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At the heart of every air traffic decision support tool’s functionality is its trajectory 
prediction, where a trajectory is defined as the 4-dimensional path of an aircraft. This paper 
presents a comprehensive implementation for measuring the accuracy of a trajectory 
prediction in support of a validation methodology. The process includes four main 
processing areas: (1) parsing and checking the actual positional data of an aircraft (i.e., the 
aircraft’s actual trajectory), (2) parsing the trajectory predictions, (3) comparing the actual 
and predicted aircraft trajectory by sampling and measuring, and (4) analyzing the results. 
This paper presents detailed descriptions of the sampling process and metrics used to 
measure the accuracy of a predicted trajectory. Several aspects of the analysis and 
implementation are provided as well, such as inferential statistical approaches and graphical 
user interfaces to examine individual flights. 

Nomenclature 
ACID Aircraft Identification 
API Application Program Interface 
ARTCC Air Route Traffic Control Center 
ATC Air Traffic Control 
CID Computer Identification 
COTS Commercial Off-the-Shelf 
CPAT Conflict Probe Assessment Team 
DST Decision Support Tool 
ERAM En Route Automation Modernization 
FAA Federal Aviation Administration 
FL Flight Level 
GUI Graphical User Interface 
IBST Interval Based Sampling Technique 
JDBC Java Database Connectivity 
JFK John F. Kennedy International Airport 
JOGL Java bindings for OpenGL 
JPDO Joint Planning and Development Office 
NAS National Airspace System 
SEGV Software Engineering, Graphics, and Visualization Research Group at Rowan University 
SQL Structured Query Language 
TP Trajectory Predictor 
URET User Request Evaluation Tool 
UTC Coordinated Universal Time 
ZDC Washington. ARTCC 
ZME Memphis ARTCC 
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I. Introduction 
Most air traffic service providers in the United States and Europe anticipate significant growth in air traffic that 

is expected to outpace the capacity limits of their aviation systems, resulting in greater congestion and inefficiency. 
Broad advances in ground-based and airborne automation, such as decision support tools (DSTs), are envisioned to 
mitigate the problem. These tools have many purposes and typically serve to lower the complexity of airspace 
problems faced by the current human decision makers operating the system. They include tools that serve to predict 
future conflicts between aircraft, both for ground based controllers or airborne pilots, allowing more strategic 
separation management of aircraft. Air traffic management DSTs include capabilities that forecast where and when 
traffic workload would stress the system, allowing air traffic supervisors to make more efficient adjustments to 
either avoid the condition or alter staff and/or airspace accordingly. Such tools also include air traffic metering tools 
to efficiently sequence aircraft into en route and arrival flows, maximizing the capacity of the system. A common 
thread in all these DSTs is the accurate and timely modeling of the aircraft’s current state and anticipated future 
path. This function is referred to as the trajectory predictor (TP) process. The trajectory is the actual or future 4-
dimensional path of the aircraft. TP accuracy can be measured by post flight comparisons of predicted and observed 
aircraft trajectories. Since the predicted trajectory is the fundamental input that sustains the DST’s capabilities and 
functions, the accuracy of the TP has a direct impact on the DST’s overall performance and usability.  

In order to attain the specified accuracy requirements 
of a DST, it is necessary to validate the DST’s TP. Ref. 1 
presents a TP validation methodology that can drive the 
performance of a TP toward a targeted level. To achieve 
this, the validation methodology must first measure the 
trajectory performance of the TP, and then identify the 
specific sources of any resulting errors, thus facilitating 
an improvement. Again, the TP operates in context of a 
DST, therefore improvement of a TP’s predictions 
correlates to an improvement in its companion DST. Ref. 
2 defines some metrics used within this methodology and 
shows how these metrics can assess a TP’s impact on a 
DST. Figure 1 summarizes this graphically.  

This paper presents the implementation details in 
measuring a TP’s accuracy, which is a critical element of 
validating a TP. It provides concise definitions of the 
metrics calculated, discusses the methods required to 
begin analysis of a TP, and demonstrates, with examples, 
the tools and steps required to perform this analysis. 

II. Measurement of Trajectory Accuracy 
Measurement and analysis of a TP’s performance 

focuses on TP accuracy. Accuracy may be defined as the 
degree of conformity of a measured or calculated quantity 
to its actual (true) value. For TP measurement, accuracy 
is the difference between the TP’s predicted path of the 
aircraft to the actual path the aircraft flew. As shown in 
Fig. 1, the TP is driven by input data and as a result produces aircraft trajectories that drive the DST to produce other 
client application products (e.g. conflict probe predictions). Ultimately, decision makers will focus measurements on 
the client’s outcomes, where metrics on the TP’s predictions are a source. 

There are many considerations in measuring the TP’s accuracy. First, the true path of the aircraft needs to be 
determined. This is usually done by examining radar surveillance reports and other supplemental air traffic control 
(ATC) data, such as ATC clearances in the form of flight plan amendments and vertical altitude clearances. Since 
the data may have errors, some level of reasonableness checking is needed. Second, the TP’s trajectory predictions 
are captured and parsed. Third, the actual aircraft paths are compared to the predicted trajectories. Since there is 
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Figure 1. Illustration of Application of TP 
Metrics to Higher-Level Applications‡
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usually a large amount of data, a statistical sample can be taken to estimate the errors. Next, the analysis begins by 
calculating descriptive and inferential statistics of the errors. Graphical tools can also be used to aid in this analysis 
phase.  

Several implementation schemes are possible. The approach presented in this paper uses Java- based applications 
that parse the input files, check for reasonableness, sample and calculate the metrics, and upload the data into a set 
of relational database tables. The relational database acts as a catalyst for the analysis phase. Structured Query 
Language (SQL) calls are designed to calculate the various statistics and explore the results. Finally, an individual 
flight’s predicted trajectories can be extracted for graphical display against the truth data, providing insight into the 
operational source and impact of the errors. 

