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Abstract*†‡ 

 
A conflict probe is an air traffic management decision 
support tool that predicts aircraft-to-aircraft and 
aircraft-to-airspace conflicts. In order to achieve the 
confidence of the air traffic controllers who are 
provided this tool, a conflict probe must accurately 
predict these conflicts. This paper discusses how a 
conflict probe's quantitative accuracy requirements can 
be tested using hypothesis testing techniques. The paper 
also asserts that air traffic scenarios based on recorded 
field data are essential to the evaluation of a conflict 
probe and states that time shifting these scenarios can 
create data samples necessary to perform the hypothesis 
testing. This paper then compares three time shifting 
techniques: time compression, random time adjustment, 
and an implementation of a genetic algorithm. 
 
 

Introduction 
 
A ground-based conflict probe (CP) is a decision 
support tool that provides the air traffic controller with 
predictions of conflicts (i.e., loss of minimum 
separation between aircraft) for a parametric time (e.g., 
2 to 20 minutes) into the future. At a minimum, a 
conflict probe predicts the flight path of an aircraft, 
continuously monitors that flight path from current 
aircraft position information, and probes for conflicts 
with other aircraft and possibly incursions into 
restricted airspace. Some versions also assist the 
controller in resolving the predicted conflicts and with 
alternative route planning in response to user requests.  
 
There are several different types of conflict probes, 
differentiated mainly by their time domain and 
application in the National Airspace System (NAS). 
Some focus on more near-term or tactical conflict 
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predictions (2-3 minutes), while others predict longer-
term (up to 20 minutes) conflicts between aircraft. In 
the NAS en route environment, some versions are 
adapted for the radar air traffic controller who is 
responsible for aircraft separation. Others are designed 
for the associate or planning controller and provide 
separate displays, which are indirectly accessible by the 
radar controller. These longer-term conflict probes 
support the reduction of restrictions by aiding the 
controller in the strategic planning of aircraft separation 
management. All make predictions of the future path of 
an aircraft, and thus are subject to some uncertainty. 
 
As described in [1], the Federal Aviation 
Administration (FAA) deployment of one such CP 
requires quantitative accuracy measurement to ensure 
the application performs within a specified level of 
accuracy. The primary quantitative measurement of a 
CP’s overall accuracy is the evaluation of its conflict 
predictions. This is consistent with the probe’s central 
goal of detecting conflicts. As presented in [2], [3], and 
[4], conflict prediction accuracy quantifies the two 
fundamental error probabilities of a CP: Missed and 
False Alerts. A Missed Alert occurs when a CP fails to 
predict a conflict. A False Alert occurs when a CP 
predicts a conflict that does not actually occur.  
 
To measure the Missed Alerts, a significant number of 
CP predictions of aircraft-to-aircraft conflicts need to 
be examined. To measure False Alerts, a significant 
number of non-conflict predictions or encounters 
between aircraft need to be examined. A conflict is a 
violation of standard minimum separation (5 nm), while 
an encounter has a greater separation defined by the 
analyst (e.g. 25 nm). Since air traffic controllers 
separate aircraft to avoid conflicts, these events 
generally cannot be observed from actual air traffic 
operations. Non-conflicts or encounters between 
aircraft do occur in actual air traffic operations but 
often not at the required levels needed for accuracy 
measurement. One approach is to generate the events 
by simulation. However, air traffic messages contain 
errors and inconsistencies (e.g. surveillance radar 
tracking error, lack of flight intent in the form of 
missing or timely aircraft controller directives, 
navigation errors, etc.). A more realistic method is to 
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use recorded air traffic data. In [3], recorded traffic data 
was utilized to evaluate the performance of a conflict 
probe and the definition of conflicts was expanded to 
include encounters. Another approach is time shifting 
the recorded air traffic to induce conflicts and 
encounters. The focus of this paper will be on time 
shifting recorded air traffic data to induce encounters. 
Future research will address both conflict and encounter 
events in an analogous manner. 
 
In this paper, the FAA’s Conflict Probe Assessment 
Team (CPAT) first presents a quantitative approach to 
measuring conflict prediction errors. This approach is 
used to determine the number of required aircraft-to-
aircraft encounter events for statistical significance. 
Next, several methods of time shifting recorded air 
traffic data are introduced. These time shifting 
techniques modify the recorded traffic data to generate 
the required number of encounter events. Finally, the 
paper concludes by comparing these time shifting 
techniques using a sample of air traffic data from 
Memphis Air Route Traffic Control Center (ARTCC). 
 

