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Abstract* 
 
Air traffic scenarios based on recorded live 
data are used for the development and analysis 
of decision support tools used by air traffic 
controllers. Frequently these scenarios need to 
be modified in order to create aircraft-to-
aircraft encounters that are not present in the 
live data. This paper shows that a genetic 
algorithm can be used to time shift the flights 
in a scenario in order to create encounters with 
specific constrained characteristics. For this 
study these constraints were the distributions 
of the closest point of approach and the 
encounter angle of the encounters. The paper 
first describes how a genetic algorithm was 
implemented and then presents the results of 
two series of tests. The first series of tests 
were designed to determine if the 
implementation of a genetic algorithm could 
solve the problem. The second series of tests 
were designed to assess the time it took the 
implementation to solve the problem. The 
results of the study showed that a genetic 
algorithm could solve the problem in a 
reasonable time. 
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Introduction 
 
Traffic flow management decision support 
tools such as the User Request Evaluation 
Tool (URET), developed by the MITRE 
Center for Advanced Aviation Systems 
Development, and the Center-TRACON 
Automation System (CTAS), developed by 
the National Aeronautics and Space 
Administration/Ames Research Center, use 
simulation as a tool for development, technical 
assessment, and field evaluation. 
 
The air traffic scenarios, used by these 
simulations, are data files describing the flow 
of aircraft traffic through an airspace over a 
period of time. For traffic flow management 
decision support tools, these airspaces are 
generally those defined for Terminal Radar 
Approach Control facilities (TRACONs), such 
as those that manage arrivals and departures 
around New York and Dallas/Fort Worth, and 
Air Route Traffic Control Centers (ARTCCs), 
that manage air traffic as it crosses the 
country. The scenario data files contain 
planning/advisory information and track data. 
The time-stamped planning/advisory data 
describe the aircraft’s planned flight; it 
includes its flight plan and flight plan 
amendments, interim altitude clearances, and 
hold information. The track data represents the 
aircraft’s actual flight path. It consists of a 
series of 4-dimensional components: two 
defining the aircraft’s position (using either 
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XY-coordinate or latitude/longitude pair); 
another component defining its altitude; and 
the fourth component being an associated 
time.  
 
One form of these scenario files is the 
playback scenario, which is based on the 
format of recorded intercomputer messages. 
Playback scenarios composed of test data 
specifically designed to test its internal 
algorithms are used to develop the decision 
support tools. But in order to ensure their 
operational capability, the tools are tested with 
scenarios based on recorded field data 
containing the situations they are designed to 
protect against.  
 
Playback scenarios are also used to evaluate 
decision support tools because they provide 
the most realistic simulation environments. 
For example, the FAA’s Engineering and 
Integration Services Branch (ACT-250) at the 
William J. Hughes Technical Center in 
Atlantic City, New Jersey, has used recorded 
field data in two recent studies. Their URET 
Conflict Prediction Accuracy Study1 used 
simulation scenarios based on field data 
recorded at the Indianapolis ARTCC and their 
URET/CTAS Trajectory Prediction Accuracy 
Study2 used playback scenarios based on field 
data recorded at the Indianapolis ARTCC for 
URET and Fort Worth ARTCC for CTAS. In 
both of these studies the playback scenarios 
were generated directly from the recorded 
field data. 
 
However, frequently it is necessary to modify 
the scenarios. For example, The FAA’s Free 
Flight Phase One Program Office tasked 
ACT-250 to develop the scenarios used to 
verify the accuracy requirements of the URET 
Core Capability Limited Deployment 
(CCLD), the operational implementation of 
the URET. For this effort, the recorded field 
data was modified to induce aircraft-to-aircraft 
and aircraft-to-airspace encounters that did not 

exist in the recorded data. ACT-250 did this 
by changing the start times of the aircraft 
flights through time-shifting.3 This created the 
necessary number of encounters between the 
aircraft while retaining the actual routes and 
profiles the aircraft originally flew. 
 