III. Interval Based Sampling Technique 
The Interval Based Sampling Technique (IBST) is the trajectory accuracy sampling method developed by the 

Federal Aviation Administration’s (FAA) Conflict Probe Assessment Team (CPAT). It has been previously 
documented in Ref. 3 and has been used in a number of FAA studies and test programs. As early as 1999, the TPs 
within the operational DSTs of the User Request Evaluation Tool (URET) and the Center TRACON Automation 
System were evaluated using this technique. More recently, it is being employed to evaluate the TP in the En Route 
Automation Modernization (ERAM) system, which will replace the en route operational systems such as URET and 
the Host Computer System. 

IBST is a two-step process that pairs the track and trajectory points to measure the prediction errors for an entire 
flight. This sampling technique takes the perspective of the DST user, the air traffic controller. The active trajectory 
at the time the controller is looking at the display may be several minutes old and in error. Consequently, in the 
IBST the trajectories are sampled at the current time for a look-ahead time of 0 seconds and at a number of 
parameter times in the future (e.g., 300, 900, and 1200 seconds). This is contrasted with a sampling technique that 
uses the internal build time of the trajectory to start the sampling .4, 5 

The age of the trajectory, which is internal to the DST, is irrelevant to the controller; only the accuracy of the 
prediction is important. The controller uses track data to safely separate aircraft and a DST to resolve future aircraft 
conflicts. The CPAT designed the interval based sampling technique from the perspective of the air traffic controller 
to answer two fundamental questions: How accurately is the DST’s trajectory currently predicting the present 
position of the aircraft? and How accurately is the DST’s trajectory currently predicting the future position of the 
aircraft? 

The two primary steps in the IBST are: 
1) An aircraft is selected for measurement and the track points are sampled in succession a parameter number 

of seconds (e.g., 120 seconds) until the end of the track is reached. Each track point selected as a sample has 
a specific time associated with it, which is referred to as the sample time. The aircraft's trajectories are then 
searched to find the most recent trajectory for the given sample time. This operation is repeated for every 
track point that is sampled. This first sampling step obtains position prediction error data for a look-ahead 
time of 0 seconds. This data answers the first of the air traffic controller’s questions on accuracy, namely the 
accuracy of the DST’s prediction for the present position of the aircraft. A second sampling operation is 
necessary to obtain error data for other look-ahead times into the future. 

2) Once a track point and its current trajectory are selected for sampling, a second sampling step is executed. 
The second step samples future points on the trajectory relative to the current sample time. As discussed 
previously, the first sampling step selects a point on the trajectory that has the same time value as the current 
track point, corresponding to a look-ahead time of 0 seconds. The second step selects points on the 
trajectory that are defined as a parameter set of times into the future (e.g., 300, 600, 900, and 1800 seconds). 
It then finds the future track reports that have the same times as the selected trajectory points. For each look-
ahead time, the spatial errors are calculated between the selected trajectory points and their corresponding 
track points. This second step answers the second of the air traffic controller’s questions on accuracy, 
namely the accuracy of the DST’s prediction of the future position of the aircraft. 

A graphic depiction of the IBST is shown in Fig. 2. The line labeled Track represents the time line for an 
aircraft track. The time point labeled ST  represents the initial interpolated track point. 
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Figure 2. Time-line for the IBST§

 

The sampling time to start computing metrics for this track is represented by , which is defined as  0T
 

STST0T Δ+=  (1) 
 

where STΔ  is a parametric value (a multiple of the interpolation interval) that establishes the starting time at a point 
where the track is more stable. 

The trajectories for this aircraft are presented in Fig. 2 by the time lines labeled Traj0, Traj1, Traj2, and Traj3. 
The trajectory to be sampled for a particular track sampling time is the trajectory with the latest trajectory build time 
not exceeding the track sampling time. The selected trajectories, which have been interpolated using the same 
interval used for the track data. In Fig. 2, the trajectory labeled Traj0 would be sampled for the sampling time . 
This point is labeled  and represents the look-ahead time of 0 seconds for the trajectory sampling time .  

0T

0,0T 0T

Metrics are computed at the time point labeled  and at the incremented time points  and , defined as 0T 1,0T 2,0T
 

ij,i1j,i TTT Δ+=+  (2) 
 

where  is the parametric sampling interval for a specific sampling time. iTΔ
The trajectory sampling process continues until either the end of the track is reached, the end of the trajectory is 

reached, or the time exceeds , where  is a parametric input. Then the next track sampling time 

 is computed as 
win0 TT Δ+ winTΔ

1iT +

 
TTT i1i Δ+=+  (3) 

 
where TΔ , is the parametric sampling interval for sampling a specific track and trajectory. 
                                                           
§ Adapted from Figure 4 in Ref. 3. 
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IV. Trajectory Prediction Accuracy Metrics 
In this section, a set of basic TP metrics are defined.** An aircraft’s track may be approximated by a series of 4-

dimensional position points. These four dimensions are: 
  

jNode

Y 
A

xi
s

X Axis

Direction of flight

1+jNode

Trajectory segment

 
Figure 3. Aircraft Track and Trajectory 

1) time 
2) x-coordinate 
3) y-coordinate 
4) altitude 

 
The x- and y-coordinates are in a 

stereographic coordinate system with the 
x-axis representing the west-to-east 
direction and the y-axis representing the 
south-to-north direction. Both the x- and 
y-coordinates are measured in nautical 
miles. The altitude represents the 
aircraft’s pressure altitude measured in 
feet. An aircraft’s trajectory is usually 
considered to be an aircraft’s predicted 
track, also consisting of a series of 4-
dimensional position points. 

An example of a track and a trajectory is illustrated in Fig. 3, which shows an xy-plane containing points that 
represent the position of an aircraft flying in an easterly direction. Two trajectory nodes, represented as  and 

, along with corresponding line segments connecting the trajectory nodes are also shown in Fig. 3. Each of 
these track position points and trajectory nodes would have an associated time, x- and y-coordinate, and altitude. 

jNode

1jNode +

The track position point with the overlaid graphic of an airplane represents a specific point of interest, which will 
be discussed in the following subsections on the various trajectory accuracy metrics. 