Quantitative Requirements Testing 
 
As presented in [1], a CP requires quantitative accuracy 
measurement to ensure the application performs within 
a specified level of accuracy. This is accomplished by 
performing an accuracy test on the CP that bounds key 
system level requirements, such as the probability of 
Missed Alert or False Alert events. The test’s estimated 
probability of a False Alert ( p̂ ) is defined in Equation 
1. The probability of Missed Alert is similarly 
quantified as a proportion of conflicts as defined in [1].  

n
fp == Alert False ofy probabilitˆ  (1) 

where 

encounters ofnumber   total 
Alerts False ofnumber 

=
=

n
f   

 
The quantitative measurement in Equation 2 tests the 
CP’s probability of False Alert ( p̂ ) to ensure it is less 
than or equal to the required probability of False Alert. 

Prp ≤ˆ  (2) 
where 

Alert False ofy probabilit  required
Alert False ofy probabilit test   ˆ 

=
=

Pr
p   

As discussed previously, recorded traffic data can be 
time-shifted to generate the required number of 
encounters (n). Since p̂  is a sample estimate of the true 
probability of False Alert, a statistical inference method 
called hypothesis testing is used to provide statistical 
evidence that the CP actually passed or failed the test. 

The next section presents the hypothesis testing 
approach and provides guidance to scenario developers 
in the quantity of encounters needed. 
 
Hypothesis Testing and Required Sample Size 
Hypothesis testing is an inferential technique used to 
make a broad claim on the value of some population 
parameter or characteristic. The practitioner will 
hypothesize a value for the population parameter and 
then use a statistic from the test population to support or 
reject the premise. It is also possible, given an estimate 
of the unknown parameter, to determine the number of 
sample observations required to provide the most 
sensitive test. This method was used to determine the 
number of encounters required to achieve a fixed level 
of statistical significance. A detailed discussion of 
hypothesis testing can be found in [5]. 
 
In hypothesis testing two complementary statements are 
postulated regarding the true but unknown value for 
some population parameter. In this study, the null and 
alternative hypothesis for a one-sided test can be stated 
as,  

H0: P <= Pr, the true (and unknown) population 
parameter is less than or equals a fixed value Pr  

 
 H1: P > Pr, the population parameter is actually 

greater than value Pr 
 
Here H0 and H1 state the null and alternative 
hypothesis, the variable P is an unknown population 
parameter and Pr is the hypothesized value for the 
required probability. In this example, Pr represents the 
required probability of False Alert, and P represents the 
true and unknown probability of False Alert. The 
method assumes that both the sampling distribution of 
the test statistic and that of the population parameter are 
normally distributed. Figure 1 shows the test setting.  
  
 

Pr

β α 

zα P1
 

Figure 1: Hypothesized vs. True Distributions 
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Figure 1 shows two normal curves where Pr is the mean 
of a normal curve for the hypothesized population and 
P1 is the mean of a normal curve for the true 
population. The true population is actually fixed 
relative Pr and results in some degree of overlap in the 
tail regions between the two curves. This overlap is 
labeled as α and β and will be further defined below.  
 
Figure 1 further identifies a vertical line labeled zα  that 
intersects the two population curves, a region to the 
right of zα under the Pr curve labeled as α and a region 
to the left of zα under the P1 curve labeled as β. The zα 
is a number of standard deviations to the right of the 
hypothesized mean of the Pr curve that captures a 
predetermined probability in the tail region. The 
practitioner will select some probability (known as α or 
the critical region) in the tail where a sample is 
considered so unlikely that observing such a sample 
will support the alternative hypothesis. For this selected 
probability the corresponding zα is then a look-up value 
from a table for the standard normal curve. For a given 
zα and fixed sample size, β is then completely 
determined and represents the region under the P1 curve 
to the left of zα where a sample will erroneously 
provide evidence supporting the null hypothesis. 
Equation 3 shows the calculation of the β probability, 
where Φ  is the density function of a normal 
distribution. 
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A conclusion supporting either hypothesis is based on 
the z-statistic. The z-statistic standardizes the distance 
between a sample estimate of the true population mean 
and the hypothesized mean. Equation 4 shows the 
calculation for the z-statistic where p̂  is the sample 
estimate, pr is the hypothesized parameter value, and n 
is the sample size. A value for the test statistic falling in 
the α critical region provides evidence against the null 
hypothesis. For this study it provides evidence that the 
CP failed the test and the true number of False Alerts 
was larger than the requirement. 
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Historically the α region has been known as the 
producer’s risk as an erroneous sample may result in 
rejecting product from a process that is working 
correctly. The β region has been known as the 

consumer’s risk as a sample may fail to reveal a process 
that is actually generating defective product. In this 
study, the two critical regions were held equal to 
balance the risk to both the consumer (e.g. the FAA) 
and the producer (e.g. the CP developer).  
 
