strategy available to date is the overlap time

strategy. This strategy compares the start and end times of each conflict prediction in each CP to find the best match

based on the maximum

overlap time of the

predictions. A concern was

raised, however, that often

the conflict probes we are

comparing are slightly time

shifted.

It is not uncommon to see a ten second difference across all conflicts and conflict predictions in a run of the

algorithm with differing ground truths. So, the concern was how likely it would be that a conflict prediction would

match incorrectly due to this time shift. First of all, in order for the conflict prediction to match incorrectly, it would

have to have another conflict prediction to match incorrectly with. These conflict predictions would have to be time

shifted by enough in CP B that the algorithm would find the maximum overlap time to be with the incorrect conflict

prediction. It would have to look something like Fig. 11.

It is true that this can occur. However, it is very unlikely, as it would require a rather significant time shift that is

not often seen. To prove this, consider Fig. 12, and the following equations, where Cd1 and Cd2 are the durations of

Figure 11. The timeshift in CP B would cause these conflict predictions to

match incorrectly using the overlap time strategy.

American Institute of Aeronautics and Astronautics

9

conflicts 1 and 2 respectively.

Oln is the amount of time

overlap as shown in Fig. 12,

Mt is the amount of time

between the conflicts, and Ts

is the amount of time Run B

has been time shifted.

It is possible that, using

time-based matching, the first

conflict could be incorrectly matched with the second conflict. However, using the overlap time strategy, Eq. (4) and

Eq. (5) must both hold true in order for an incorrect match to occur.

 12 OlOl ≥ (4)

 32 OlOl ≥ (5)

This means that the overlap time of Cd2 in A and Cd1 in B must be the best score for each of these conflict

predictions. Equations (6), (7), and (8) solve for the three overlap times.

 TsCdOl −= 11 (6)

MtTsOl

MtCdCdTsOl

−=⇒

+−+=

2

112)()(
 (7)

TsCdOl

MtCdTsCdMtCdOl

−=⇒

++−++=

23

1213)()(
 (8)

We can substitute these 3 equations into the original inequalities (Eqs. (4), (5)), and solve for Ts as shown in Eq.

(9) and Eq. (10).

)(5.0

2

1

1

1

1

MtCdTs

MtCdTs

MtTsCdTs

TsCdMtTs

+⋅≥⇒

+≥⋅⇒

+−≥⇒

−≥−

 (9)

)(5.0

2

2

2

2

2

MtCdTs

MtCdTs

MtTsCdTs

TsCdMtTs

+⋅≥⇒

+≥⋅⇒

+−≥⇒

−≥−

 (10)

Finally, combining these two inequalities, we get Eq. (11). So, in order for these conflict predictions to match

incorrectly, the amount of time the conflict predictions are shifted by must be greater than half of the sum of the

maximum conflict prediction duration and the time between the conflict predictions. For actual conflicts, the

minimum conflict duration possible is 20 seconds, and the minimum time between conflicts is 310 seconds. This

means a time shift of at least 165 seconds would be required in order to match actual conflicts incorrectly. A time

shift of that large is very unlikely, and is large enough that the aircraft would most likely be removed from the

dataset as outliers.

Figure 12. The relationship of conflict duration and overlap times in

compared conflict probes.

American Institute of Aeronautics and Astronautics

10

)(5.0 MtCdTs +⋅≥ , where),max(21 CdCdCd = (11)

False alerts, however, can have a much smaller time between them. However, they generally have longer

durations. In the three datasets analyzed for this study, and the nearly two thousand false alerts analyzed, only one

case was found that would have matched incorrectly with a time shift of less than one hundred seconds. So, although

it is possible for conflict predictions to be matched incorrectly due to time shift, it is very unlikely and requires a

relatively large time shift.

