
 1
 American Institute of Aeronautics and Astronautics

AIAA-2002-4767

A Study on the Feasibility of Using a Genetic Algorithm to Generate
Realistic Air Traffic Scenarios Based on Recorded Field Data

Robert D. Oaks*

FAA William J. Hughes Technical Center
Atlantic City International Airport, NJ, 08405

Abstract*

Air traffic scenarios based on recorded live
data are used for the development and analysis
of decision support tools used by air traffic
controllers. Frequently these scenarios need to
be modified in order to create aircraft-to-
aircraft encounters that are not present in the
live data. This paper shows that a genetic
algorithm can be used to time shift the flights
in a scenario in order to create encounters with
specific constrained characteristics. For this
study these constraints were the distributions
of the closest point of approach and the
encounter angle of the encounters. The paper
first describes how a genetic algorithm was
implemented and then presents the results of
two series of tests. The first series of tests
were designed to determine if the
implementation of a genetic algorithm could
solve the problem. The second series of tests
were designed to assess the time it took the
implementation to solve the problem. The
results of the study showed that a genetic
algorithm could solve the problem in a
reasonable time.

* Senior Systems Analyst, Signal Corporation, ACB-330
Simulation and Modeling Group, FAA William J. Hughes
Technical Center, Atlantic City International Airport, NJ,
08405; E-mail: rdoaks@acm.org; Member, AIAA.

Copyright © 2002 by the American Institute of Aeronautics
and Astronautics, Inc. All rights reserved.

Introduction

Traffic flow management decision support
tools such as the User Request Evaluation
Tool (URET), developed by the MITRE
Center for Advanced Aviation Systems
Development, and the Center-TRACON
Automation System (CTAS), developed by
the National Aeronautics and Space
Administration/Ames Research Center, use
simulation as a tool for development, technical
assessment, and field evaluation.

The air traffic scenarios, used by these
simulations, are data files describing the flow
of aircraft traffic through an airspace over a
period of time. For traffic flow management
decision support tools, these airspaces are
generally those defined for Terminal Radar
Approach Control facilities (TRACONs), such
as those that manage arrivals and departures
around New York and Dallas/Fort Worth, and
Air Route Traffic Control Centers (ARTCCs),
that manage air traffic as it crosses the
country. The scenario data files contain
planning/advisory information and track data.
The time-stamped planning/advisory data
describe the aircraft’s planned flight; it
includes its flight plan and flight plan
amendments, interim altitude clearances, and
hold information. The track data represents the
aircraft’s actual flight path. It consists of a
series of 4-dimensional components: two
defining the aircraft’s position (using either

 2
 American Institute of Aeronautics and Astronautics

XY-coordinate or latitude/longitude pair);
another component defining its altitude; and
the fourth component being an associated
time.

One form of these scenario files is the
playback scenario, which is based on the
format of recorded intercomputer messages.
Playback scenarios composed of test data
specifically designed to test its internal
algorithms are used to develop the decision
support tools. But in order to ensure their
operational capability, the tools are tested with
scenarios based on recorded field data
containing the situations they are designed to
protect against.

Playback scenarios are also used to evaluate
decision support tools because they provide
the most realistic simulation environments.
For example, the FAA’s Engineering and
Integration Services Branch (ACT-250) at the
William J. Hughes Technical Center in
Atlantic City, New Jersey, has used recorded
field data in two recent studies. Their URET
Conflict Prediction Accuracy Study1 used
simulation scenarios based on field data
recorded at the Indianapolis ARTCC and their
URET/CTAS Trajectory Prediction Accuracy
Study2 used playback scenarios based on field
data recorded at the Indianapolis ARTCC for
URET and Fort Worth ARTCC for CTAS. In
both of these studies the playback scenarios
were generated directly from the recorded
field data.

However, frequently it is necessary to modify
the scenarios. For example, The FAA’s Free
Flight Phase One Program Office tasked
ACT-250 to develop the scenarios used to
verify the accuracy requirements of the URET
Core Capability Limited Deployment
(CCLD), the operational implementation of
the URET. For this effort, the recorded field
data was modified to induce aircraft-to-aircraft
and aircraft-to-airspace encounters that did not

exist in the recorded data. ACT-250 did this
by changing the start times of the aircraft
flights through time-shifting.3 This created the
necessary number of encounters between the
aircraft while retaining the actual routes and
profiles the aircraft originally flew.