Another consideration is sample size, which can be 
considered a balance between sufficiency (large to 
provide good information on the true population) and 
practicality (sampling constraints). It should be noted 
that increasing the sample size is the only means of 
reducing the β critical region for a fixed level of α. 
Increasing the sample size has the effect of reducing the 
standard error which reduces the overlap between 
distributions. In an earlier paragraph it was noted that 
the population curves of Figure 1 were illustrated with 
unequal variances. They were drawn as such to clarify 
the effect of increased sample size. If both populations 
originally had a shape (or variance) consistent with that 
of the P1 curve some increase in the sample size would 
have the effect of reducing the variance and generate 
the more peaked shape of the Pr curve. Then increasing 
sample size with Pr and P1 fixed reduces the overlap in 
the tail regions between distributions and consequently 
the β critical region is reduced (assuming a fixed α). In 
this work the variable of interest was the sample size 
required to reduce the population variance such that β 
was equal to a pre-determined, fixed value for α. 
  
The data in this study is dichotomous (0-1, pass-fail, 
conflict-no conflict). A statistic based on a dichotomous 
random variable can be modeled as having a Binominal 
sampling distribution, which for a large sample size can 
be approximated using the normal distribution. This 
normal approximation to the binomial enables the use 
of Equations 3 and 4 in determining a value for β. In 
this study, for a pre-determined value of α and β, and a 
fixed value for the two population means, the required 
number of observations can be determined as shown in 
Equation 5. Here the zα and zβ parameters are the 
number of standard deviations above and below Pr and 
P1 population means, respectively, and the remaining 
variables have been defined above. 
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In this work, n represents the number of encounters 
required for the accuracy test of the CP given a pre-
determined α and β and known or assumed values for 
the Pr and P1 population means.  
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Application of the Required Sample Size 
Equation 5 can be used to determine the number of 
scenario hours to be generated (time-shifted recorded 
traffic data). To demonstrate the methodology for this 
study, the required probability of False Alert is assumed 
0.16 (a reasonable value for a CP from the authors' 
experience). This is Pr in Equation 2. As suggested in 
[1], P1 in Equation 5 can be defined as a multiple of Pr. 
This is expressed in the following Equation 6.  

rpp λ=1  (6) 

where λ > 1 and 11 ≤p . 
 
Equations 5 and 6 and the assumed requirement value 
(Pr) are applied with various values of α and β. This is 
illustrated in Figure 2. The y-axis in Figure 2 represents 
the required sample size of encounters, and the x-axis is 

the multiple of Pr or λ from Equation 6. The figure 
illustrates the resulting curves formed by α and β 
probabilities ranging from 0.01 to 0.15. The curves 
show the test will require very large sample sizes for 
detecting small differences between the requirement 
and true False Alert probability (small λ) and reduces 
significantly as the difference increases (larger λ). Also, 
larger sample sizes are generally required for smaller α 
and β probabilities. For this study, an α and β of 0.05 is 
chosen with a λ of 1.05. This equates to 23,179 
required sample encounters. The following section 
defines the methodology of generating the scenario data 
to produce these encounters. 
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Figure 2: Required Sample Size for Accepted α and β Errors 

α = β: 
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Scenario Time Shifting 
 
CPAT developed the scenario generation process 
described in [6]. This process consists of three steps: (1) 
data extraction, where the recorded traffic data is used 
to populate a set of relational database tables; (2) data 
modification, where the data in the tables may be 
manipulated for test purposes; and (3) scenario 
generation, where scenarios are created based on the 
traffic data retrieved from the modified database tables.  
 
Track data extracted during the data extraction step 
preserves real world errors, but generally does not 
contain the conflicts or the desired encounter 
distributions to effectively test a conflict probe. Time 
shifting is a technique used in the data modification 
step in which flights are moved either forward or 
backward in time. This causes conflicts and encounters 
that are not present in the recorded field data, while at 
the same time retaining the profile of the individual 
flights.  
 