While it would have been possible to generate 
scenarios meeting the desired constraints 
through trial and error, it was desirable to 
calculate these changes algorithmically. While 
researching various random search techniques, 
it was determined that a genetic algorithm 
(GA) might be applicable. The following 
quote on the use of GAs in general was found 
to be appropriate: 
 
 . . . if the space to be searched is large, is 

known not to be perfectly smooth and 
unimodal (i.e. consists of a single smooth 
‘hill’), or is not well understood, or if the 
fitness function is noisy, and if the task 
does not require a global optimum – i. e., 
if quickly finding a sufficiently good 
solution is enough – a GA will have a 
chance of being competitive with or 
surpassing other ‘weak’ methods (methods 
that do not use domain-specific knowledge 
in their search procedure)4 

 
Genetic Algorithm Implementation 

 
Genetic algorithms (GAs) were invented by 
John Holland at the University of Michigan in 
the 1960s and 1970s. They are considered the 
most prominent example of evolutionary 
programming. Comprehensive information 
regarding the history, study, and application of 
GAs can be found in the literature.4,5, 6 
 
GAs are a class of algorithms that derive their 
behavior from a metaphor of the processes of 
evolution. As such, there is no specific GA; 
instead GAs are more of an approach to 
solving a problem. All GA approaches have 
the following traits in common: a population 
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of chromosomes, a fitness function, selection 
according to fitness, crossover to create new 
offspring, and mutation.  
 
For this study, a GA was implemented in a 
program named Cat.† This program generates 
a set of delta times that can be used to time 
shift the flights in a scenario, inducing 
encounters meeting specific user-specified 
constraints.  
 
To find aircraft-to-aircraft encounters, Cat 
compares each flight’s track points with the 
track points from each of the other flights. An 
encounter is defined to exist between two 
flights when the closest point of approach 
(CPA) between the flights is less than 20 
nautical miles in the horizontal plane and less 
than either 1000 or 2000 feet in the vertical 
axis, depending on the aircraft’s altitude. In 
addition to the distance at CPA, an encounter 
has an encounter angle (EA) defined at the 
CPA. This angle is defined as 180° when the 
aircraft are flying directly toward each other 
and 0° when they are in-trail. Cat tallies these 
encounter occurrences in the ten constraint 
bins defined in Tables 1 and 2. 
 
Cat uses a genetic algorithm to evolve a set of 
possible solutions so that the number of 
aircraft-to-aircraft encounters in each of these 
bins falls between input bounds. 
 
 
 
 
 
                                                 
† Cat was developed using gcc, the GNU C/C++ Version 
2.7.2.3 compiler, and libg+, the GNU C/C++ Version 2.7.2 
libraries. Cat was implemented on a Sun Ultra ES-4500 400 
megahertz workstation using the Solaris Version 2.6 operating 
system. Cat was named for the character Cat on the British 
television series Red Dwarf. Cat is a humanized feline; the 
result of 3,000,000 years of evolution on the space ship Red 
Dwarf after all but one of its crew were killed by a radiation 
leak.  
 

Table 1: CPA Constraint Bins 
Bin # Constraint 

1 0 nm ≤ CPA < 5 nm 
2 5 nm ≤ CPA < 10 nm 
3 10 nm ≤ CPA < 15 nm 
4 15 nm ≤ CPA < 20 nm 

 
Table 2: EA Constraint Bins 

Bin # Constraint 
5 0 deg ≤ EA < 30 deg 
6 30 deg ≤ EA < 60 deg 
7 60 deg ≤ EA < 90 deg 
8 90 deg ≤ EA < 120 deg 
9 120 deg ≤ EA < 150 deg 

10 150 deg ≤ EA < 180 deg 

 
Definition of the Chromosome Population 
 
In a GA, a chromosome is defined as an array 
of bits or characters that represent a potential 
solution to a problem. These bits or characters 
are defined as the chromosome's genes. The 
values these genes can assume are defined as 
alleles. A population of these chromosomes is 
a subset of all solutions to the problem. 
 