A. Basic Metrics for Trajectory Prediction 
1. Horizontal Metrics 
Figure 4 shows the three basic metrics 

for trajectory prediction accuracy that lie 
in the horizontal plane: the horizontal 
error ( ), along-track error ( ), 

and cross-track error ( ). These 
metrics are based on the coordinates of 
the aircraft, which is denoted as  in 
Fig. 4, and a trajectory segment 
containing the points  and TJ . 
These coordinates are defined as vectors 
in Eq. (4), Eq. (5), and Eq. (6). 
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Figure 4. Three Basic Trajectory Prediction Metrics 
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** These metrics were first presented in Ref. 6 and later in Ref. 7 
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Note also that Fig. 4 shows positive trajectory prediction accuracy errors. Of course, by its definition as a 

distance between two coordinate points  is always positive. The along-track error  is positive if the 

aircraft is ahead of the corresponding route segment node. The cross-track error  is positive if the aircraft is to 
the right of the route segment. v v

horize alonge
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The vectors U  and V  shown in Fig. 4 are defined as: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

1

TJAC

TJAC

y

x

yy
xx

u
u

U
v

 (7) 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

12

12

TJTJ

TJTJ

y

x

yy
xx

v
v

V
v

 (8) 

 
First of all, it is obvious that the horizontal error is merely the magnitude of the vector U , which can be 

calculated as: 

v

 
2
y

2
xhoriz uuUe +==

v
 (9) 

 
For the along-track error, consider the angle between the vectors U

v
 and V

v
, which is shown as Θ  in Fig. 4. 

This angle can be found using a geometric interpretation of the vector dot product, which can be calculated as: 
 

ΘcosVUVU
vvvv

=•  (10) 
 

VU
VUcos vv

vv
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=Θ  (11) 

 
The along-track error ( ) is the projection of the vector Ualonge

v
 onto the vector V

v
, which is defined as: 
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Numerically this can be calculated as: 
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The cross-track error can be derived using the vector cross product of the vectors U

v
 and V , which is defined 

as: 

v
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Θ=× sinVUn̂VU
vvvv

 (14) 
 

where  is a unit pseudo-vector perpendicular to both Un̂
v

 and V
v

.  Since  is a unit vector, Eq. (14) may be 
rewritten as: 

n̂

 
Θ=× sinVUVU

vvvv
 (15) 

 

VU

VU
sin vv

vv
×

=Θ  (16) 

 
The cross-track error ( ) can then be derived as: crosse
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V
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=
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=Θ=  (17) 

 
Using traditional vector operations, this can be calculated as: 
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These trajectory prediction accuracy metrics are generic in the sense that they are defined for any given track 

position point and two trajectory points along a trajectory segment. Sections IV.B and IV.C define how these 
metrics can be interpreted specifically as time-coincident or spatially-coincident trajectory prediction accuracy 
errors, depending on how the two trajectory points are selected. 

 
2. Vertical Metrics 
The vertical error represents the difference 

between the track altitude and the predicted 
altitude. This error, depicted in Fig. 5, lies 
perpendicular to the horizontal plane. A positive 
vertical error indicates that at a corresponding 
point in time the aircraft is above where the 
trajectory predicted it would be.  

B. Time-coincident Trajectory Prediction 
Errors 

To calculate time-coincident trajectory 
prediction errors, the point TJ  and TJ  are 
selected such that TJ  is the point along the 
trajectory segment with a corresponding time as 
the point of interest, which is usually found using 
linear interpolation, and  is the following 
node along the trajectory. Thus, the metrics are formed by projecting the actual track position of the aircraft onto a 
line segment of the trajectory. Again, this particular line segment is formed by the time-coincident point,  and 
the next time ordered node,  along the trajectory. 

1 2
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Figure 5. Vertical Trajectory Error†† 
 

 
†† Adapted from Figure 4 in Ref. 3. 
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Figure 6 shows an example in which the 
point , a point on the trajectory line 
segment between  and , has 
the same time value as the track point of 
interest. The point  is the end of the 
trajectory line segment. The situation shown 
in Fig. 6 is equivalent to the example shown 
in the Section IV.A to derive the trajectory 
prediction accuracy metrics.  
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Figure 6. Example of Time-coincident 
Trajectory Prediction Errors (1 of 3) 
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Figure 7 shows an example in which the 
point , which again has the same time 
value as the track point of interest, lies on an 
earlier trajectory line segment. Again, the 
point  is the endpoint of the trajectory line 
segment. In this example the along-track error 
is positive, much more so than in the previous 
example, and due to the geometry of the 
situation, the cross-track error has switched 
signs and is now negative.  
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Figure 7. Example of Time-coincident 
Trajectory Prediction Errors (2 of 3) 

 

The horizontal error, , is always 
unsigned, but the along- and cross-track 
errors are signed indicating the orientation of 
the aircraft’s actual position relative to the 
predicted position. In Fig. 6, both along and 
cross-track are positive values with the actual 
aircraft ahead and to the right of the time-
coincident trajectory prediction. 

horze

Figure 8 shows an example in which the 
point , again having the same time value 
as the track point of interest, lies on a later 
trajectory line segment. In this case the point 

 is the end point or node of the next 
trajectory line segment. In this example the 
along-track error is negative, which reflects 
the fact that the aircraft is behind where it 
would be expected to be in the trajectory. Due 
to the geometry of this example, the cross-
track error is now positive. 