Figure 3 presents a graphic representation of time 
shifting. The line on the top of the figure represents the 
timeline of the recorded data. On this recorded timeline 
a flight plan message (FP) and numerous track 
messages (Tk) for a single flight are depicted. During 
the data extraction step a single start time (labeled 
flight.start_time) is associated with the flight. This start 
time is the time stamp associated with the first track 
point for the flight. The times associated with all other 
events (i.e., the flight plan message and each of the 
track messages) are retained relative to this start time; 
this is called flight-centric data as defined in [6]. 
 

FP Tk0 Tk1 Tk2 . . .Tkn

flight.start_timeRecorded
timeline

flight.start_time + flight.delta_time

FP Tk0 Tk1 Tk2 Tkn. . .

Modified
timeline

flight.delta_time

 
Figure 3: Time Shifting 

 
The lower line in Figure 3 represents the time-shifted 
timeline that results when a time-shifted value of 
flight.delta_time is applied to the flight. Note that the 
entire flight is shifted in time but that the relative times 
between the flight’s events remain the same. 
 
Special consideration is given to flights that have the 
same aircraft id (ACID) but different computer ids 
(CID). It is assumed that these flights are the same 
aircraft, therefore the same time shift value is applied to 
each instance. 

 
Time shifting, when done in this manner, causes the 
individual flights to retain their flight profiles, but the 
interaction between flights is altered. This causes the 
conflicts and encounters in the generated scenarios that 
are not found in the recorded field data. 
 
Three time-shifting techniques have been used by 
CPAT: time compression, random time adjustment, and 
an implementation of the genetic algorithm. These are 
discussed in the following subsections. 
 
Time Compression 
For time compression, the difference between the 
original start time of a flight (the time stamp of the 
flight’s first track point) and a base time is multiplied 
by a constant (Cm). The base time is selected to precede 
the start time of all flights in the scenario and Cm is a 
positive number between 0.0 and 1.0. This is depicted 
in Figure 4 where Tb represents the base time, T0 
represents the flight’s start time, and the block labeled 
Recorded Track represents the flight’s flight-centric 
data. With time compression, the flight’s original start 
time, T0, is changed to T0' using Equation 7. 

)0('0 bTTmCbTT −+=  (7) 
 

Tb

Timeline for recorded track

Timeline for time shifted track

Tb

Recorded Track

Time Shifted Track

T0

time shift

T0'= Tb  + Cm(T0-Tb)

Where Cm is a positive number between 0.0 and 1.0 and Tb is a basetime
defined to precede all track start times in the scenario.  

Figure 4: Time Compression 
 
Note with time compression all flights are moved 
earlier in time and that no flight's start time can be 
shifted earlier than the base time. In general, time 
compression shifts flights occurring later in the scenario 
a greater amount than earlier flights; however, as stated 
above, flights with a common ACID are shifted an 
equal amount throughout the scenario. As a result, a 
time-compressed scenario has a longer duration than a 
non time-compressed scenario. The following two 
situations illustrate why this is true: 
 
1. First, consider a flight that has a flight plan 

occurring before or shortly after the base time and 
its track data occurring much later in the scenario. 
Since the time shift is based only on the start time 
of the flight, this early flight plan will be shifted 
significantly earlier. This results in the flight plan 
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being shifted much earlier than the original 
beginning of the scenario. 

 
2. Secondly, consider another flight that changes its 

computer identification number (CID) a number of 
times during a scenario. Since it is considered to be 
a single flight, each occurrence is shifted the same 
amount. If the first occurrence is early in the 
scenario, each occurrence will be shifted only a 
small amount. This would cause the last occurrence 
to also be shifted only a small amount. 

 
The first situation would cause the scenario to begin 
earlier in time and the second situation would cause the 
scenario to end at about the same time as the original. 
As a result the duration of the scenario would increase 
even though the track only data is shortened in duration. 
 
Random Time Adjustment 
For random time adjustment, the start time of a flight’s 
track is modified by adding a random time increment. 
For example in Figure 5, the start time of the original 
track, T0, is changed to T0' by adding a random variable 
r, where r is randomly selected from some known 
frequency distribution for each flight. As implemented 
by CPAT, this may be from either a normal or uniform 
frequency distribution. In addition, the time shift values 
are restricted so that no flight can be shifted earlier than 
the base time.  
 