In the program Cat, a chromosome is defined 
to be a sequence of delta times (genes) 
represented by the tuple <∆t1, ∆t2, ..., ∆tn>, 
where there is a delta time associated with 
each flight. Therefore the number of genes in 
a chromosome is equal to the number of 
flights in the scenario. These delta times 
represent the time (in tens of seconds) that the 
start time of a flight is to be modified to start 
earlier than its original start time. For 
example, the chromosome <0, 75, 9, …> 
means to start the first flight at its original 
time, to start the second flight 750 seconds 
earlier than its original start time, to start the 
third flight 90 seconds earlier, etc. Each gene 
is restricted to assume 360 values (alleles) 
(i.e., 0, 1, 2, …, 359) thereby restricting the 
amount of time a flight could be shifted earlier 
in time to one hour.  
 
The size of the population of chromosomes in 
Cat is an input parameter. The initial 
population consists of one chromosome that 
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represents the start times of the original field 
data; i.e., the chromosome <0, 0, 0, …>. The 
remaining chromosomes in the initial 
population have delta times selected randomly 
from a uniform distribution in the interval 0 to 
359.  
 
Definition of the Fitness Function 
 
The fitness function in a GA produces a score 
for each chromosome, which is a measure of 
how well the chromosome solves the 
particular problem. The fitness of a population 
may be defined either as the average of all of 
the fitnesses of the population's chromosomes 
or as the best of the fitnesses of the 
chromosomes in the population. The goal of 
the GA is to evolve its population until its 
fitness reaches some desired value.  
 
The goal of the program Cat is to find a 
chromosome that results in tallied encounter 
counts that fall between desired bounds in 
each of the ten constraint bins defined in 
Tables 1 and 2. These bounds are input to Cat 
in the form of ten pairs of constraint bounds – 
a low bound and a high bound for each of the 
ten constraint bins. 
 
The fitness function implemented in Cat 
rewards both individual and multiple instances 
where tallied counts fall within these 
constraint bounds; while at the same time 
penalizing instances in which the measured 
value is below the low bound or above the 
high bound.  
 
The fitness function defined for Cat is: 
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For each of these equations, loboundi refers to 
constraint bin i’s low bound, hiboundi refers to 
its high bound, and counti refers to the number 
of encounters tallied to be in the constraint 
bin. 
 
The value of xi provides a value of 1.0 if the 
tallied count is between the low and high 
bounds and rapidly decreases to 0.0 as the 
count gets further away from either of the 
bounds. This is seen in Figure 1, which is a 
plot showing the individual contribution (xi) as 
a function of the measured count (counti). The 
two vertical dashed lines represent the bin's 
low bound and upper bound.   
 
Once the individual values of xi are computed 
for each of the ten constraint bins, X is 
computed as their floating-point sum as 
defined in Equation (2). This results in X 
being a weighted count of the number of bins 
in which the constraints have been satisfied.   
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The fitness (F) is then calculated as defined in 
Equation (1). Figure 2 is a plot of how fitness 
(F) varies as a function of the sum of the 
individual contributions (X). This plot shows 
how the fitness exponentially approaches the 
value of 1.0 as the number of satisfied 
constraint bins approaches 10.0. 
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Figure 1: Constraint Bin Contribution to Fitness 
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Figure 2: Graph of the Fitness Function 
 
 
Definition of the Selection Process 
 
The first step in evolving a new generation of 
chromosomes is to select parent chromosomes 
from the current population. In most GAs the 
parent chromosomes are selected from the 
population with the probability of selection 
being directly proportional to a chromosome’s 
fitness. 
 

In the program Cat, the number of parent 
chromosomes selected in Cat is the same as 
the number of chromosomes in the population. 
Cat uses “stochastic universal sampling” as its 
selection technique. This technique selects 
chromosomes based on each chromosome's 
expected representation in the selected 
population. The expected representation is 
defined as the ratio of the individual's 
chromosome's fitness and the sum of the 
fitnesses in the population. Unlike purely 
random selection techniques, this technique 
ensures that fit chromosomes are not 
statistically lost in the selection process.4,6 
 
 
Definition of the Crossover Technique 
 
The next step in evolving a new generation of 
chromosomes is to create an offspring 
population from the selected parent 
chromosomes based on crossover. Generally 
crossover occurs according to a probability 
called the probability of crossover. When it 
occurs the genes of paired parent 
chromosomes are combined according to 
some rule to create new chromosomes. In 
most implementations, this is done by 
swapping the parent’s genes at selected locus 
positions.  If crossover does not occur the 
selected parent's chromosomes become the 
offspring chromosomes. 
 