While it would have been possible to generate
scenarios meeting the desired constraints
through trial and error, it was desirable to
calculate these changes algorithmically. While
researching various random search techniques,
it was determined that a genetic algorithm
(GA) might be applicable. The following
quote on the use of GAs in general was found
to be appropriate:

 . . . if the space to be searched is large, is

known not to be perfectly smooth and
unimodal (i.e. consists of a single smooth
‘hill’), or is not well understood, or if the
fitness function is noisy, and if the task
does not require a global optimum – i. e.,
if quickly finding a sufficiently good
solution is enough – a GA will have a
chance of being competitive with or
surpassing other ‘weak’ methods (methods
that do not use domain-specific knowledge
in their search procedure)4

Genetic Algorithm Implementation

Genetic algorithms (GAs) were invented by
John Holland at the University of Michigan in
the 1960s and 1970s. They are considered the
most prominent example of evolutionary
programming. Comprehensive information
regarding the history, study, and application of
GAs can be found in the literature.4,5, 6

GAs are a class of algorithms that derive their
behavior from a metaphor of the processes of
evolution. As such, there is no specific GA;
instead GAs are more of an approach to
solving a problem. All GA approaches have
the following traits in common: a population

 3
 American Institute of Aeronautics and Astronautics

of chromosomes, a fitness function, selection
according to fitness, crossover to create new
offspring, and mutation.

For this study, a GA was implemented in a
program named Cat.† This program generates
a set of delta times that can be used to time
shift the flights in a scenario, inducing
encounters meeting specific user-specified
constraints.

To find aircraft-to-aircraft encounters, Cat
compares each flight’s track points with the
track points from each of the other flights. An
encounter is defined to exist between two
flights when the closest point of approach
(CPA) between the flights is less than 20
nautical miles in the horizontal plane and less
than either 1000 or 2000 feet in the vertical
axis, depending on the aircraft’s altitude. In
addition to the distance at CPA, an encounter
has an encounter angle (EA) defined at the
CPA. This angle is defined as 180° when the
aircraft are flying directly toward each other
and 0° when they are in-trail. Cat tallies these
encounter occurrences in the ten constraint
bins defined in Tables 1 and 2.

Cat uses a genetic algorithm to evolve a set of
possible solutions so that the number of
aircraft-to-aircraft encounters in each of these
bins falls between input bounds.

† Cat was developed using gcc, the GNU C/C++ Version
2.7.2.3 compiler, and libg+, the GNU C/C++ Version 2.7.2
libraries. Cat was implemented on a Sun Ultra ES-4500 400
megahertz workstation using the Solaris Version 2.6 operating
system. Cat was named for the character Cat on the British
television series Red Dwarf. Cat is a humanized feline; the
result of 3,000,000 years of evolution on the space ship Red
Dwarf after all but one of its crew were killed by a radiation
leak.

Table 1: CPA Constraint Bins
Bin # Constraint

1 0 nm ≤ CPA < 5 nm
2 5 nm ≤ CPA < 10 nm
3 10 nm ≤ CPA < 15 nm
4 15 nm ≤ CPA < 20 nm

Table 2: EA Constraint Bins

Bin # Constraint
5 0 deg ≤ EA < 30 deg
6 30 deg ≤ EA < 60 deg
7 60 deg ≤ EA < 90 deg
8 90 deg ≤ EA < 120 deg
9 120 deg ≤ EA < 150 deg

10 150 deg ≤ EA < 180 deg

Definition of the Chromosome Population

In a GA, a chromosome is defined as an array
of bits or characters that represent a potential
solution to a problem. These bits or characters
are defined as the chromosome's genes. The
values these genes can assume are defined as
alleles. A population of these chromosomes is
a subset of all solutions to the problem.

In the program Cat, a chromosome is defined
to be a sequence of delta times (genes)
represented by the tuple <∆t1, ∆t2, ..., ∆tn>,
where there is a delta time associated with
each flight. Therefore the number of genes in
a chromosome is equal to the number of
flights in the scenario. These delta times
represent the time (in tens of seconds) that the
start time of a flight is to be modified to start
earlier than its original start time. For
example, the chromosome <0, 75, 9, …>
means to start the first flight at its original
time, to start the second flight 750 seconds
earlier than its original start time, to start the
third flight 90 seconds earlier, etc. Each gene
is restricted to assume 360 values (alleles)
(i.e., 0, 1, 2, …, 359) thereby restricting the
amount of time a flight could be shifted earlier
in time to one hour.