VI. Case Studies

In this section, we present several case studies emphasizing how this program is being utilized today. Both of

the following case studies are real examples, using real aircraft data and actual operational conflict probes. The first

example compares the current operational CP, User Request Evaluation Tool (URET) to the newer replacement

version developed by Lockheed Martin, referred to as En Route Automation Modernization (ERAM) system. Those

two scenarios have a different ground truth, and the program is used to find those differences in track. The second

example compares the current operational CP (URET) to a laboratory research CP developed in Java that intends to

simulate URET as closely as possible. These two scenarios use the same ground truth, and so, we use our program to

find where the conflict predictions of the laboratory CP differ from the operational CP.

A. Different Ground Truth: URET and ERAM

This particular case study will compare a URET scenario to the same

scenario in ERAM. Since the radar data is processed differently in each

system, the ground truth will differ between the two systems, even though

the input scenario is the same. The affect of these ground truth differences

will result in NOMATCH pairs in the final comparison result.

There are 2242 common flights in the scenarios. The URET scenario has

2275 flights, whereas the ERAM scenario has 2243. Any flights not in both

scenarios are removed from the comparison
§
. Next we preprocess the

scenarios to remove the flights that have a track that differs between the two

systems greater than 800 ft vertically or 1.25 nm horizontally. This results in

removing 3.97% of the flights due to this preprocessing and gives a final

flight count of 2153.

Finally we run the comparison program on these two scenarios, using

the overlap time strategy and a threshold of -300 seconds. A summary of the

results can be seen in Table 4. Immediately we can notice several indications

of a difference in ground truth. There are 3 different NOMATCH pairs and

several actual alert to false alert pairs. Overall, the two conflict probes

performed very similarly, though we can see several more false alerts in

Scenario A (URET).

These results can be used to analyze discrepancies between the systems.

As an example, we will analyze the first entry in the table: the

NOMATCH_VA pair. This pair was a valid alert in the ERAM scenario, but

was not even a conflict in the URET scenario. This means that the radar data

was processed differently in some way that caused a conflict to appear in

ERAM but not appear in URET. This is a very important issue and can tell a

developer a lot about the performance of ERAM’s radar processing

algorithms, yet it is not a conflict probing issue directly.

At first glance, Figure 13a shows that the tracks of both aircraft in each system appear to be very similar. There

is a small difference near where the conflict occurred, on the horizontal plane, for Aircraft 1, but it does not appear

to be a large enough difference to make the aircraft avoid the conflict. However, upon further analyses we discover

several issues that, together, caused the difference in ground truths and, ultimately, the difference in the conflict

probes. First, there is a large gap in the URET data for Aircraft 2 right at the time the conflict occurred in the ERAM

§
 Differences in the ground truth resulting in missing flights between the two CP runs is not a conflict prediction

matching problem but a ground truth matching problem. The details are beyond the scope of this paper, but a

separate analysis should be initiated to determine the cause of the mismatch.

Table 4. The results of the

matching algorithm on URET

and ERAM scenarios

American Institute of Aeronautics and Astronautics

11

data. A gap occurs when there is no recorded track data for an aircraft over a period of time. This can be due to

either a loss in radar data or by the radar tracking algorithm. This case is clearly caused by processing the radar data,

since ERAM does not contain this gap.

Now, looking at the vertical profile over time, we can see why this gap occurred in URET and why the conflict

occurred in ERAM. As seen in Fig. 13b, there is a large spike in altitude at time 68900 in the ERAM scenario. This

is the time at which the gap begins in URET. Likewise, the time at which the altitude spike ends in ERAM is the

same time the gap ends in URET. The result of the analysis of this pair is that the radar data was inaccurate. Each

system handled the inaccuracy in a different way. URET’s algorithm chose to remove the flight for the duration,

whereas ERAM’s algorithm chose to make due with whatever radar track data was available and do the best it

could.

a) b)

Figure 13. URET tracks (Red/Orange) compared to ERAM tracks (Blue/Green) for the aircraft pair that

caused the NOMATCH_VA pair on the (a) X,Y plane and (b) altitude over time.

B. Same Ground Truth: Operational (URET) and Laboratory

In this example, we compare URET, the operational CP currently being used in the NAS, to a laboratory CP.