Timeline for recorded track

Timeline for time shifted track

Recorded Track

Time Shifted Track

time shift

T0

T0'= T0+ r

Where r is obtained from a pseudorandom number generator.
NOTE: This graphic shows an example for which r < 0.

 
Figure 5: Random Time Adjustment 

 
For similar reasons as those illustrated in the time-
compressed scenario, the duration of a scenario that has 
random time adjustment will also generally be longer 
than that of the original scenario. 
 
Time Shifting Using a Genetic Algorithm 
A genetic algorithm is a stochastic process that is a 
special case of a class of algorithms called Random 
Heuristic Search algorithms [7]. The feasibility of its 
use for time shifting scenarios is documented in [8] and 
its implementation by CPAT is documented in [9]. In 
this implementation the genetic algorithm finds a set of 
time shift values – one for each flight in the scenario – 

so that the distribution of the aircraft-to-aircraft 
encounters meet user specified constraints. These 
constraints are the number of encounters in the scenario 
and the distribution of encounters within four primary 
encounter parameters, which are all calculated at the 
point of closest horizontal approach. These are: the 
horizontal separation, the vertical separation, the 
encounter angle, and vertical phase of flight (where 
vertical phase of flight can be that both aircraft are in 
level flight, that one aircraft is in level flight and the 
other is either descending or climbing, and that both 
aircraft are either descending or climbing). 
 
As implemented by CPAT, the genetic algorithm does 
not impose the base time restriction found in the time 
compression and random time adjustment techniques. 
Therefore flights early in the scenario may be shifted so 
that their first track point is earlier than the base time 
depending on the frequency distribution parameters 
selected by the user. This causes scenarios generated by 
the genetic algorithm to have a longer duration that the 
original scenario and potentially longer than the other 
two methods presented. 
 

Comparison of Time Shifting Techniques 
 
To compare these three time shifting techniques a 
nominal (non time-shifted) scenario was generated. 
Then the following time-shifted scenarios were 
generated:  
 
• Time-compressed only 
• Random time adjustment only 
• Time-compressed and random time adjustment 
• Genetic algorithm 
 
As determined earlier, 23,179 (Nr) encounters are 
needed in our sample application. Each of these time-
shifted scenarios will be evaluated in terms of the 
quantity of total scenario hours needed to achieve this 
encounter count. Thus, each scenario will have a total 
encounter count (Ns) and duration (Ds). Using Equation 
8, an estimate of the total scenario hours (S) required 
for each method was calculated.  

DsN s

N rS 







=  (8) 

where 

duration scenario  theD
countencounter  sscenario'  the
countencounter   totalrequired 

=
=
=

s
N s
N r

  

  
The results are presented in Tables 1 and 2 and are 
discussed in the following sections. 
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Table 1: Encounter Parameter Distributions 

   Non Time-
Shifted Time-Shifted 

  
 

Required 
Sample  

Size 
Nominal Time 

Comp 
Random 
Time Adj 

Time Comp 
and Random 

Time Adj 
Genetic 

Algorithm 

Number of 
Encounters 23179 5544 7151 5804 6318 8049 

0 to 5 
nm 3788 906 

16.34% 
1267 

17.72% 
1079 

18.59% 
1066 

16.87% 
1362 

16.92% 
5 to 10 

nm 3934 941 
16.97% 

1309 
18.31% 

1057 
18.21% 

1238 
19.59% 

1406 
17.47% 

10 to 15 
nm 5076 1214 

21.90% 
1437 

20.10% 
1152 

19.85% 
1326 

20.99% 
1727 

21.46% 
15 to 20 

nm 5489 1313 
23.68% 

1619 
22.64% 

1301 
22.42% 

1424 
22.54% 

1869 
23.22% 

H
or

iz
on

ta
l 

  