The size of the population of chromosomes in
Cat is an input parameter. The initial
population consists of one chromosome that

 4
 American Institute of Aeronautics and Astronautics

represents the start times of the original field
data; i.e., the chromosome <0, 0, 0, …>. The
remaining chromosomes in the initial
population have delta times selected randomly
from a uniform distribution in the interval 0 to
359.

Definition of the Fitness Function

The fitness function in a GA produces a score
for each chromosome, which is a measure of
how well the chromosome solves the
particular problem. The fitness of a population
may be defined either as the average of all of
the fitnesses of the population's chromosomes
or as the best of the fitnesses of the
chromosomes in the population. The goal of
the GA is to evolve its population until its
fitness reaches some desired value.

The goal of the program Cat is to find a
chromosome that results in tallied encounter
counts that fall between desired bounds in
each of the ten constraint bins defined in
Tables 1 and 2. These bounds are input to Cat
in the form of ten pairs of constraint bounds –
a low bound and a high bound for each of the
ten constraint bins.

The fitness function implemented in Cat
rewards both individual and multiple instances
where tallied counts fall within these
constraint bounds; while at the same time
penalizing instances in which the measured
value is below the low bound or above the
high bound.

The fitness function defined for Cat is:

102
2 X

F = (1)

where

∑
=

=
10

1i
ixX (2)

The calculation for xi depends on three
conditions.

1. If the tallied count for a bin lies below the

lower bound (i.e., if counti < loboundi)
then

2











=

i

i
i lobound

count
x (3)

2. If the tallied count for a bin falls within the
lower and upper bounds (i.e., if loboundi ≤
counti < hiboundi) then

1=ix

 (4)

3. If the tallied count falls above the upper

bound (i.e., if hiboundi < counti) then
2










 −+
=

i

iii
i lobound

counthiboundlobound
x

 (5)

For each of these equations, loboundi refers to
constraint bin i’s low bound, hiboundi refers to
its high bound, and counti refers to the number
of encounters tallied to be in the constraint
bin.

The value of xi provides a value of 1.0 if the
tallied count is between the low and high
bounds and rapidly decreases to 0.0 as the
count gets further away from either of the
bounds. This is seen in Figure 1, which is a
plot showing the individual contribution (xi) as
a function of the measured count (counti). The
two vertical dashed lines represent the bin's
low bound and upper bound.

Once the individual values of xi are computed
for each of the ten constraint bins, X is
computed as their floating-point sum as
defined in Equation (2). This results in X
being a weighted count of the number of bins
in which the constraints have been satisfied.

 5
 American Institute of Aeronautics and Astronautics

The fitness (F) is then calculated as defined in
Equation (1). Figure 2 is a plot of how fitness
(F) varies as a function of the sum of the
individual contributions (X). This plot shows
how the fitness exponentially approaches the
value of 1.0 as the number of satisfied
constraint bins approaches 10.0.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

lobound i hibound i

x i

count i

Figure 1: Constraint Bin Contribution to Fitness

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10

F

X

Figure 2: Graph of the Fitness Function

Definition of the Selection Process

The first step in evolving a new generation of
chromosomes is to select parent chromosomes
from the current population. In most GAs the
parent chromosomes are selected from the
population with the probability of selection
being directly proportional to a chromosome’s
fitness.

In the program Cat, the number of parent
chromosomes selected in Cat is the same as
the number of chromosomes in the population.
Cat uses “stochastic universal sampling” as its
selection technique. This technique selects
chromosomes based on each chromosome's
expected representation in the selected
population. The expected representation is
defined as the ratio of the individual's
chromosome's fitness and the sum of the
fitnesses in the population. Unlike purely
random selection techniques, this technique
ensures that fit chromosomes are not
statistically lost in the selection process.4,6

Definition of the Crossover Technique

The next step in evolving a new generation of
chromosomes is to create an offspring
population from the selected parent
chromosomes based on crossover. Generally
crossover occurs according to a probability
called the probability of crossover. When it
occurs the genes of paired parent
chromosomes are combined according to
some rule to create new chromosomes. In
most implementations, this is done by
swapping the parent’s genes at selected locus
positions. If crossover does not occur the
selected parent's chromosomes become the
offspring chromosomes.