In Cat, the occurrence of crossover depends 
on an input parameter Pc, which is the 
probability of crossover. When crossover 
occurs, Cat swaps the genes between two 
parent chromosomes using two randomly 
selected points. This reduces positional bias4. 
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Definition of the Mutation Technique 
 
The final step in evolving a new generation of 
chromosomes is mutation. Each of the genes 
in the chromosomes of the offspring 
population is considered for mutation 
according to a probability of mutation. When 
mutation occurs the gene is randomly changed 
to another valid value (allele). 
 
For mutation, Cat replaces a gene with a delta 
time selected randomly from a uniform 
distribution in the interval 0 to 359. As a 
result, each flight can be shifted to start 
randomly up to one hour prior earlier in time. 
The occurrence of mutation in Cat depends on 
an input parameter Pm, which is the 
probability of mutation.  
 

Results 
 
Two series of test runs were made to 
determine if Cat can effectively calculate a set 
of delta times that can be used to modify a 
scenario so it will have user-specified 
distribution of encounters. The first, called the 
solvability tests, were to determine if the 
program could solve the problem. The second, 
called the time-to-solve tests, were to analyze 
how long it took Cat to repetitively solve a 
single problem. 
 
All of these test runs were made using one 
hour of interpolated track data derived from 
field data recorded at the Indianapolis 
ARTCC. This recorded data consists of 493 
flights with 344 aircraft-to-aircraft encounters. 
The distributions of these baseline encounters 
for closest point of approach (CPA) and for 
encounter angle (EA) are shown in Table 3.‡ 

 
                                                 
‡  It important to note that the 20 encounters in Bin #1 of 
Table 3, which had a CPA less than 5 nm are not ATC 
conflicts, since not all of the rules defining an ATC conflict 
were taken into account.  

 
 

Table 3: Original Encounter Counts 
 

Bin # 
 

Constraint 
Original 
Count 

1 0 ≤ CPA < 5 20 
2 5 ≤ CPA < 10 68 
3 10 ≤ CPA < 15 119 
4 15 ≤ CPA < 20 137 
5 0 ≤ EA < 30 83 
6 30 ≤ EA < 60 44 
7 60 ≤ EA < 90 51 
8 90 ≤ EA < 120 51 
9 120 ≤ EA < 150 58 

10 150 ≤ EA < 180 57 

 
Solvability Tests 
 
The solvability tests consisted of three runs. 
The first run attempted to evenly distribute the 
344 original encounters evenly across both the 
CPA and the EA constraint bins. To 
accomplish this Cat's input parameters 
specified 85 to 87 encounters in each of the 
CPA bins (Bins #1-4) and 56 to 58 encounters 
in each of the EA bins (Bins #5-10). The input 
also specified a high value of 0.99 for the 
desired fitness of the solution. This meant the 
program would terminate with a solution that 
comes close to meeting the constraints. This 
was done to ensure the program would 
terminate in a reasonable amount of time.  
 
The results of this first run are shown in Table 
4, where it is seen Cat generated a set of delta 
times for which the requested encounter 
counts fell within the constraint bounds of all 
of the bins – i.e., this solution had a fitness 
value of 1.0. Cat generated this solution in 173 
generations using 2955.73 seconds of CPU 
time. This solution contains 344 encounters, 
but these are not the same 344 encounters that 
occurred in the baseline data because the time 
modification results in different encounters.  
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Table 4: Constraint Bins for the First Run 