1TJ

2TJ

It can be detected whether or not the 
projection of the aircraft’s position point lies 
on the trajectory segment by defining the 
scalar  value as the along-track error 
divided by the magnitude of the vector V

k
v

, as 
presented in Eq. (19).  
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Figure 8. Example of Time-coincident 
Trajectory Prediction Errors (3 of 3) 
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Three conditions can exist: (1.) If 0.1k0.0 ≤≤

iTJ 1iTJ +

, then the projection of the aircraft’s position point lies on the 
route segment defined by the points  and . (2.) If 0k <  (which also means that that the along-track error 

 is negative), then the aircraft’s position can be interpreted to be before the route segment. (3.) If , then 
the aircraft’s position can be interpreted to be after the route segment. 

alonge 0.1k >

C. Spatially-coincident Trajectory Prediction Errors 
To calculate the spatially-coincident trajectory 

prediction errors, the point  is selected to be 
the point on the nearest trajectory segment that 
has the shortest perpendicular distance. In 
general, the closest segment is the trajectory 
segment with the shortest perpendicular from the 
track point to the segment. This situation is 
depicted in Fig. 6. In this case the spatially-
coincident trajectory prediction errors are the 
same as the time-coincident trajectory prediction 
errors. This occurs when the scalar  value 
defined in Eq. (19) is between zero and one. 
Depending on the geometry, the definition of the 
spatially-coincident position may be different. If 
the perpendicular intersects the extension of the 
segment (  or ) the distance to the 
segment is not the length of the perpendicular; 
instead it is the distance from the track point to 
the nearer end of the segment. The segment with the minimum adjusted distance is considered to be the closest 
segment. This situation is depicted in Fig. 9, in which the closest perpendicular is on the extension of a trajectory 
segment. In this case, the point  is defined to be the end point of the closest segment and  is the point on the 
extended trajectory segment. If all the trajectory segments were evaluated and the minimum distance remained 
between the point  and the aircraft, then this distance would be the spatially-coincident cross-track error. 
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Figure 9. Example of Spatial-coincident 

Trajectory Prediction Errors 
 

The spatially-coincident along-track error is the actual traveled distance along the trajectory between the time-
coincident trajectory position to the spatially projected point on the trajectory. For example, for the simple case in 
Fig. 6, the spatially-coincident along-track error is the same as the time-coincident version. However, if the 
spatially-coincident cross-track error is formed from the distance to an end point of a segment as in Fig. 9, the along-
track distance is calculated by again taking the traveled distance from the time-coincident trajectory position along 
the trajectory segments to this end point or node. 

For spatially-coincident errors, the projected position on the trajectory also represents the closest point on the 
trajectory relative to the current position of the aircraft. It is often necessary to determine the coordinates of this 
projected position. For example, it can be used to calculate the time difference, referred to as predicted time error, 
between the projected point and the time of the time-coincident position. If on the segment (unlike an end node like 
Fig. 9), Eq. (20) provides the coordinates for this position, referred to as the projected position r. 

 
  and  11 TJyrTJxr ykvyxkvx +=+=  (20) 

 
where is the x-dimension stereographic coordinate, similarly is the y-coordinate of this position,  value is 
defined in Eq. (19), are defined in Eq. (8), and represent the coordinates for the first 

node of the trajectory segment that the projected point r resides. The point  in Eq. (20) is not the same point in 
Fig. (9), or in Fig. (6), but the actual trajectory segment’s first node that the closest projected point r resides on. 

 rx  ry
 and y

k
  and yx vv   11 TJTJx

1TJ

V. Implementation 
The implementation of these metrics to perform the trajectory accuracy measurement consists of a set of tools 

developed mostly internally by CPAT. The processing tools include a series of object oriented Java applications, 
linked together with a set of Linux shell scripts. The analysis uses both commercial off-the-shelf (COTS) analytical 
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tools and graphical user interfaces developed under academic and government partnerships. As illustrated in Fig. 10, 
the processing these tools perform includes four main areas: (1) parsing of air traffic control data, (2) parsing of 
trajectory predictions, (3) sampling and measurement, and (4) analysis of results. At the heart of all the processing is 
a relational database that acts as both the catalyst and storage area for the input and output data. 

For the first main processing area, the various sources of air traffic data are read and uploaded into a set of 
relational database tables. As described earlier, the air traffic data consists of air traffic controller clearances, such as 
flight plans and interim altitude messages, and position reports. This data provides the actual aircraft position for 
comparison to the predicted position, so errors here will cause the incorrect measurement of the trajectory 
prediction. Thus, the data is first interpolated to a parameter interval (nominally 10 seconds) and checked for 
reasonableness. This reasonableness checking includes detecting and correcting bad data points (e.g., a reported 
altitude of 0) or positions that surpass the typical flight envelope of civilian jet aircraft (e.g., ground speeds either 
too fast or slow). A set of algorithms are run resulting in approximately 2% of the flight data being dropped and 
another 1% being modified. This process is documented in detail in Ref. 11. The result is a database table containing 
the verified actual aircraft positions. These positions are now able to be used to confidently compare against the 
trajectory predictions. 

The second main processing area is the parsing of the trajectory predictions. Since the source of the trajectory 
predictions may be from various DSTs, and therefore in various formats, the data is parsed and loaded into a 
standard database table.  The prediction data is not checked for reasonableness like the actual air traffic data but is 
verified for completeness. 

The third main processing area compares the actual 
corrected air traffic control data to the parsed trajectory 
predictions. The difference between actual and prediction 
constitutes the error in the trajectory prediction. The 
process is comprised of the sampling and measurement 
tasks combined. For sampling, the IBST, as defined in 
Section III, is applied to determine which of the actual 
aircraft positions and trajectory predictions should be 
measured. Once the positions are selected by the IBST, 
the measurements produce a trajectory metrics database 
table. As defined in Section IV, the metrics, such as 
horizontal and vertical errors, are captured as fields within 
the trajectory metrics database table. This table provides a 
means for the analyst to query for specific flights, 
summarize the results from all or groups of flights, and 
export the data to COTS or other external tools for 
analysis.  

