
EVALUATION OF A GENETIC ALGORITHM THAT MODIFIES AIR
TRAFFIC DATA FOR CONFLICT PROBE TESTING

Bryan Petzinger, Federal Aviation Administration, Atlantic City, NJ 08405

Robert D. Oaks, General Dynamics Information Technology, Atlantic City, NJ 08405

Mike M. Paglione, Federal Aviation Administration, Atlantic City, NJ 08405

Dr. Christina M. Young, CSSI Inc, Atlantic City, NJ 08405

Abstract
Air traffic scenarios based on recorded live

data are essential for the development, testing and
evaluation of air traffic automation. It is often
desirable to modify the live data to introduce
additional encounters and conflicts because live
data generally contains no conflicts. To this end a
genetic algorithm (GA) has been developed that
time shifts individual flights in the scenario based
on a set of characteristics. Although this approach
has been successful, larger scenarios and additional
constraints dramatically increase the time for the
GA to reach an acceptable solution. This paper first
introduces an enhanced GA technique that
distributes the processing over several computers.
Following the biological metaphor further, this
approach is called the Island Model because each
instance of the running algorithm represents an
island where periodic sharing of information
represents migration between islands. The paper
concludes with an evaluation of the Island Model
utilizing a set of designed experiments. The
evaluation will not only consider time to solve but
the quality of the solution produced relative to the
specified constraints, with the goal of identifying
important factors and optimal settings for those
factors.

Introduction
 A class of air traffic automation, called
Decision Support Tools (DSTs), relies on
simulation for development, testing and evaluation.
Simulation tools use data files that describe air
traffic for a specific time and place, which are
referred to as air traffic scenarios. Scenarios contain
position reports for each flight, containing four
dimensional (x, y, z and time) points which
represent the aircraft's flight path.

For testing and evaluation purposes it is
necessary to use realistic flight data to ensure that
performance in the field will reflect the results of
the tests. However, recorded flight data has
essentially no encounters or conflicts. Moreover it
is often desirable for the data to have certain
constraints in order to a test a specific situation.
One method for generating realistic data that meets
a predefined set of constraints is by time shifting
recorded live flight data.

Time Shifting
 To time shift a flight an offset is introduced
to the time dimension of a flight's four-dimensional
path [8], which will potentially introduce conflicts
or change other characteristics of the scenario.

 The process for time shifting flight data is
straightforward; create a new scenario where each
flight has been independently time shifted by a
small amount and then run this scenario through a
conflict probe which will determine how well the
scenario meets a set of user defined constraints.

 To determine what time shift values meet
the constraints, first apply them to each flight and
then evaluate the subsequent scenario. This means
solving a global optimization problem with a large
search space, comprised of comparing every flight
against every other flight for all time shift values.
Stochastic optimization techniques are often
applicable in this problem domain, and GAs in
particular have been found to be well suited to this
type of task:

“...if the space to be searched is large, is
known not be perfectly smooth and unimodal
(i.e. consists of a single smooth 'hill'), or is not
well understood, or if the fitness function is
noisy, and if the task does not require a global
optimum – i.e., if quickly finding a sufficiently

good solution is enough – a GA will have a
chance of being competitive with or surpassing
other 'weak' methods (methods that do not use
domain-specific knowledge in their search
procedure).” [1]

The search space encompasses the comparison
of every flight with every other flight for all valid
time shift values [4]. Comparing flights requires
iterating over each position report that those flights
share in the same time window. The resulting
search space is very large and also multimodal, i.e.
consisting of many local optima. Our task does not
require finding the global optimal; instead for each
run we define a minimum fitness and are concerned
only with finding a solution that meets our
constraints. For these reasons a GA fits our task
very well and it has been demonstrated that a GA
can be used effectively to find time shift values in
which the resulting scenario meets specified
constraints [2].