This laboratory CP is written in Java, developed by a third party contractor, and is intended to simulate the

performance of URET. The tool was developed using many of the base algorithms of URET. However, many of

these algorithms have been altered over the years as the maintainers of the operational URET system discovered

new ways of improving it. As will be seen, these differences in the current

URET algorithms have made a considerable difference in performance. As a

result, the laboratory system, still using unaltered algorithms, is no longer at

par with the current operational system.

Our program proved to be a powerful tool in analyzing this laboratory CP

and finding where it differs from the operational system. It was found that the

main difference between the laboratory version and the operational system was

in the amount of false alerts produced. Although both produced a considerable

number of alerts that differed from the other system, it was found that the

laboratory system would produce approximately 35% more false alerts than the

operational system. It was also found that, although the number of missed

alerts in each system was very close, only about 50% of the missed alerts in

each system were matched with each other, and the other 50% were matched to

valid alerts in the opposite system.

Upon further analysis it was found that each of these mismatched missed

alerts is an intrail conflict. An intrail conflict occurs when both aircraft are

flying at the same altitude, in almost the same direction, with one aircraft

following behind the other. The conflict occurs when the aircraft in the rear has

Table 4. The results of the

matching algorithm on URET

and ERAM scenarios

American Institute of Aeronautics and Astronautics

12

a speed too fast so that it gradually moves closer to the leading aircraft, eventually encroaching on the leading

aircraft and breaking the separation limit of five nautical miles. This type of conflict is traditionally very hard to

predict and is a common type of conflict. It is not surprising that the algorithm for predicting this type of conflict has

changed considerably since the operational system was originally introduced.

If the analyst was to only compare the numbers of each type of alert in each system, this issue with the intrail

conflicts never would have been found. There is only one extra MA in the laboratory system that is not in the

operational system. Without comparing the two systems using our program, it likely would have been assumed that

the missed alerts in the operational system were the same as those in the laboratory system.

VII. Conclusion

The program presented in this paper has proven to be a powerful tool in the testing and development of conflict

probes. It allows the analyst to quickly generate an accurate report of the differences between two conflict probes. It

has been used at the FAA for discovering discrepancies in several in-house conflict probes, as well as verifying the

accuracy of ERAM and the laboratory CP. Not only has it helped find differences in the CP portion of Decision

Support Tools, but it has also helped find differences in how radar track data is processed between systems.

As validation, we presented a proof that the algorithm accomplishes what it is intended for, and for further

validation we presented a proof of accuracy of the most commonly used scoring formula. Although the algorithm is

currently somewhat inefficient, it is the only known algorithm for accomplishing the intended purpose. Future work

in this area includes improving the efficiency of this algorithm, as well as researching other matching strategies.

Currently, all matching strategies developed have been time-based formulas. The overlap time strategy is very

accurate, but a spatial matching strategy may be more appropriate for some scenarios.

Appendix

This section describes the matrix search algorithm in detail, in its generic use. In theory, the algorithm can be

used to compare any two datasets with similar attributes that have quantitative properties of each entry that can be

used in a scoring formula. However, the scope of this paper is the use of the algorithm in comparing conflict

predictions, and no other use has been tested.

Consider the matrix in Fig. 14.

best(X, Y, Z, …) = Returns the best number as defined by the strategy

threshold = A number, defined by the user, that all matches must be at least as good as

x[a, b]n = Pivot Element

a = Pivot Row

b = Pivot Column

x[a, b]0 = Not a Number

For each iteration n from 1 to min(NA, NB):

 If n is odd → x[a, b]n = best(a_B1, a_B2, a_B3, a_B4,…, a_BNB)

 Else If n is even → x[a, b]n = best(A1_b, A2_b, A3_b, A4_b, …, ANA_b)

 If x[a, b]n = x[a, b]n-1 → pair(x[a, b]); remove a, b

End iteration

Figure 14. A generic NB by NA comparison matrix.