A key design feature of the trajectory metrics table is 
the “measure-and-flag-all” approach. All positions 
selected by the IBST have measurements calculated. 
However, many will be filtered out in the later analysis depending on flag settings and the interest of the analyst. For 
example, an aircraft position and trajectory is sampled by the IBST with a look-ahead time of zero. Consider that the 
next position selected for measurement with the same trajectory is at a look-ahead time of ten minutes and that 
during the time interval of zero to ten minutes an ATC clearance is issued at seven minutes. In this example, the 
clearance flag is set for the ten-minute look-ahead time measurement indicating that the ATC personnel cleared the 
aircraft either horizontally or vertically and the measurement is likely to be in error. It is left to the analyst whether 
or not to exclude this measurement. One point of view would consider all measurements valid and include the 
measurement in later analyses. Another point of view would exclude this flagged measurement, since the clearance 
was unavailable at the time the trajectory prediction was generated. This “measure-and-flag-all” measurement 
approach provides the analyst with the ability to decide which data to include or exclude based on particular 
analytical objectives. 
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Figure 10. Implementation Processes 

 

The fourth and final processing area comprises the analysis step. All the results, as well as input files, are 
accessible within the comprehensive relational database. In particular, the trajectory metrics table contains all the 
errors calculated based on the IBST. SQL scripts are developed to directly calculate statistics on these 
measurements. The statistics are spooled to direct reports or exported into a COTS statistical package. Descriptive 
and/or inferential statistical analyses are performed on the results. Graphical user interfaces (GUIs) may also be used 
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to plot the actual aircraft paths versus the trajectory predictions providing insight into the sources and geometries of 
the errors. Section VI provides detailed descriptions of these methods of analysis. 

VI. Analysis of Trajectory Prediction Errors 
The analysis step of the trajectory validation methodology utilizes the implementation in Section V to bring 

meaning to the error measurements defined in Section IV. There are many aspects to the analysis. Descriptive 
statistics summarize the data under study. For trajectory accuracy measurements, it provides basic summary 
information about the population of error measurements collected. It includes statistics such as the sample mean and 
sample standard deviation on the metrics defined in Section IV. Inferential statistics are applied to the data sets to 
help draw some conclusion about the results. Data mining techniques are effective methods to discover other 
unexpected information about the trajectory predictions. Individual flights are examined in detail via specially 
designed GUI applications that plot the aircraft positions and trajectory predictions overlaid on the airspace in which 
the aircraft flew. The following sub-sections will provide more detailed descriptions of the inferential statistical 
analysis performed on many flights and the complimentary individual flight-by-flight analyses. 

A. Inferential Statistics 
After defining and implementing TP metrics using a sampling technique as discussed in Section III, a common 

task is to use the results to test a DST’s TP. Although there are many types of tests that utilize these methods, this 
section discusses regression testing as a representative example. After system deployment, regression testing 
performs selective testing of the system or a component of the system to verify that modifications (e.g., a new 
release) have not introduced new problems and that the system still complies with its requirements. Regression 
testing requires that a baseline version of the trajectory modeler software be run with a given traffic sample. This 
same traffic sample is then run through the upgraded software, which is referred to as the new release version. The 
analysts compare the trajectory accuracy of both runs using the interval-based sampling method as defined in Ref. 6. 
Analysts can examine several trajectory accuracy metrics simultaneously using this process, but for simplicity, this 
section will focus only on the cross-track error. As defined previously, the cross-track error is the perpendicular 
distance between the sampled aircraft surveillance position and the time-coincident trajectory predicted position 
expressed in units of nautical miles and has a positive sign if the prediction is to the right of the aircraft. To compare 
the runs, the difference between the baseline and new release sample mean is calculated. Since the sample mean is a 
statistic and thus a random variable of the true population mean, a statistical hypothesis test is used that considers 
the variation in both samples. If the true population means were known, the difference between the two means could 
be calculated exactly. If the difference were zero, it would be concluded that the runs were equivalent. As described 
by Devore in Ref. 8, the Two-Sample t -Test provides a statistical hypothesis test that provides a criterion to reject 
the hypothesis that the sample means are not equal. This null hypothesis is expressed as: 

 
0:H nbo =− μμ  (21) 

 
where bμ is the population mean of the baseline run and nμ is the population mean of the new release run. 

The test assumes the trajectory measurements from each run are normally distributed random variables, and the 
runs are independent from one another. The following subsections explore both these assumptions further. 

1. Assumption of Independent Sample Runs 
Since the same air traffic sample is input into both runs of the trajectory model, the other variables that influence 

trajectory accuracy are expressed in the variability of flights in the two runs. These flights are the same for each run, 
therefore their influence has a proportional effect on both runs. If a specific flight exhibits higher than normal error 
in the baseline run, it would be expected that the same flight would have similar high error in the new release run. 
Of course, if the upgrade was to reduce these errors, some flights may exhibit better performance in the new release; 
but on average, if the flights perform in the same manner between runs, the runs are not independent. In Ref. 3, a 
trajectory accuracy example illustrated this lack of independence between runs, resulting in erroneous conclusions. 
An alternative technique was recommended and is presented again in the following section.  

2. Application of a Paired t -Test 
Instead of taking the difference between the sample means, the sample measurements are paired for the same 

flight and position. The large variability between flights and linear dependence between runs is effectively blocked 
out of the experiment. A new statistic, called the sample difference, is produced by calculating the difference 
between paired trajectory measurements of same flight and position from the two runs. This is expressed as: 
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iii yxD −=  (22) 
 

where  is the particular measurement from the two runs,  is the trajectory measurement for the baseline run and 
 is the same for the new release run. 

i ix

iy
Therefore, the hypothesis now is that the sample mean of ’s is equal to zero. For large sample sizes, the mean 

of the differences between two numbers is equal to the difference between the means of the same set of numbers. 
Therefore, while the hypothesis in Eq. (21) is the same, the test statistic compared to a Two-Sample 

iD

t -Test is not 
(see Ref. 3 for details). The following equation expresses the Paired t -Test’s test statistic: 

 

nDs
Dt =  (23) 

 
where D  and  are the mean and sample standard deviation of the differences (i.e., the ’s) and  is the sample 
size of these differences.  