In Cat, the occurrence of crossover depends
on an input parameter Pc, which is the
probability of crossover. When crossover
occurs, Cat swaps the genes between two
parent chromosomes using two randomly
selected points. This reduces positional bias4.

 6
 American Institute of Aeronautics and Astronautics

Definition of the Mutation Technique

The final step in evolving a new generation of
chromosomes is mutation. Each of the genes
in the chromosomes of the offspring
population is considered for mutation
according to a probability of mutation. When
mutation occurs the gene is randomly changed
to another valid value (allele).

For mutation, Cat replaces a gene with a delta
time selected randomly from a uniform
distribution in the interval 0 to 359. As a
result, each flight can be shifted to start
randomly up to one hour prior earlier in time.
The occurrence of mutation in Cat depends on
an input parameter Pm, which is the
probability of mutation.

Results

Two series of test runs were made to
determine if Cat can effectively calculate a set
of delta times that can be used to modify a
scenario so it will have user-specified
distribution of encounters. The first, called the
solvability tests, were to determine if the
program could solve the problem. The second,
called the time-to-solve tests, were to analyze
how long it took Cat to repetitively solve a
single problem.

All of these test runs were made using one
hour of interpolated track data derived from
field data recorded at the Indianapolis
ARTCC. This recorded data consists of 493
flights with 344 aircraft-to-aircraft encounters.
The distributions of these baseline encounters
for closest point of approach (CPA) and for
encounter angle (EA) are shown in Table 3.‡

‡ It important to note that the 20 encounters in Bin #1 of
Table 3, which had a CPA less than 5 nm are not ATC
conflicts, since not all of the rules defining an ATC conflict
were taken into account.

Table 3: Original Encounter Counts

Bin #

Constraint
Original
Count

1 0 ≤ CPA < 5 20
2 5 ≤ CPA < 10 68
3 10 ≤ CPA < 15 119
4 15 ≤ CPA < 20 137
5 0 ≤ EA < 30 83
6 30 ≤ EA < 60 44
7 60 ≤ EA < 90 51
8 90 ≤ EA < 120 51
9 120 ≤ EA < 150 58

10 150 ≤ EA < 180 57

Solvability Tests

The solvability tests consisted of three runs.
The first run attempted to evenly distribute the
344 original encounters evenly across both the
CPA and the EA constraint bins. To
accomplish this Cat's input parameters
specified 85 to 87 encounters in each of the
CPA bins (Bins #1-4) and 56 to 58 encounters
in each of the EA bins (Bins #5-10). The input
also specified a high value of 0.99 for the
desired fitness of the solution. This meant the
program would terminate with a solution that
comes close to meeting the constraints. This
was done to ensure the program would
terminate in a reasonable amount of time.

The results of this first run are shown in Table
4, where it is seen Cat generated a set of delta
times for which the requested encounter
counts fell within the constraint bounds of all
of the bins – i.e., this solution had a fitness
value of 1.0. Cat generated this solution in 173
generations using 2955.73 seconds of CPU
time. This solution contains 344 encounters,
but these are not the same 344 encounters that
occurred in the baseline data because the time
modification results in different encounters.

 7
 American Institute of Aeronautics and Astronautics

Table 4: Constraint Bins for the First Run

Bin

Constraint

low
bound

high
bound

Count

1 0 ≤ CPA < 5 85 87 85
2 5 ≤ CPA < 10 85 87 85
3 10 ≤ CPA < 15 85 87 87
4 15 ≤ CPA < 20 85 87 87
5 0 ≤ EA < 30 56 58 58
6 30 ≤ EA < 60 56 58 58
7 60 ≤ EA < 90 56 58 56
8 90 ≤ EA < 120 56 58 57
9 120 ≤ EA < 150 56 58 58

10 150 ≤ EA < 180 56 58 57

Figure 3 is a plot showing how the fitness of
the population increased with the evolving
generations of the chromosome population.
The thicker line in the plot represents the best
fitness encountered up to that generation. The
narrower line in the plot represents the
average fitness of the chromosomes in that
generation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200
Generation

Best Fitness

Average Fitness

F

Figure 3: Fitness vs. Generation

In the second solvability test Cat was asked to
increase the number of encounters. In
addition, the desired fitness was lowered to
0.975. Cat generated the results shown in
Table 5 in 172 generations with a best fitness
of 0.978738. This solution contains 388

encounters with the count in one bin (Bin #9)
not falling within the desired bounds.