20 to 25 
nm 4892 1170 

21.10% 
1519 

21.24% 
1215 

20.93% 
1264 

20.01% 
1685 

20.93% 
0 to 1000 

ft 5657 1353 
24.40% 

1948 
27.24% 

1775 
30.58% 

1814 
28.71% 

2115 
26.28% 

1000 to 2000 
ft 2007 480 

8.66% 
556 

7.78% 
438 

7.55% 
448 

7.09% 
696 

8.65% 
2000 to 3000 

ft 10452 2500 
45.09% 

3122 
43.66% 

2369 
40.82% 

2672 
42.29% 

3486 
43.31% 

3000 to 4000 
ft 1472 352 

6.35% 
408 

5.71% 
342 

5.89% 
363 

5.75% 
530 

6.58% 

Ve
rt

ic
al

 S
ep

ar
at

io
n 

4000 to 5000 
ft 3591 859 

15.49% 
1117 

15.62% 
880 

15.16% 
1021 

16.16% 
1222 

15.18% 

0º to 30º 3458 827 
14.92% 

1075 
15.03% 

832 
14.33% 

878 
13.90% 

1267 
15.74% 

30º to 60º 2860 684 
12.34% 

924 
12.92% 

749 
12.90% 

821 
12.99% 

972 
12.08% 

60º to 90º 2985 714 
12.88% 

945 
13.21% 

771 
13.28% 

866 
13.71% 

1007 
12.51% 

90º to 120º 3487 834 
15.04% 

1035 
14.47% 

888 
15.30% 

956 
15.13% 

1202 
14.93% 

120º to 150º 4277 1023 
18.45% 

1277 
17.86% 

1022 
17.61% 

1157 
18.31% 

1486 
18.46% En

co
un

te
r A

ng
le

 

150º to 180º 6112 1462 
26.37% 

1895 
26.50% 

1542 
26.57% 

1640 
25.96% 

2115 
26.28% 

Level- 
Level 13684 3273 

59.04% 
4205 

58.80% 
3343 

57.60% 
3709 

58.71% 
4323 

53.71% 
Level- 

Transitioning 7509 1796 
32.40% 

2368 
33.11% 

1928 
33.22% 

2060 
32.61% 

2843 
35.32% 

Tr
an

si
tio

n 
M

ix
 

Transitioning-
Transitioning 1986 475 

8.57% 
578 

8.08% 
533 

9.18% 
549 

8.69% 
883 

10.97% 
 
 

Table 2: Scenario Duration Required 

 Non Time- 
Shifted Time-Shifted 

 Nominal Time 
Comp 

Random 
Time Adj 

Time Comp 
and Random 

Time Adj 
Genetic 

Algorithm 
Scenario 
Duration 

14343 s 
4.0 h 

16750 s 
4.7 h 

17375 s 
4.8 h 

16411 s 
4.6 h 

17793 s 
4.9 h 

Track Only 
Duration 

14340 s 
4.0 h 

14130 s 
3.9 h 

14347 s 
4.0 h 

13819 s 
3.8 h 

17671 s 
4.9 h 

Required 
Duration 

60017 s 
16.7 h 

54292 s 
15.1 h 

69389 s 
19.3 h 

60207 s 
16.7 h 

51239 s 
14.2 h 
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Scenarios are also evaluated by their distribution of 
several primary encounter properties. Each of the 
four scenarios is compared to the nominal scenario. 
As listed in Table 1, the encounter properties include 
five bins of minimum horizontal separation (e.g. 10 
to 15 nautical miles), five bins of minimum vertical 
separation, six encounter angle bins, and three bins 
for the vertical phase of flight during the encounter 
(level-level, level-transitioning, and transitioning-
transitioning). It is important that the scenarios have a 
proportional number of encounters in each of these 
bins as compared to the nominal scenario. For 
example, it would not be valid if a scenario achieved 
a high encounter count by producing many in-trail 
encounters (encounter angles between 0o to 30o). In-
trail encounters are more sensitive to errors in speed 
and will lead to larger False Alert predictions by a 
CP. Since these properties can influence a CP’s 
accuracy performance, all time-shifted scenarios 
must have encounter distributions proportional to the 
nominal (non time-shifted) scenario. 
 
Nominal Scenario 
The nominal scenario used for this comparison is 
based on data recorded at the Memphis ARTCC on 
October 11th, 2000.  
 
As shown in Table 2, the duration of this scenario is 
about four hours (14343 seconds ≈ 4.0 hours). Since 
this data is based on recorded data the duration of the 
track-only portion of the scenario is almost the same 
(14340 seconds ≈ 4.0 hours). Without using time 
shifting for the sample application it would require 
16.7 scenario hours to obtain the required encounters 
(Nr). Table 1 also lists the scenario’s quantity of 
encounters per encounter property bin. For example, 
the nominal scenario had 1,214 encounters with 
minimum horizontal separations between 10 to 15 
nautical miles. This equates to 21.9% of the total 
encounters found in the scenario. 
 
