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Abstract 
Air traffic scenarios based on recorded live 

data are essential for the development, testing and 
evaluation of air traffic automation. It is often 
desirable to modify the live data to introduce 
additional encounters and conflicts because live 
data generally contains no conflicts. To this end a 
genetic algorithm (GA) has been developed that 
time shifts individual flights in the scenario based 
on a set of characteristics. Although this approach 
has been successful, larger scenarios and additional 
constraints dramatically increase the time for the 
GA to reach an acceptable solution. This paper first 
introduces an enhanced GA technique that 
distributes the processing over several computers. 
Following the biological metaphor further, this 
approach is called the Island Model because each 
instance of the running algorithm represents an 
island where periodic sharing of information 
represents migration between islands. The paper 
concludes with an evaluation of the Island Model 
utilizing a set of designed experiments. The 
evaluation will not only consider time to solve but 
the quality of the solution produced relative to the 
specified constraints, with the goal of identifying 
important factors and optimal settings for those 
factors. 

Introduction 
 A class of air traffic automation, called 
Decision Support Tools (DSTs), relies on 
simulation for development, testing and evaluation. 
Simulation tools use data files that describe air 
traffic for a specific time and place, which are 
referred to as air traffic scenarios. Scenarios contain 
position reports for each flight, containing four 
dimensional (x, y, z and time) points which 
represent the aircraft's flight path. 

  

 

For testing and evaluation purposes it is 
necessary to use realistic flight data to ensure that 
performance in the field will reflect the results of 
the tests. However, recorded flight data has 
essentially no encounters or conflicts. Moreover it 
is often desirable for the data to have certain 
constraints in order to a test a specific situation. 
One method for generating realistic data that meets 
a predefined set of constraints is by time shifting 
recorded live flight data. 

Time Shifting 
 To time shift a flight an offset is introduced 
to the time dimension of a flight's four-dimensional 
path [8], which will potentially introduce conflicts 
or change other characteristics of the scenario.  

 The process for time shifting flight data is 
straightforward; create a new scenario where each 
flight has been independently time shifted by a 
small amount and then run this scenario through a 
conflict probe which will determine how well the 
scenario meets a set of user defined constraints. 

 To determine what time shift values meet 
the constraints, first apply them to each flight and 
then evaluate the subsequent scenario. This means 
solving a global optimization problem with a large 
search space, comprised of comparing every flight 
against every other flight for all time shift values. 
Stochastic optimization techniques are often 
applicable in this problem domain, and GAs in 
particular have been found to be well suited to this 
type of task: 

“...if the space to be searched is large, is 
known not be perfectly smooth and unimodal 
(i.e. consists of a single smooth 'hill'), or is not 
well understood, or if the fitness function is 
noisy, and if the task does not require a global 
optimum – i.e., if quickly finding a sufficiently 



good solution is enough – a GA will have a 
chance of being competitive with or surpassing 
other 'weak' methods (methods that do not use 
domain-specific knowledge in their search 
procedure).” [1] 

The search space encompasses the comparison 
of every flight with every other flight for all valid 
time shift values [4]. Comparing flights requires 
iterating over each position report that those flights 
share in the same time window. The resulting 
search space is very large and also multimodal, i.e. 
consisting of many local optima. Our task does not 
require finding the global optimal; instead for each 
run we define a minimum fitness and are concerned 
only with finding a solution that meets our 
constraints. For these reasons a GA fits our task 
very well and it has been demonstrated that a GA 
can be used effectively to find time shift values in 
which the resulting scenario meets specified 
constraints [2].  

Genetic Algorithm 
A GA is a search heuristic which uses 

stochastic optimization to refine the search space. 
GAs mimic the process of natural evolution by 
continually evolving and mutating new candidate 
solutions based on the fitness of previous 
candidates [4]. There is no standard GA 
implementation; however all follow the same 
general format. 

Our candidate solution is an array of integers 
with size equal to the number of flights in the 
scenario. Following the natural evolution analogy, 
each of the integers in this array is a gene. Each 
index in the array corresponds to an individual 
flight where the integer value is added to the time of 
every position report in that flight's path, effectively 
shifting the flight forward or backward in time. 