Genetic Algorithm
A GA is a search heuristic which uses

stochastic optimization to refine the search space.
GAs mimic the process of natural evolution by
continually evolving and mutating new candidate
solutions based on the fitness of previous
candidates [4]. There is no standard GA
implementation; however all follow the same
general format.

Our candidate solution is an array of integers
with size equal to the number of flights in the
scenario. Following the natural evolution analogy,
each of the integers in this array is a gene. Each
index in the array corresponds to an individual
flight where the integer value is added to the time of
every position report in that flight's path, effectively
shifting the flight forward or backward in time.

Fitness is defined by a function which takes a
candidate solution as input and returns a decimal
fitness score between zero and one (one is a perfect
solution). When a candidate with a sufficient fitness
score is found the algorithm returns that solution,
otherwise a new population of candidates is created
based on the current population. The mechanisms
that transform the current population to a new
population are called crossover and mutation
operations. Crossover is analogous to mating, where

candidate solutions are combined to form new and
different individuals. Mutation alters an individual
to create a new candidate solution, e.g. by randomly
changing a single gene of an individual.

Distributed Computing
The author’s solution space has increased with

more flights in the form of longer scenarios, and
additional constraints have been added such as
more characteristics on the scenario’s encounters
and conflicts. As demands increase, so does the
difficulty of the problem and in turn the time to
reach a solution.

One method for realizing a potentially large
speed increase is through distributed computing.
The original implementation of the GA was
designed to run on a single workstation, however at
any given time there may be dozens of other
workstations that are available. If we were able to
harness that processing power on the GA, it could
provide a significant speed improvement. To take
advantage of these additional resources, the current
implementation could be enhanced to allow many
instances to be run simultaneously on different
workstations and share their progress via network
communication.

Island Model
As an extension to the biological metaphor, an

Island Model can be used as a means to break down
and distribute the GA across multiple computers.
The Island Model works as follows; run the GA on
several workstations, where each workstation
represents an island. Periodically the islands
communicate, or undergo migration, where they
share data about their local populations [9].

Individual islands tend to reach a local optimal
point, which causes the fitness to plateau. The
stochastic processes in the GA allow the algorithm
to break out of this local optimum eventually, but it
often takes a relatively long time. The Island Model
addresses this by running multiple instances of the
GA in parallel; each island will typically plateau at
different times. Staggering the times at which
plateaus occur may infuse some stagnant population
with means to break through a fitness plateau.
Figure 1 demonstrates how the Island Model affects
fitness, each series is an island showing fitness of

the best individual per generation. Migration was
set to occur every 50 generations which is indicated
by the vertical dotted lines. Large increases in
fitness tend to occur at the migration points, as all
the islands will match the best overall fitness. If

migration were disabled the increases in fitness
would occur less frequently and would not be
coordinated, resulting in a slower increase in fitness
and ultimately a longer time to solve.

Figure 1. 25 islands - fitness by generation

Experimental Design
Experimental design is a powerful approach to

the construction and execution of experiments.
Experimental design can be used to optimize the
response variables of a process (Figure 2) by
manipulating the input (dependent) variables that
are controllable and blocking or randomizing the
uncontrollable factors to avoid confounding them.

Figure 2. General Model of a Process

A Design of Experiment (DOE) was
completed for an earlier version of the GA. The
upgrade to a distributed Island Model introduced
new parameters and the effect of existing
parameters, and their interactions, may have
changed. Therefore the purpose of this experiment
is to identify which factors significantly affect the
fitness function and determine their most optimal
setting. We selected ten factors to be included in
this DOE based on information obtained during
previous experiments.

Response
The effectiveness of the GA can be measured

by its fitness function in terms of elapsed clock time
or number of generations to complete. We chose to
use elapsed clock time, because number of
generations can be misleading when dealing with
factors that affect the time to evaluate each
generation. E.g. population size – larger populations
take longer to evaluate, but may result in obtaining
a solution in less overall generations.

Factors
The following ten factors were selected for the

experiment because they were anticipated to have
the greatest effect on the response variables, based
on previous experiments.