Ds iD n

The rejection region of the Paired t -Test is expressed such that the null hypothesis is rejected if 
, where  or 1n,2/tt  or 1n,2/tt −−≤−≥ αα 1n,2/ −tα 1n,2/t −− α  are parameters taken from the Student’s t-

distribution, α is the significance level of the test, and 1n −  is the degrees of freedom for this test (number of 
samples minus one).  

3. Example Application of the Paired t -Test 
To test the hypothesis in Eq. (21) for the measurements of trajectory cross-track error, two runs were performed 

on an available trajectory modeler and the cross-track error was measured at a look-ahead time of 900 seconds. The 
sample scenario was based on two hours of recorded traffic data from the Indianapolis Air Route Traffic Control 
Center (ARTCC) in May 1999. The trajectory modeler produced over 5000 trajectories for each of the runs. The 
baseline run produced a sample mean of 0.60 nautical miles of cross-track error and a sample standard deviation of 
5.58 nautical miles (square root of the sample variance). The new release run produced a sample mean of 0.56 
nautical miles and sample standard deviation of 5.62 nautical miles. The sample mean of the differences is 0.038 
nautical miles and sample standard deviation of the differences is 0.559 nautical miles. Since the same traffic sample 
was run through the trajectory modeler, both runs are balanced with the same quantity of 832 measurements of 
cross-track error.  

As shown in Ref. 3 and discussed previously in this paper, the Paired t -Test offers significance precision due to 
the heterogeneity in the runs. By applying Eq. (23) on the above values, the test statistic t  equals 1.99. The rejection 
region defined in the above Section VI.2 equals ± 1.96, using a significance of 0.05 and 831 degrees of freedom. 
This value is found in Table A.5 of Ref. 6 as the critical value taken from a Student’s t-distribution. Therefore, the 
hypothesis that the mean horizontal error of the two runs is equivalent can be rejected (i.e., 

). Therefore, the upgrade or new release trajectory model is considered statistically 
different to the previous baseline version. In this case, it has slightly less error. 

831,025.0831,025.0 t  or t  is t −≤≥

As discussed in Ref. 8 and shown explicitly in Ref. 3, the Paired t -Test has a property of improving the 
precision of the test statistic when there is a correlation between runs and significant heterogeneity between samples 
(in this example the difference between flights). 

4. Assumption of Normality of Samples 
Even though the data was paired correctly, the result in the previous example is surprising, since the difference 

in sample means was only 0.038 nautical miles. Further inspection of the data showed that six measurements of the 
832 total were more than six standard deviations larger than the sample mean of the differences. Removal of these 
six outliers produced very different results with a test statistic of only 0.116, which is well below the 1.96 rejection 
criterion.  

In Ref. 8, Devore offers insight into why the Paired t -Test was sensitive to the outliers in the example. The 
underlying Student’s t-distribution used in the test statistic is approximately normally distributed with large sample 
sizes, which is often the case with trajectory accuracy measurements. Normally distributed parametric tests can 
perform poorly when the underlying distribution has heavy tails. These tests depend on sample mean that can be 
very unstable in the presence of heavy tails caused by outliers. Alternative non-parametric approaches relax the 
assumption of normality and rely on a more robust metric, the sample median of the observed values. This approach 
is presented in detail in Ref. 9.  
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In summary, the parametric Paired t -Test is a useful inferential statistical tool to use for regression testing a 
trajectory predictor. It is an example of the type of inferential techniques that can be employed to determine with 
some statistical confidence that your trajectory predictions have not degraded over time. In addition, more robust 
alternate techniques have been introduced that build on this Paired t -Test using non-parametric approaches. 

B. Graphical User Interface Tools 
Analysts can also use graphical tools to visualize the 

TP metrics. In 2001, CPAT supported the development of 
a prototype tool named TrajectoryGUI that was written in 
Java and interacted with an Oracle relational database 
using the Java Database Connectivity (JDBC) 
Application Program Interface (API)§§ to execute the 
database queries for collecting flight data and flight 
trajectories. In 2005, the Software Engineering, Graphics, 
and Visualization (SEGV) Research Group at Rowan 
University developed an upgraded version of the 
TrajectoryGUI for CPAT; initially as part of a senior 
class project and then through a funded internship by the 
FAA and a selected Rowan student. While still written in 
Java using the JDBC, for this upgrade, the SEGV 
completely redesigned the application to use the JOGL*** 
library, which implements the OpenGL graphics 
standard†††, to provide the plots. This upgraded version is 
documented in Ref. 10. 

When an analyst launches TrajectoryGUI, a selection 
window is generated. An example is presented in Fig. 11. 
The analyst uses this window to select the specific data to 
be used for plots and tabular display during the session. 

The analyst first identifies the database that contains 
the tables providing the desired data for this session. These databases contain the trajectory accuracy measurements 
and supporting traffic data3. The analyst then selects the appropriate ARTCC from another drop-down list. In the 
example shown in Fig. 11, the analyst has identified a local database named “elvis” and has selected ZME, which is 
the identifier for the Memphis ARTCC.  

TrajectoryGUI uses the database and ARTCC information to query the database and fill the scenario list area, 
which will identify the available scenario cases. In the example, two scenarios were identified and the analyst has 
selected the scenario case identified as ZMESAMPLE. This selection causes the flight list text area to be filled, 
identifying the available flights. In the example, the analyst has selected flight AIR100_351, which represents a 
flight with the aircraft identification (ACID) of AIR100 and the computer identification (CID) of 351. This selection 
causes the trajectory text area to be populated with the build times of the trajectories that were generated by the 
DST’s TP. The analyst now selects the desired trajectory to be plotted. In the example, the analyst has selected the 
trajectory with a build time of 40,389 seconds.‡‡‡ At this point the analyst can use the radio buttons to select the 
plotting option: trajectory and flight path, trajectory only, or flight only. After the desired option has been chosen, 
the analyst then clicks the plot button. 