Fitness is defined by a function which takes a 
candidate solution as input and returns a decimal 
fitness score between zero and one (one is a perfect 
solution). When a candidate with a sufficient fitness 
score is found the algorithm returns that solution, 
otherwise a new population of candidates is created 
based on the current population. The mechanisms 
that transform the current population to a new 
population are called crossover and mutation 
operations. Crossover is analogous to mating, where 

candidate solutions are combined to form new and 
different individuals. Mutation alters an individual 
to create a new candidate solution, e.g. by randomly 
changing a single gene of an individual. 

Distributed Computing 
The author’s solution space has increased with 

more flights in the form of longer scenarios, and 
additional constraints have been added such as 
more characteristics on the scenario’s encounters 
and conflicts. As demands increase, so does the 
difficulty of the problem and in turn the time to 
reach a solution. 

One method for realizing a potentially large 
speed increase is through distributed computing. 
The original implementation of the GA was 
designed to run on a single workstation, however at 
any given time there may be dozens of other 
workstations that are available. If we were able to 
harness that processing power on the GA, it could 
provide a significant speed improvement. To take 
advantage of these additional resources, the current 
implementation could be enhanced to allow many 
instances to be run simultaneously on different 
workstations and share their progress via network 
communication. 

Island Model 
As an extension to the biological metaphor, an 

Island Model can be used as a means to break down 
and distribute the GA across multiple computers. 
The Island Model works as follows; run the GA on 
several workstations, where each workstation 
represents an island. Periodically the islands 
communicate, or undergo migration, where they 
share data about their local populations [9]. 

Individual islands tend to reach a local optimal 
point, which causes the fitness to plateau. The 
stochastic processes in the GA allow the algorithm 
to break out of this local optimum eventually, but it 
often takes a relatively long time. The Island Model 
addresses this by running multiple instances of the 
GA in parallel; each island will typically plateau at 
different times. Staggering the times at which 
plateaus occur may infuse some stagnant population 
with means to break through a fitness plateau. 
Figure 1 demonstrates how the Island Model affects 
fitness, each series is an island showing fitness of 



the best individual per generation. Migration was 
set to occur every 50 generations which is indicated 
by the vertical dotted lines. Large increases in 
fitness tend to occur at the migration points, as all 
the islands will match the best overall fitness. If  

migration were disabled the increases in fitness 
would occur less frequently and would not be 
coordinated, resulting in a slower increase in fitness 
and ultimately a longer time to solve.

 

Figure 1. 25 islands - fitness by generation 

Experimental Design 
Experimental design is a powerful approach to 

the construction and execution of experiments. 
Experimental design can be used to optimize the 
response variables of a process (Figure 2) by 
manipulating the input (dependent) variables that 
are controllable and blocking or randomizing the 
uncontrollable factors to avoid confounding them. 

Figure 2. General Model of a Process 

 

A Design of Experiment (DOE) was 
completed for an earlier version of the GA. The 
upgrade to a distributed Island Model introduced 
new parameters and the effect of existing 
parameters, and their interactions, may have 
changed. Therefore the purpose of this experiment 
is to identify which factors significantly affect the 
fitness function and determine their most optimal 
setting. We selected ten factors to be included in 
this DOE based on information obtained during 
previous experiments.  

Response 
The effectiveness of the GA can be measured 

by its fitness function in terms of elapsed clock time 
or number of generations to complete. We chose to 
use elapsed clock time, because number of 
generations can be misleading when dealing with 
factors that affect the time to evaluate each 
generation. E.g. population size – larger populations 
take longer to evaluate, but may result in obtaining 
a solution in less overall generations. 



Factors 
The following ten factors were selected for the 

experiment because they were anticipated to have 
the greatest effect on the response variables, based 
on previous experiments. 