Bin 
# 

 
Constraint 

low 
bound 

high 
bound 

 
Count 

1 0 ≤ CPA < 5 85 87 85 
2 5 ≤ CPA < 10 85 87 85 
3 10 ≤ CPA < 15 85 87 87 
4 15 ≤ CPA < 20 85 87 87 
5 0 ≤ EA < 30 56 58 58 
6 30 ≤ EA < 60 56 58 58 
7 60 ≤ EA < 90 56 58 56 
8 90 ≤ EA < 120 56 58 57 
9 120 ≤ EA < 150 56 58 58 

10 150 ≤ EA < 180 56 58 57 

 
Figure 3 is a plot showing how the fitness of 
the population increased with the evolving 
generations of the chromosome population. 
The thicker line in the plot represents the best 
fitness encountered up to that generation. The 
narrower line in the plot represents the 
average fitness of the chromosomes in that 
generation.  
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Figure 3: Fitness vs. Generation 

 
In the second solvability test Cat was asked to 
increase the number of encounters. In 
addition, the desired fitness was lowered to 
0.975. Cat generated the results shown in 
Table 5 in 172 generations with a best fitness 
of 0.978738. This solution contains 388 

encounters with the count in one bin (Bin #9) 
not falling within the desired bounds. 

Table 5: Constraint Bins in Second Run 
Bin 
# 

 
Constraint 

low 
bound 

high 
bound 

 
Count 

1 0 ≤ CPA < 5 22 24 24 
2 5 ≤ CPA < 10 75 82 77 
3 10 ≤ CPA < 15 131 143 133 
4 15 ≤ CPA < 20 151 164 154 
5 0 ≤ EA < 30 91 100 91 
6 30 ≤ EA < 60 48 53 51 
7 60 ≤ EA < 90 56 61 60 
8 90 ≤ EA < 120 56 61 57 
9 120 ≤ EA < 150 64 70 63 

10 150 ≤ EA < 180 63 68 66 

 
In the third solvability test Cat was required to 
increase the number of encounters and to 
distribute the encounters evenly across both 
the CPA and EA constraint bins. Table 6 
presents the results of this run. The fitness for 
this solution was 0.985589. It contains 389 
encounters with the count in one bin (Bin #1) 
not falling within the desired bounds. This 
solution was generated in 242 generations 
using 4235.17 seconds of CPU time. 

 
Table 6: Constraint Bins in Third Run 

Bin 
# 

 
Constraint 

low 
bound 

high 
bound 

 
Count 

1 0 ≤ CPA < 5 95 105 94 
2 5 ≤ CPA < 10 95 105 95 
3 10 ≤ CPA < 15 95 105 96 
4 15 ≤ CPA < 20 95 105 104 
5 0 ≤ EA < 30 60 65 65 
6 30 ≤ EA < 60 60 65 65 
7 60 ≤ EA < 90 60 65 64 
8 90 ≤ EA < 120 60 65 65 
9 120 ≤ EA < 150 60 65 65 

10 150 ≤ EA < 180 60 65 65 

 
Time-to-Solve Tests 
 
Ten runs were made to analyze the time 
required by Cat to generate an acceptable 
fitness given the same input parameters, but 
using a different seed value for the random 
number generator. 
 
Cat was able to generate a solution in each of 
these ten runs and in one run generated two 
chromosomes, each having equally fit 
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solutions. Since the GA is a stochastic process 
each of the ten runs produced a different result 
and used a different amount of CPU 
processing time. Figure 4 is a plot of the best 
fitness value as a function of elapsed CPU 
processing time for each of the ten runs. 
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Figure 4: Best Fitness vs. CPU Processing Time 

 
Table 7 shows the time required to generate a 
solution in each of the ten runs. These results 
show that a solution was generated in as little 
as 1890.69 seconds and as much as 4017.10 
seconds. The average time-to-solve was 
2993.74 seconds with a standard deviation of 
628.17 seconds. 
 

Table 7: Time to Solve in Test Runs 
Run 

Number 
Time-to-solve 

(CPU seconds) 
0 3331.14  
1 3844.34 
2 2787.15 
3 2673.55 
4 2907.13 
5 4017.10 
6 3051.04 
7 2449.61 
8 2986.64 
9 1890.69 
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