Table 5: Constraint Bins in Second Run
Bin

Constraint

low
bound

high
bound

Count

1 0 ≤ CPA < 5 22 24 24
2 5 ≤ CPA < 10 75 82 77
3 10 ≤ CPA < 15 131 143 133
4 15 ≤ CPA < 20 151 164 154
5 0 ≤ EA < 30 91 100 91
6 30 ≤ EA < 60 48 53 51
7 60 ≤ EA < 90 56 61 60
8 90 ≤ EA < 120 56 61 57
9 120 ≤ EA < 150 64 70 63

10 150 ≤ EA < 180 63 68 66

In the third solvability test Cat was required to
increase the number of encounters and to
distribute the encounters evenly across both
the CPA and EA constraint bins. Table 6
presents the results of this run. The fitness for
this solution was 0.985589. It contains 389
encounters with the count in one bin (Bin #1)
not falling within the desired bounds. This
solution was generated in 242 generations
using 4235.17 seconds of CPU time.

Table 6: Constraint Bins in Third Run

Bin

Constraint

low
bound

high
bound

Count

1 0 ≤ CPA < 5 95 105 94
2 5 ≤ CPA < 10 95 105 95
3 10 ≤ CPA < 15 95 105 96
4 15 ≤ CPA < 20 95 105 104
5 0 ≤ EA < 30 60 65 65
6 30 ≤ EA < 60 60 65 65
7 60 ≤ EA < 90 60 65 64
8 90 ≤ EA < 120 60 65 65
9 120 ≤ EA < 150 60 65 65

10 150 ≤ EA < 180 60 65 65

Time-to-Solve Tests

Ten runs were made to analyze the time
required by Cat to generate an acceptable
fitness given the same input parameters, but
using a different seed value for the random
number generator.

Cat was able to generate a solution in each of
these ten runs and in one run generated two
chromosomes, each having equally fit

 8
 American Institute of Aeronautics and Astronautics

solutions. Since the GA is a stochastic process
each of the ten runs produced a different result
and used a different amount of CPU
processing time. Figure 4 is a plot of the best
fitness value as a function of elapsed CPU
processing time for each of the ten runs.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 600 1200 1800 2400 3000 3600 4200

CPU Time (seconds)

F

Figure 4: Best Fitness vs. CPU Processing Time

Table 7 shows the time required to generate a
solution in each of the ten runs. These results
show that a solution was generated in as little
as 1890.69 seconds and as much as 4017.10
seconds. The average time-to-solve was
2993.74 seconds with a standard deviation of
628.17 seconds.

Table 7: Time to Solve in Test Runs
Run

Number
Time-to-solve

(CPU seconds)
0 3331.14
1 3844.34
2 2787.15
3 2673.55
4 2907.13
5 4017.10
6 3051.04
7 2449.61
8 2986.64
9 1890.69

Acknowledgments

The data used for this study was provided by
the Conflict Probe Assessment Team, which is
a part of the FAA's Engineering and
Integration Branch (ACT-250) at the William
J. Hughes Technical Center. The author
thanks the members of that team for their
support and help for this study.

Bibliography

1. Cale, Mary Lee, Paglione, Michael, Ryan,

Dr. Hollis, Timoteo, Dominic, Oaks,
Robert, User Request Evaluation Tool
(URET) Conflict Prediction Accuracy
Report, DOT/FAA/CT-TN98/8,
WJHTC/ACT-250, April, 1999.

2. Paglione, M. M., Ryan, H. R., Oaks, R. D.,

Summerill, J. S., Cale, M. L., Trajectory
Prediction Accuracy Report User Request
Evaluation Tool (URET) / Center-TRACON
Automation System (CTAS), DOT/FAA/CT-
TN99/10, FAA ACT-250, May 1998.

3. Oaks, Robert D., Paglione, Mike,

Generation of Realistic Air Traffic
Scenarios Based on Recorded Field Data,
Proceedings of the 46th Annual Meeting,
Air Traffic Control Association,
Washington, DC, November 4-8, 2001.

4. Mitchell, Melanie, An Introduction to

Genetic Algorithms, The MIT Press,
Cambridge, MA, 1998.

5. Goldberg, David E., Genetic Algorithms in

Searching, Optimization, and Machine
Learning, Addison-Wesley, 1989.

6. Michalewicz, Zbigniew, Genetic

Algorithms + Data Structures =
Evolutionary Programs, Third, Revised
and Extended Edition, Springer, 1996.