American Institute of Aeronautics and Astronautics

13

pair (x[a, b]):

 if best(x[a, b], threshold) = x[a, b] → a & b are matched

 else → a is matched to none; b is matched to none

end pair

Acknowledgments

The authors thank Andrew Fabian and Mike Paglione at the FAA for their thorough and detailed review and

subsequent feedback in writing this paper as well as the analysis described. The authors would also like to thank

Charles Lapihuska of the Lockheed Martin Corporation for his valuable feedback during the development of the

algorithm presented, as well as Ben Musialek and Robert Oaks of General Dynamics for their input in the paper.

Finally, the authors would like to acknowledge our FAA sponsors, Pam DellaRocco and Craig Marina, in the FAA’s

En Route and Oceanic Program Operations Office in support of the Separation Management Project.

References
1Paglione, M.M., H.F. Ryan, S. Liu, R.D. Oaks, J.S. Summerill, M.L. Cale, “Measurement of Aircraft Trajectory Prediction

Accuracy of Air Traffic Decision Support Tools,” Air Traffic Control Association (ATCA) 46th Annual Conference Proceedings,

November 2001.
2Paglione, Mike M., Robert D. Oaks, Hollis Ryan, “Methodology for Evaluating and Regression Testing a Conflict Probe,”

23rd Digital Avionics Systems Conference (DASC), Salt Lake City, Utah, October 24-28, 2004.
3Paglione, Mike M., Robert D. Oaks, Karl D. Bilimoria, “Methodology for Generating Conflict Scenarios by Time Shifting

Recorded Traffic Data,” American Institute of Aeronautics and Astronautics (AIAA) Aviation Technology, Integration, and

Operations (ATIO) Technical Forum, November 2003.
4Paglione, Mike M., Confesor Santiago, Andrew Crowell, Robert D. Oaks, “Analysis of Aircraft to Aircraft Conflict

Properties in the National Airspace System,” American Institute of Aeronautics and Astronautics (AIAA) Guidance, Navigation,

and Control Conference, Honolulu, Hawai’i, August 18-21, 2008.
5Cale, M. L, M. M. Paglione, H. F. Ryan, D. Timoteo, R. D. Oaks, “User Request Evaluation Tool(URET) Conflict

Prediction Accuracy Report,” DOT/FAA/CT-TN98/8, April 1998.
6Paglione, M. M., H. F. Ryan, R. D. Oaks, S. Summerill, M. L. Cale, “Trajectory Prediction Accuracy Report User Request

Evaluation Tool (URET)/Center-TRACON Automation System (CTAS),” DOT/FAA/CT-TN99/10, WJHTC/ACT-250, May 1999.
7Paglione, M. M., S. Liu, R. D. Oaks, H. F. Ryan, “Metrics-based Approach for Evaluating Air Traffic Control Automation

of the Future,” 51st Air Traffic Control Association (ATCA) Annual Conference, October 2006.
8Paglione, M. M., H. F. Ryan, C. Santiago, G. Chandler, S. Liu, “Evaluation of En Route Automation’s Trajectory

Generation and Strategic Alert Processing,” DOT/FAA/CT-TN08/10, WJHTC/AJP-661, April 2008.
9Freeman, Eric, Elisabeth Freeman, Head First Design Patterns, 1st ed., O’Reilly Media, Inc., California, 2004, Chaps. 1, 4.
10Paglione, Mike M., Hollis F. Ryan, “Comparison of Host Radar Positions to Global Positioning Satellite Positions,” Digital

Avionics Systems Conference (DASC), Washington, D.C, November 1-3, 2005.
11Gerhardt-Falk, Christine, Lauren Martin, Scott Ellis, “Correlation of Airborne Position Estimates to Ground Based

Independent Estimates and Deviations from Flight-Planned Tracks,” American Institute of Aeronautics and Astronautics (AIAA)

Guidance, Navigation, and Control Conference, Hilton Head, South Carolina, August 20-23, 2007.
12Ryan, Hollis F., Mike M. Paglione, “Heuristic Methods to Post Process Aircraft Radar Track Data,” American Institute of

Aeronautics and Astronautics (AIAA) Guidance, Navigation, and Control Conference, Austin, TX, August 2003.