Based on the required number of encounters (Nr = 
23,179) discussed earlier, Table 1 also presents each 
bin’s target value of encounters. For example, for the 
same bin of minimum horizontal separation between 
10 to 15 nautical miles, there are 5,076 encounters 
required. The bin is exactly 21.9% of the total 
required encounters. Therefore, the required sample 
size column in Table 1 lists the required quantity of 
encounters per bin with the same distribution as the 
nominal scenario. 
 
Time Compression Only Scenario  
The first time-shifted scenario was only compressed 
in time. The compression multiplier used for this 
compression was 0.75. Since this was a four-hour 

scenario, flights near the end of this scenario were 
moved almost one hour earlier in time. This one-hour 
maximum was chosen for this comparison because 
CPAT had determined through other research that a 
flight can be time-shifted up to one-hour without 
impacting conflict probe trajectory modeler’s 
accuracy [10].  
 
For the reasons previously discussed, the duration of 
this scenario (16750 seconds = 4.7 hours) is longer 
than that of the nominal scenario, while the track-
only portion of the scenario is slightly less (14130 
seconds ≈ 3.9 hours). The number of scenario hours 
required when using time compression for this 
sample application is 16.7 hours.  
 
The time-compressed scenario’s distribution of 
encounter properties was reasonably matched to the 
nominal. The largest deviation was about 3% from 
the nominal for the minimum vertical separation bin 
between 0 and 1000 feet. 
 
Random Time Adjustment Only Scenario  
The next scenario used random time adjustment. For 
this scenario each flight was randomly time-shifted 
earlier in time using a uniform frequency distribution. 
This random selection was done so that no flight was 
moved earlier in time by more than one hour and so 
that no flight was moved later in time.  
 
The total duration of this scenario (17375 seconds ≈ 
4.8 hours) is even greater than the time-compressed 
only scenario, while the track-only portion is about 
the same (14347 seconds ≈ 4.0 hours) as the nominal 
scenario. The number of scenario hours required 
using random time adjustment only for this sample 
application is 19.3 hours. 
 
The random time-adjusted scenario’s distribution of 
encounter properties also reasonably matched the 
nominal scenario. However, a few of the vertical 
separation bins were as high as 6.2% different than 
the nominal. The difference was still reasonable yet 
more properties deviated than the time-compressed 
scenario.  
 
Time-Compressed and Random Time Adjustment 
Scenario  
Both time compression and random time adjustment 
were used for the next scenario. For this scenario the 
flights were first compressed using a compression 
multiplier of 0.875, which caused no flights to be 
moved earlier in time by more than one-half hour. 
Then a random time adjustment was done using a 
uniform frequency distribution so that the flights 
could be moved earlier in time by no more than 1800 
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seconds. This ensured that all flights were moved 
earlier than their original time, but no flight was 
moved earlier by more than one hour.  
 
The total duration of this scenario is less than when 
the individual techniques were applied (16411 
seconds ≈ 4.6 hours). For this example the duration 
of the track only portion is less than that of the 
nominal (13819 seconds ≈ 3.8 hours). The number of 
scenario hours required using a combination of time 
compression and random time adjustment for this 
sample application is 16.7 hours. 
 
The time-compressed and randomly time-adjusted 
combined scenario had reasonably matching 
encounter properties as well. It’s deviation from the 
nominal was somewhere in between the time-
compressed scenario and the randomly time-adjusted 
version. For example, the same minimum vertical 
separation bin of 0 to 1000 feet was 4% larger than 
the nominal, which is between the 3 and 6% 
deviations of the respective time-compressed and 
randomly time-adjusted scenarios. 
 
Genetic Algorithm Scenario 
Some of the input parameters for the genetic 
algorithm are summarized in Table 3. Detailed 
information about these input parameters is provided 
in [9], which described CPAT’s implementation of 
the genetic algorithm. These particular lower bounds 
were selected in order to derive time shift values that 
would modify the original scenario so that it would 
attain one-third of the required encounters specified 
in the sample application. The upper values were 
selected to be 10% higher. The genetic algorithm 
found a solution with a fitness value of 0.99, where a 
fitness of 1.0 indicates that all constraints were met.  
 
The total duration of the scenario based on this 
solution is longer than the original scenario (17793 
seconds ≈ 4.9 hours), with a similar track only 
portion (17671 seconds ≈ 4.9 hours). The number of 
scenario hours required using the genetic algorithm 
for this sample application is 14.2 hours. The genetic 
algorithm produces a scenario with the least required 
scenario hours of all three previous techniques. 
 
