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Introduction

* C(lassical/neural synthesis of control systems
Linear control theory
Artificial neural networks

* Adaptive critics
Learn in real time
Cope with noise
Cope with many variables
Plan over time in a complex way

« Adaptation takes place during every time interval:

Action network takes immediate control action

Critic network estimates projected cost



Motivation

Provide full envelope control

Multiphase learning
Pre-training (off-line), motivated by linear controllers

On-line training, during full-scale simulations or aircraft testing

On-line training improves performance w.r.t. linear controllers:
Differences between actual and assumed dynamic models

Nonlinear effects not captured in linearizations

Potential applications:

Incorporate pilot's knowledge into controller a-priori
Uninhabited air vehicles control

Aerobatic flight control
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Aircraft Control Design Approach
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Linear Control Design

Linearizations:
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Linear Proportional-Integral Controller

Closed-loop stability:  x(¢)—>x,, u(t)—u,., ¥({)—0
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Omitting A's, for simplicity:
¥(t)=y,(t)-y., t()=u(t)-u,,..., y, =desired output, (x_,u_)= set point.



Proportional-Integral Neural Network Controller
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Where: ¥(t) >0, ¥,() =Y.,/ Algebraic Training, ’ . On-line Training.



Comparison of Neural Network and Linear Controllers Between
Training Points, at Flight Conditions (H,, V,) = (2Km, 95 m/s)
Aircraft Response to Climb-Angle Command Input

95.4

elocity (m/s)

\V

4

\O

9]

\®]
\

94.8 / N

*_

— Linear Convtrk

— = Pre-trained Neural Network Control

Large-Angle
Maneuver

/.

Climb Angle (deg)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
e e e =

e ———— 41

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

Small-Angle
Maneuver



Proportional-Integral Neural Network Controller:
Action and Critic Networks Implementation
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Adaptive Critic Implementation: Action Network
On-line Training

Train action network, at time ¢, holding the critic parameters fixed

»| Aircraft Model
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Adaptive Critic Implementation: Critic Network

On-line Training

Train critic network, at time ¢, holding the action parameters fixed
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Action/Critic Network On-line Training at Time ¢

Neural network output = VG{W[XS )] + d}

Vec(W)]
Weight vector: w = d
| Vec(V) |
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The (action/critic) network must meet its target,
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E = Network performance
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Resilient Backpropagation for Network Error Minimization

At time ¢, given the weight vector, w(?), Resilient Backpropagation
(RProp) minimizes E, by computing a new weight vector w(z + 1),

w() =w,
v

[ Wi =W, T Awk] Wit | RProp | #W

During each epoch, the algorithm adjusts w, of an increment Aw,:

t = Real time
Epoch = Algorithm iteration (indexed by k)



MATLAB® Resilient Backpropagation Algorithm
The size and direction of each weight's increment, Aw,, are based on the

sign of the gradient of the performance, £, w.r.t. the weight, w

Increment Direction:

Increment Size:




Improving Resilient Backpropagation

MATLAB® Algorithm

No backtracking
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No backtracking, with local minima
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Performance Comparison:
Trained Weights Distribution w.r.t. Initial Weights Distribution
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Resilient Backpropagation: Actual On-line Implementation

= Estimate the sign of the gradient, without computing
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Comparison of Adaptive Critic Controller with Pre-trained Neural
Network Controller, at Flight Conditions (H,, V,) = (2 Km, 95 m/s)

Aircraft Response to Climb and Roll Angle Command Input
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Summary and Conclusions

» Adaptive critic flight control design:

/

** Algebraic pre-training based on available linear control knowledge

/

¢ On-line training during simulations (full envelope, severe conditions)

Objective: improve aircraft control performance under extreme conditions

e Achievements:
Systematic approach for designing nonlinear control systems
Innovative neural network (off-line and on-line) training techniques

« Results: improved performance during large angle maneuvers

Future Work:

Continue testing: acrobatic maneuvers, severe operating conditions,

coupling and nonlinear effects!