 Selection – Algorithm for selecting 
individual candidates for crossover 

 Parentage – Algorithm for creating 
new individuals based on those 
selected for crossover 

 Pc – Probability of crossover 

 Pm – Probability an individual will 
undergo mutation 

 Elitism – Percentage of total 
population to be saved as elites. Elites 
are the top individuals in the 
population that are saved between 
generations so that a good individual 
will not be lost to stochastic 
evolutionary processes. 

 Pop size – Number of individuals in 
each generation 

 Epoch – Number of generations 
between migrations 

 Num islands – Total number of 
islands 

 ARTCC – The air traffic control 
center that each scenario is based on 

 Replication – Indicates which set of 
seeds to use 

Design of Experiment 
A full factorial for all input variables would 

not be feasible as the time per run can take several 
hours. We created a fractional factorial using 
JMP®, a commercial software package for 
statistical analyses available through the SAS 
Institute. In this Design of Experiment (DOE) the 
input and response variables were defined, along 
with their values and level of interactions (Table 1), 
and JMP identified what runs were necessary 
without doing a full factorial for all the variables. 
This fractional factorial resulted in 64 runs, far less 
than the full factorial would require. 

The categorical factors, Selection and 
Parentage, indicate which algorithm should be used 
for the corresponding step in the GA. Selection 
flags 1 and 2 correspond to Fitness Proportional and 
Sigma Scaling algorithms. Fitness Proportional 
selection uses an individual's survival probability, 
which is a function of its fitness score, to select 
individuals. Sigma Scaling uses the standard 
deviation of the population’s fitness to scale 
individual fitness so that selection pressure is 
relatively constant over the lifetime of the GA. 
Parentage flags 2 and 3 correspond to variants of 
the Queen Bee crossover algorithm [5]. The “Queen 
Bee” is the most fit individual, which then mates 
with the rest of the population to produce the next 
generation. Parentage flag 2 has the Queen Bee 
mate with the top half of the population, while 
Parentage flag 3 has the Queen Bee mate randomly 
with the population. 

Table 1. Factors for DOE 

Name Type Value 

Selection Categorical 1 2 

Parentage Categorical 2 3 

Pc Continuous .55 .95 

Pm Continuous .001 .02 

Elitism Continuous .05 .15 

Pop size Continuous 20 100 

Epoch Continuous 50 400 

Num islands Continuous 5 25 

ARTCC Blocking 1 2 3 4 

Replication Blocking 1 2 3 4 

 

Continuous factors were defined by a high and 
low point; JMP then adds a center point midway 
between the high and low values. Some of the 
levels for continuous factors were selected because 
they are standard for GAs, others were selected 
from the results of previous experiments. 



Blocking is a technique that can often be used 
in place of pure randomization to reduce variability 
in the experiment and achieve greater precision [6]. 
In practice blocking is the arrangement of 
experimental material into groups, such that each 
group (block) is “more homogeneous than the 
aggregate” [3]. ARTCC is designated as a blocking 
factor because flights from the same ARTCC are 
expected to have similar flight paths and thus 
patterns of similar behavior.  

In [2] it was demonstrated that seed has an 
impact on performance, which is shown below 
(Figure 3) in a graph from that paper. This effect 
may be significant and was therefore included as a 
factor. The variation in performance from this 
previous study illustrated the need to either block or 
randomize the treatment runs based on the seed 
value. As noted in [6] comparing these two 
processes; “randomization could approximately 
validate the statistical tests”. Blocking adds 
additional complexity to the DOE, but also provides 
a more accurate model. In order to obtain the most 
precision from the model four sets of randomly 
generated seed values were created with each set 
defined as a block.. 

 

Figure 3. Best fitness vs CPU time 

Results 
The fractional factorial experiment was 

implemented and is summarized by Figure 4. The R 

squared value (RSq) value is a quantification of 
how well our model fits the data; 0.94 RSq means 
that we have 94% coverage, i.e.  94% of the 
variation is captured by the model.  
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Figure 4. Actual by predicted plot 

An additional validation of the model is to test 
the residuals for normality. Figure 5 shows the 
residual run time of the experiment as a normal 
probability plot for each response variable, a box 
plot and a histogram overlaid with the normal 
distribution. The box plot and histogram show that 
the run times are approximately normally 
distributed, symmetric and centered at zero. These 
results, combined with the actual by predicted plot 
and R squared value, sufficiently validate the 
model. 