                                                           

 

 
Figure 11. TrajectoryGUI: Selection Window‡‡

‡‡ Adapted from Figure 1 in Ref. 10. 
§§ The Java Database Connectivity (JDBC) is a Java API that enables Java applications to execute Structured Query 
Language (SQL) statements providing database connectivity with a wide variety of SQL-compliant databases. For 
further information see http://java.sun.com/products/jdbc/. 
*** JOGL is short for Java bindings for OpenGL. The JOGL Project hosts a reference implementation for OpenGL 
API, and is designed to provide hardware-supported 3D graphics written in Java. It is part of a suite of open-source 
technologies initiated by the Game Technology Group at Sun Microsystems. For further information about the 
JOGL API Project see https://jogl.dev.java.net. 
††† OpenGL is an open standard for developing portable, interactive 2D and 3D graphics applications that is guided 
by the OpenGL Architecture Review Board. For further information see http://www.opengl.org. 
‡‡‡ Time measurement is in seconds of the day based on 86,400 seconds in a day. 
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TrajectoryGUI first queries the 
database and presents the application’s 
main window.  The analyst can choose 
from a number of two-dimensional plots. 
As illustrated in Fig. 12, this example 
presents an X-Y plot and a T-Z plot with 
the metrics table for the selected flight. 
This window also provides the main 
interface with the analyst.  The X-Y plot, 
located on the left side of the window, 
presents the positional data for the flight in 
a horizontal plane. It is a uniform scaled 
graph with units in nautical miles. The 
positive X-axis represents east and the 
positive Y-axis represents north. The T-Z 
plot, located on the right side, presents the 
altitude data for the flight. The vertical 
units are feet and represent altitude with 0 
being sea level. The horizontal units are 
seconds with the leftmost position of the 
graph denoting the beginning of the flight. 
The metrics data is presented in a table 
located below the two plots. The table is 
filled with the accuracy measurement data 
selected from the database. At the bottom of the main window is a text area that is used to report information such as 
operational results, program mode, status, and errors. At the top of this window, an array of functions is available to 
the analyst that can be used to probe the plots. 

Figure 12. TrajectoryGUI: Main Window§§§ 
 

Figure 13 shows the result of re-centering to the area 
around the beginning of the flight data and zooming in to 
a plot view area of 100 square nautical miles. The offset 
functionality is useful if the trajectory lies near or directly 
on top of the flight’s actual path. If this is the case, the 
analyst can offset the trajectory creating separation 
between the data. The analyst uses the Move Legend 
function when the legend is located in an area where data 
is displayed. Resetting a plot allows the analyst to return 
to the initial viewing area of the plot. 

The T-Z plot window displays the T (time) and Z 
(altitude) coordinates of the flight’s track data and the 
flight’s trajectory data in an interactive coordinate system. 
Many of the same features exist for the T-Z plot, but they 
are used independently within the plots. 

Additional capabilities of TrajectoryGUI include: an 
image export of the X-Y and T-Z plots for use in 
presentations and reports, a file export of the metrics data 
in a comma delimited file for import into other 
application programs, an interface that provides the 
ability to select and deselect the metrics that are displayed 
in the metrics table, a configuration file for maintaining lists of accessible databases along with their connection 
parameters, the default metric fields to be included in the metrics table, and the desired colors for display of the 
actual flight and trajectory paths.  

 

 
Figure 13. TrajectoryGUI: Manipulated 

X-Y Plot****
 

                                                           
§§§ Adapted from Figure 2 in Ref. 10. 
**** Adapted from Figure 3 in Ref. 10. 
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VII. Case Study 
In this section, examples of a trajectory accuracy analysis implementing this methodology are provided first on a 

single sample flight and next a scenario of many flights.  

A. Sample Flight’s Analysis 
The sample flight documents the trajectory prediction of a civilian airliner traveling through Washington 

ARTCC (ZDC) originating from Dallas Fort Worth, Texas with the destination of John F. Kennedy International 
Airport (JFK) in New York. Figure 14 illustrates the top down stereographic view of the aircraft’s horizontal path 
overlaid on the ZDC high-altitude sectors it through which it travels. On its journey to JFK, the sample flight is 
traveling in a northeasterly direction where ZDC receives its air traffic control for the flight at 20:14 UTC 
(Coordinated Universal Time) from Indianapolis ARTCC. Figure 15 illustrates the time versus altitude profile of the 
aircraft. It enters ZDC at Flight Level 390 (FL 390) and at approximately 20:29 UTC is cleared to descend to FL 
380. It begins its descent to FL 380 about two minutes later. It receives a series of descent clearances and is handed-
off to New York ARTCC at 20:56 UTC during a brief cruising segment at FL 240. 

 

 

 

 
Figure 14. TrajectoryGUI: Overall Track 

Versus Trajectory X-Y 
Plot of Sample Flight 

 Figure 15. TrajectoryGUI: Overall Track 
Versus Trajectory T-Z  
Plot of Sample Flight 

 
The focus of this example is the trajectory built at 74005 seconds (20:33:25 UTC). This trajectory is illustrated in 

both Fig. 14 and Fig. 15 (blue segmented line) and overlaid with the surveillance track positions (red thicker line). 
Of particular interest is the complete turn performed later in the flight beginning roughly at 20:50 UTC. Clearly, the 
trajectory does not reflect this turn, which probably was a result of a verbal air traffic control clearance not entered 
into the automation system. An extraction of the trajectory metrics calculated for the 74005 second trajectory is 
listed in Table 1 below. A sample was taken at 74040 seconds (20:34:00) with a look-ahead time every five minutes 
up to 20 minutes in the future. At the first measurement time at look-ahead time of zero, the horizontal error was 
almost a half a mile with a zero vertical error. However, as the look-ahead time progressed and approached the turn 
depicted in close-up view in Fig. 16, the horizontal errors increased significantly. Due to the un-modeled turn, the 
error reaches up to 32 nautical miles horizontally. The clearly visible cross-track error is approximately 12 nautical 
miles, but the bulk of the error is found in the along-track error. The additional travel time caused by the turn 
manifests in as much as a -32 nautical mile along-track error, which translates to as much as 4.4 minutes lag in the 
trajectory prediction. 