 Selection – Algorithm for selecting
individual candidates for crossover

 Parentage – Algorithm for creating
new individuals based on those
selected for crossover

 Pc – Probability of crossover

 Pm – Probability an individual will
undergo mutation

 Elitism – Percentage of total
population to be saved as elites. Elites
are the top individuals in the
population that are saved between
generations so that a good individual
will not be lost to stochastic
evolutionary processes.

 Pop size – Number of individuals in
each generation

 Epoch – Number of generations
between migrations

 Num islands – Total number of
islands

 ARTCC – The air traffic control
center that each scenario is based on

 Replication – Indicates which set of
seeds to use

Design of Experiment
A full factorial for all input variables would

not be feasible as the time per run can take several
hours. We created a fractional factorial using
JMP®, a commercial software package for
statistical analyses available through the SAS
Institute. In this Design of Experiment (DOE) the
input and response variables were defined, along
with their values and level of interactions (Table 1),
and JMP identified what runs were necessary
without doing a full factorial for all the variables.
This fractional factorial resulted in 64 runs, far less
than the full factorial would require.

The categorical factors, Selection and
Parentage, indicate which algorithm should be used
for the corresponding step in the GA. Selection
flags 1 and 2 correspond to Fitness Proportional and
Sigma Scaling algorithms. Fitness Proportional
selection uses an individual's survival probability,
which is a function of its fitness score, to select
individuals. Sigma Scaling uses the standard
deviation of the population’s fitness to scale
individual fitness so that selection pressure is
relatively constant over the lifetime of the GA.
Parentage flags 2 and 3 correspond to variants of
the Queen Bee crossover algorithm [5]. The “Queen
Bee” is the most fit individual, which then mates
with the rest of the population to produce the next
generation. Parentage flag 2 has the Queen Bee
mate with the top half of the population, while
Parentage flag 3 has the Queen Bee mate randomly
with the population.

Table 1. Factors for DOE

Name Type Value

Selection Categorical 1 2

Parentage Categorical 2 3

Pc Continuous .55 .95

Pm Continuous .001 .02

Elitism Continuous .05 .15

Pop size Continuous 20 100

Epoch Continuous 50 400

Num islands Continuous 5 25

ARTCC Blocking 1 2 3 4

Replication Blocking 1 2 3 4

Continuous factors were defined by a high and
low point; JMP then adds a center point midway
between the high and low values. Some of the
levels for continuous factors were selected because
they are standard for GAs, others were selected
from the results of previous experiments.

Blocking is a technique that can often be used
in place of pure randomization to reduce variability
in the experiment and achieve greater precision [6].
In practice blocking is the arrangement of
experimental material into groups, such that each
group (block) is “more homogeneous than the
aggregate” [3]. ARTCC is designated as a blocking
factor because flights from the same ARTCC are
expected to have similar flight paths and thus
patterns of similar behavior.

In [2] it was demonstrated that seed has an
impact on performance, which is shown below
(Figure 3) in a graph from that paper. This effect
may be significant and was therefore included as a
factor. The variation in performance from this
previous study illustrated the need to either block or
randomize the treatment runs based on the seed
value. As noted in [6] comparing these two
processes; “randomization could approximately
validate the statistical tests”. Blocking adds
additional complexity to the DOE, but also provides
a more accurate model. In order to obtain the most
precision from the model four sets of randomly
generated seed values were created with each set
defined as a block..

Figure 3. Best fitness vs CPU time

Results
The fractional factorial experiment was

implemented and is summarized by Figure 4. The R

squared value (RSq) value is a quantification of
how well our model fits the data; 0.94 RSq means
that we have 94% coverage, i.e. 94% of the
variation is captured by the model.