 

Figure 5. Residual run time 



Analysis 
The DOE provides us with the ability to 

discover which factors are significant, and more 
importantly what their optimal levels are. Tables 2 
and 3 list the results of the effect tests, for factors 
and interactions respectively, from which we can 
determine which factors and interactions were 
significant (factors with a p values < 0.05 are 
statistically significant, < 0.10 marginally 
significant and < 0.50 are of interest) and how they 
contributed to the response. 

Table 2. Results table – factors 

Source P Value 
Pm(0.001,0.02) <.0001 
PopSize(20,100) 0.0011 

ARTCC 0.0061 
NumIslands(5,25) 0.078 

Replication 0.276 
Epoch(50,400) 0.353 
Pc(0.55,0.95) 0.4193 

Elitism(0.05,0.15) 0.7333 
Selection 0.7639 

Parentage 0.8019 
 

The prediction profiler (Figure 6) and 
interaction profiles (Figure 7) that were generated 
by JMP provide insight into how the individual 
factors affect each other. Some of these interactions 
are intuitive, while others are not.  

Of the blocking factors, ARTCC was found to 
be significant confirming the expectation that 
flights from different ARTCCs exhibit significantly 
different behavior. Replication was not significant 
but this is good for the GA because if seed has too 
great an effect on the response it would diminish 
the effectiveness of the GA. 

Parentage and Selection flags are not 
significant, which was expected. Parentage uses 
slight variations of the same algorithm (Queen Bee) 
so it makes sense that their performance is similar, 
while the two algorithms used for Selection 
demonstrated similar performance in past 
experiments. 

Probability of mutation and probability of 
crossover were both significant factors, which was 
expected because they are the source of new 

individuals for the GA. Probability of mutation is 
perhaps the most influential factor as it is not only 
statistically significant itself, but its interaction with 
many other factors (some non-significant) is itself 
significant. 

Table 3. Results table - interactions  

Source P Value 
Pm*Pm 0.0044 

Parentage*Pm 0.0211 
NumIslands*Epoch 0.0639 

Pc*PopSize 0.0866 
Pc*Pm 0.0934 

Pm*Elitism 0.1345 
PopSize*PopSize 0.142 

Pm*Epoch 0.1981 
Parentage*Pc 0.1994 

Selection*Epoch 0.2213 
Elitism*PopSize 0.2447 
Parentage*Epoch 0.2506 

Selection*NumIslands 0.2542 
Selection*Elitism 0.2812 

Elitism*Epoch 0.3456 
PopSize*NumIslands 0.4044 

Parentage*NumIslands 0.4853 
Selection*PopSize 0.4976 
Pm*NumIslands 0.5469 

Selection*Pm 0.5666 
Pc*Elitism 0.5748 

Elitism*NumIslands 0.5827 
Pc*NumIslands 0.6735 

Parentage*Elitism 0.6748 
Parentage*PopSize 0.7698 

PopSize*Epoch 0.785 
Pm*PopSize 0.787 

Epoch*Epoch 0.7953 
Pc*Pc 0.8062 

Selection*Parentage 0.8084 
NumIslands*NumIslands 0.8362 

Elitism*Elitism 0.9109 
Pc*Epoch 0.9863 

Selection*Pc 0.9966 
 

A somewhat unexpected result was that the 
level of Elitism was not statistically significant (p 
value 0.7333); however we know from earlier 
experimentation that elitism can have a dramatic 
effect. A possible explanation is that due to the use 



of the Queen Bee parentage algorithm (top 
individual mates with others) the full benefit of 
elitism is gained with the first elite, while 
subsequent elites do not significantly improve the 
fitness. 

Population size was found to be significant. 
This was expected as it has a direct correlation to 
the response, i.e. increases in population size will 
increase the run time per generation while, on 
average, decrease the overall number of generations 
required to reach a solution. 