The vertical error for the first measurement is zero but increases as the flight descends through a series of 
clearances not available at the trajectory build time. Thus, the column labeled “Clear Flag” in Table 1 represents 
when a clearance was initiated after the trajectory was sampled, explaining the vertical errors shown. 

The analysis discussed so far is for just one of the trajectories generated for this flight. The TP generated 34 
predicted trajectories for this flight. Using the 20 minute look-ahead time window with a step of five minutes and a 
sampling time of every two minutes, the IBST sampled 18 of these trajectories, producing over 109 measurements 
with an average of about six measurements per trajectory. The median error for all the sampled trajectories for 
horizontal error and the unsigned cross- and along-track errors are plotted in Fig. 17. As expected the errors in 
general increase as the look-ahead time increases. 
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Figure 16. Close View of Track Versus 
Trajectory X-Y Plot of Sample Flight 

 
Table 1: Sample Flight’s Trajectory Metrics Data 

Sample 
Time 

Measurement Time 
 

Look-
Ahead 
Time 

Horizontal 
Error 

Cross-
track 
Error 

Along-
track 
Error 

Vertical 
Error 

Clear 
Flag 

Seconds Seconds 
 

HH:MM:SS Seconds
Nautical 

Miles 
Nautical 

Miles 
Nautical 

Miles Feet  
74040 74040 20:34:00 0 0.4 0.3 -0.3 0 0 
74040 74340 20:39:00 300 0.1 -0.1 0.0 793 1 
74040 74640 20:44:00 600 1.2 -0.5 -1.0 0 1 
74040 74940 20:49:00 900 2.1 -0.1 2.1 2096 1 
74040 75240 20:54:00 1200 34.6 11.9 -32.5 6952 1 
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Figure 17. Sample Flight’s Median Error per Look-ahead Time per Error Type 
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B. Scenario of Flight’s Analysis 
The full traffic scenario, from which the sample flight was extracted, was recorded on March 17, 2005 and 

contained approximately 460,000 surveillance track reports and 14,000 air traffic control clearances. The recording 
began about 18:00 UTC and ended at 23:30 UTC, capturing the typical afternoon peak of traffic for the day. 
Following the reasonableness checks and requiring a flight plan clearance to precede the track reports, there were 
2406 flights recorded and available for analysis. For various reasons, only 2024 flights were modeled and available 
for analysis by the TP. This produced approximately 140,000 trajectory accuracy measurements under the same 
IBST parameters as in the sample flight (e.g. sample time two minutes and look-ahead window up to 20 minutes). 
Figure 18 illustrates the errors in the horizontal dimension. The horizontal error is an unsigned error and the sign of 
the cross- and along-track generates a symmetric distribution about zero. The area of the histograms provides an 
indication of the overall performance. From Fig. 18, the along-track error exhibits a larger area than cross-track 
error. Thus, more flights and measurements have larger errors in the along-track dimension, providing a bigger 
impact on the horizontal error.  
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Figure 18. Histograms for Horizontal Dimension Trajectory Errors for All Flights 
 
As discussed in Section VI.A, inferential statistics can 

be applied to determine the impact of many factors that 
may influence the performance of the TP or test whether 
the TP has degraded from one version to the next. One 
example of such an analysis is to determine if the TP has 
a larger error when the trajectory was built before the first 
track position report was captured versus later in the 
flight. The expectation is that the TP utilizes the initial 
surveillance track reports to synchronize with the intent 
information in the flight plan. For the same reasons the 
difference between flights was presented in Section 
VI.A’s hypothesis test, in this example the difference 
between the median horizontal errors per flight was 
calculated. The hypothesis test then serves to evaluate 
whether the trajectories built without track data is 
equivalent statistically to the trajectories built with this 
information. After applying the Paired t -Test as 
described earlier in Section VI.A, the results of 1823 differences produced a mean difference of -3 nautical miles 
and a test statistic of -21.89, providing overwhelming evidence to reject the null hypothesis. This conclusion is 
strengthened by the histogram presented in Fig. 19. The distribution of the differences is clearly skewed negative 
indicating that the evidence overwhelming shows that the trajectory’s horizontal error is statistically larger before 
track begins. This result is not surprising, but clearly shows how statistical tests, particularly the Paired t -Test, 
provide a powerful method for investigating a TP’s performance.  
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Figure 19. Difference in Horizontal Median Error 
per Flight between Early Trajectories and Not 

 

VIII. Conclusion 
A trajectory validation methodology must first measure the performance errors of the TP, and then identify the 

sources of these errors, thus facilitating an improvement to the TP. This paper addressed a specific methodology and 
implementation to measure the trajectory performance errors of a TP. The most challenging part of this process is its 
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sampling, measuring, and analyzing tasks, which were described in this paper. The key contribution of this 
implementation is the use of a relational database of metrics to perform two complimentary analyses. First, 
individual flights are examined in a micro-view using both graphical and numerical results; then the findings from 
the individual flights are supplemented by descriptive and inferential statistical approaches in a macro-view to draw 
overall conclusions of many flights. In tandem, these techniques provide the foundations to performing a full TP 
validation.  

It is noteworthy that this approach has been used for many years to measure the trajectory accuracy of DST’s 
such as URET and it continues to be applied to systems such as ERAM, which relies even more on its underlying 
TP’s predictions within its flight data processing functions. In the future National Airspace System (NAS) of 2025 
as described in Ref. 12, the FAA through the Joint Planning Development Office (JPDO) envisions an aviation 
system that relies on trajectory-based operations to manage the forecasted ever increasing high-density and high-
complexity air traffic demand. This future TP driven NAS will require the techniques presented in this paper even 
more. 
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