0

3600

7200

10800

14400

18000

21600

25200

28800

32400

36000

39600

43200

R
un

T
im

e
A

ct
ua

l (
s)

0
36

00
72

00

10
80

0

14
40

0

18
00

0

21
60

0

25
20

0

28
80

0

32
40

0

36
00

0

39
60

0

43
20

0

RunTime Predicted (s) P=0.0012
RSq=0.94 RMSE=0.4526

Figure 4. Actual by predicted plot

An additional validation of the model is to test
the residuals for normality. Figure 5 shows the
residual run time of the experiment as a normal
probability plot for each response variable, a box
plot and a histogram overlaid with the normal
distribution. The box plot and histogram show that
the run times are approximately normally
distributed, symmetric and centered at zero. These
results, combined with the actual by predicted plot
and R squared value, sufficiently validate the
model.

Figure 5. Residual run time

Analysis
The DOE provides us with the ability to

discover which factors are significant, and more
importantly what their optimal levels are. Tables 2
and 3 list the results of the effect tests, for factors
and interactions respectively, from which we can
determine which factors and interactions were
significant (factors with a p values < 0.05 are
statistically significant, < 0.10 marginally
significant and < 0.50 are of interest) and how they
contributed to the response.

Table 2. Results table – factors

Source P Value
Pm(0.001,0.02) <.0001
PopSize(20,100) 0.0011

ARTCC 0.0061
NumIslands(5,25) 0.078

Replication 0.276
Epoch(50,400) 0.353
Pc(0.55,0.95) 0.4193

Elitism(0.05,0.15) 0.7333
Selection 0.7639

Parentage 0.8019

The prediction profiler (Figure 6) and
interaction profiles (Figure 7) that were generated
by JMP provide insight into how the individual
factors affect each other. Some of these interactions
are intuitive, while others are not.

Of the blocking factors, ARTCC was found to
be significant confirming the expectation that
flights from different ARTCCs exhibit significantly
different behavior. Replication was not significant
but this is good for the GA because if seed has too
great an effect on the response it would diminish
the effectiveness of the GA.

Parentage and Selection flags are not
significant, which was expected. Parentage uses
slight variations of the same algorithm (Queen Bee)
so it makes sense that their performance is similar,
while the two algorithms used for Selection
demonstrated similar performance in past
experiments.

Probability of mutation and probability of
crossover were both significant factors, which was
expected because they are the source of new

individuals for the GA. Probability of mutation is
perhaps the most influential factor as it is not only
statistically significant itself, but its interaction with
many other factors (some non-significant) is itself
significant.

Table 3. Results table - interactions

Source P Value
Pm*Pm 0.0044

Parentage*Pm 0.0211
NumIslands*Epoch 0.0639

Pc*PopSize 0.0866
Pc*Pm 0.0934

Pm*Elitism 0.1345
PopSize*PopSize 0.142

Pm*Epoch 0.1981
Parentage*Pc 0.1994

Selection*Epoch 0.2213
Elitism*PopSize 0.2447
Parentage*Epoch 0.2506

Selection*NumIslands 0.2542
Selection*Elitism 0.2812

Elitism*Epoch 0.3456
PopSize*NumIslands 0.4044

Parentage*NumIslands 0.4853
Selection*PopSize 0.4976
Pm*NumIslands 0.5469

Selection*Pm 0.5666
Pc*Elitism 0.5748

Elitism*NumIslands 0.5827
Pc*NumIslands 0.6735

Parentage*Elitism 0.6748
Parentage*PopSize 0.7698

PopSize*Epoch 0.785
Pm*PopSize 0.787

Epoch*Epoch 0.7953
Pc*Pc 0.8062

Selection*Parentage 0.8084
NumIslands*NumIslands 0.8362

Elitism*Elitism 0.9109
Pc*Epoch 0.9863

Selection*Pc 0.9966

A somewhat unexpected result was that the
level of Elitism was not statistically significant (p
value 0.7333); however we know from earlier
experimentation that elitism can have a dramatic
effect. A possible explanation is that due to the use

of the Queen Bee parentage algorithm (top
individual mates with others) the full benefit of
elitism is gained with the first elite, while
subsequent elites do not significantly improve the
fitness.