JMP has a prediction profiler tool which can 
be used to see estimated effect of parameters on the 
response. The prediction profiler can also be used to 
see the interaction between factors by adjusting the 

levels of a factor interactively. As one factor is 
changed the slope of other factors that have an 
interaction will change accordingly. The complexity 
introduced by these interactions result in the graph 
being difficult to optimize manually, however JMP 
provides a function to perform this optimization 
automatically by iteratively attempting to maximize 
desirability (in this case by minimizing run time). 
Figure 6 shows the prediction profiler after 
maximizing desirability, which contains the optimal 
settings for running the GA according the model. 
The slopes of the plotted factors indicate the degree 
to which they affect the fitness. Probability of 
mutation has the greatest effect which can be easily 
seen from its steep slope, while the curvature 
indicates that it is non-linear. 

 

 

Figure 6. Prediction Profiler 

  

 NumIslands and Epoch are by themselves not 
significant, but combined their interaction is. This is 
interesting because it demonstrates how the 
interaction between factors can be more significant 
than the factors on their own. The significance of 
this interaction is intuitive, as more islands are 
added migration becomes more important. The 
interaction profile for NumIslands and Epoch can 
be seen in Figure 7 (i.e., crossing lines in the 
interaction plot indicate interaction is present). On 
one extreme, with a single island migration would 
have no effect on the response. As more islands are 
added epoch becomes more significant because the 
total amount of migrations over time will increase 
proportionate to the number of islands.  

Figure 7. Interactions – NumIslands and 
Epoch   

 

 

 



Conclusion 
A genetic algorithm used to generate scenarios 

for fast time simulation was upgraded to run in a 
distributed fashion through the use of an Island 
Model topology. This Island Model extended the 
analogy of natural evolution to include migration, 
where separate populations evolve independently 
and then periodically share information. 

The DOE for this upgrade was described and 
its implementation evaluated to determine which 
input factors are significant and what their optimal 
levels are.  

References 
1. Mitchell, Melanie, An Introduction to 
Genetic Algorithms, MIT Press, Cambridge, MA, 
1998. 

2. Oaks, Robert, A Study on the Feasibility of 
Using a Genetic Algorithm to Generate Realistic 
Air Traffic Scenarios Based on Recorded Flight 
Data, American Institute of Aeronautics and 
Astronautics, Guidance, Navigation, and Control 
Conference, Monterey, CA, August 2002. 

3. Oaks, Robert, and Mike Paglione, 
Generation of Realistic Air Traffic Scenarios Using 
a Genetic Algorithm, 21st Digital Avionics Systems 
Conference, Irvine, CA, October 2002. 

 
4. Paglione, Mike M., Robert D. Oaks, and 
Karl Bilimoria, Methodology for Generating 
Conflict Scenarios by Time Shifting Recorded 
Flight Data, American Institute of Aeronautics and 
Astronautics, 3rd Annual Aviation Technology, 
Integration, and Operations Technical Forum, 
Denver, CO, November, 2003. 

5. Jung, Sung Hoon, Queen-Bee Evolution for 
Genetic Algorithms, Electronics Letters, March 20, 
2003. 

6. Hunter, Statistics for Experimenters, 2nd 
edition, section 3.3 

7. Hunter, Statistics for Experimenters, 2nd 
edition,  section 4.2 – 4.4 

8. Paglione, Time Shifting Air Traffic Data 
For Quantitative Evaluation Of A Conflict Probe 

9. Belding, Theodore. The Distributed Genetic 
Algorithm Revisited, Proceedings of the Sixth 
International Conference on Genetic Algorithms, 
San Franciso, CA, 1995. 

 

30th Digital Avionics Systems Conference 

October 16-20, 2011 


	Abstract
	Introduction
	Time Shifting
	Genetic Algorithm
	Distributed Computing
	Island Model
	Experimental Design
	Response
	Factors
	Design of Experiment

	Results
	Analysis
	Conclusion
	References