Population size was found to be significant.
This was expected as it has a direct correlation to
the response, i.e. increases in population size will
increase the run time per generation while, on
average, decrease the overall number of generations
required to reach a solution.

JMP has a prediction profiler tool which can
be used to see estimated effect of parameters on the
response. The prediction profiler can also be used to
see the interaction between factors by adjusting the

levels of a factor interactively. As one factor is
changed the slope of other factors that have an
interaction will change accordingly. The complexity
introduced by these interactions result in the graph
being difficult to optimize manually, however JMP
provides a function to perform this optimization
automatically by iteratively attempting to maximize
desirability (in this case by minimizing run time).
Figure 6 shows the prediction profiler after
maximizing desirability, which contains the optimal
settings for running the GA according the model.
The slopes of the plotted factors indicate the degree
to which they affect the fitness. Probability of
mutation has the greatest effect which can be easily
seen from its steep slope, while the curvature
indicates that it is non-linear.

Figure 6. Prediction Profiler

 NumIslands and Epoch are by themselves not
significant, but combined their interaction is. This is
interesting because it demonstrates how the
interaction between factors can be more significant
than the factors on their own. The significance of
this interaction is intuitive, as more islands are
added migration becomes more important. The
interaction profile for NumIslands and Epoch can
be seen in Figure 7 (i.e., crossing lines in the
interaction plot indicate interaction is present). On
one extreme, with a single island migration would
have no effect on the response. As more islands are
added epoch becomes more significant because the
total amount of migrations over time will increase
proportionate to the number of islands.

Figure 7. Interactions – NumIslands and
Epoch

Conclusion
A genetic algorithm used to generate scenarios

for fast time simulation was upgraded to run in a
distributed fashion through the use of an Island
Model topology. This Island Model extended the
analogy of natural evolution to include migration,
where separate populations evolve independently
and then periodically share information.

The DOE for this upgrade was described and
its implementation evaluated to determine which
input factors are significant and what their optimal
levels are.

References
1. Mitchell, Melanie, An Introduction to
Genetic Algorithms, MIT Press, Cambridge, MA,
1998.

2. Oaks, Robert, A Study on the Feasibility of
Using a Genetic Algorithm to Generate Realistic
Air Traffic Scenarios Based on Recorded Flight
Data, American Institute of Aeronautics and
Astronautics, Guidance, Navigation, and Control
Conference, Monterey, CA, August 2002.

3. Oaks, Robert, and Mike Paglione,
Generation of Realistic Air Traffic Scenarios Using
a Genetic Algorithm, 21st Digital Avionics Systems
Conference, Irvine, CA, October 2002.

4. Paglione, Mike M., Robert D. Oaks, and
Karl Bilimoria, Methodology for Generating
Conflict Scenarios by Time Shifting Recorded
Flight Data, American Institute of Aeronautics and
Astronautics, 3rd Annual Aviation Technology,
Integration, and Operations Technical Forum,
Denver, CO, November, 2003.

5. Jung, Sung Hoon, Queen-Bee Evolution for
Genetic Algorithms, Electronics Letters, March 20,
2003.

6. Hunter, Statistics for Experimenters, 2nd
edition, section 3.3

7. Hunter, Statistics for Experimenters, 2nd
edition, section 4.2 – 4.4

8. Paglione, Time Shifting Air Traffic Data
For Quantitative Evaluation Of A Conflict Probe

9. Belding, Theodore. The Distributed Genetic
Algorithm Revisited, Proceedings of the Sixth
International Conference on Genetic Algorithms,
San Franciso, CA, 1995.

30th Digital Avionics Systems Conference

October 16-20, 2011

	Abstract
	Introduction
	Time Shifting
	Genetic Algorithm
	Distributed Computing
	Island Model
	Experimental Design
	Response
	Factors
	Design of Experiment

	Results
	Analysis
	Conclusion
	References