Since the genetic algorithm explicitly attempts to fit 
the various encounter bins, in general its scenario 
most closely matches that of the nominal compared 
to the other three scenarios. With the exception of the 
vertical phase of flight, all the bins are matched 
within 2% of the nominal scenario. The vertical 
phase of flight bins had deviations as large as 5%. 
This is easily explained: the current implementation 
of CPAT’s genetic algorithm approximates the 

vertical phase of flight by taking it only at the closest 
point of approach (time point of minimum horizontal 
separation). A future implementation may be 
designed to determine if each flight was transitioning 
at any point during the encounter. 
 

 Table 3: Selected Genetic Algorithm Input 

Input 
Parameter 

Low 
Bound 

High 
Bound 

Desired number of encounters 7726 8499 
Min Horz Sep: 0 to 5 nm 1263 1389 

Min Horz Sep: 5 to 10 nm 1311 1442 
Min Horz Sep: 10 to 15 nm 1692 1861 
Min Horz Sep: 10 to 20 nm 1830 2013 
Min Horz Sep: 20 to 25 nm 1631 1794 
Min Vert Sep: 0 to 1000 ft 1886 2075 

Min Vert Sep: 1000 to 2000 ft 669 736 
Min Vert Sep: 2000 to 3000 ft 3484 3832 
Min Vert Sep: 3000 to 4000 ft 491 540 
Min Vert Sep: 4000 to 5000 ft 1197 1317 

Encounter Angle: 0º to 30º 1153 1268 
Encounter Angle: 30º to 60º 953 1048 
Encounter Angle: 60º to 90º 995 1095 

Encounter Angle: 90º to 120º 1162 1278 
Encounter Angle: 120º to 150º 1426 1569 
Encounter Angle: 150º to 180º 2037 2241 

Level - Level 4561 5017 
Level - Transitioning 2503 2753 

Transitioning - Transitioning 662 728 

 
Summary 

 
Building upon the fundamental principles discussed 
in [5], this paper introduced a method to estimate the 
number of aircraft encounters and the scenario hours 
required to test a CP. A hypothesis testing technique 
was developed that balanced competing α and β risks 
for the CP developer and user. This was 
demonstrated on testing a CP’s probability of False 
Alerts.  
 
Next, the concept of time shifting recorded air traffic 
was presented. This involves moving aircraft flights 
temporally using three different techniques: time 
compression, random time adjustment, and a genetic 
algorithm. These techniques were applied on a 
sample of recorded air traffic from Memphis 
ARTCC, producing four scenarios, which included a 
time-compressed scenario, randomly time-adjusted 
scenario, a combined time-compressed and randomly 
time-adjusted scenario, and a genetic algorithm 
generated scenario. The scenarios were evaluated 
against a non time-shifted or nominal scenario to 
meet a required number of aircraft encounters (based 
on the hypothesis test discussed). Each scenario was 
also evaluated on how well it matched the 
distribution of encounter properties of the nominal 
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scenario. The encounter properties examined are 
listed in Table 1 (e.g., minimum horizontal 
separation). The time compression technique 
performed well, but the overall best technique was 
the genetic algorithm. It explicitly was designed to 
achieve a specified quantity of encounters as listed in 
Table 3 and resulted in a scenario requiring 15% less 
scenario hours. 
 
An effective application of these techniques would be 
a developer’s regression testing of CP software 
releases or versions. A scenario or set of scenarios 
can be base lined with an existing software release. 
Future releases are then hypothesis tested against the 
performance of the base line release (acting as the 
requirement). If the current CP software release fails 
the test, it is examined for software problems, 
corrected, and retested. Furthermore, with the proper 
support tools, the actual Missed and False Alert 
events can be examined in detail to aid the developer 
in making the proper corrections to the current CP 
release. A time-shifted air traffic scenario with a 
significant number of conflicts and encounters can be 
used repeatedly, maybe for several years depending 
on the program. Therefore, a reduction in the 
required scenario hours by only a few hours (like 
presented in the genetic algorithm scenario) can 
amount to many hours of labor and lab utilization 
savings over several years. 
 
Future research will expand this work to include the 
evaluation of time shifting methods of aircraft 
encounters and concurrent aircraft-to-aircraft 
conflicts (loss of legal separation). Thus, both the 
False Alert and Missed Alert probabilities could be 
evaluated with the time-shifted scenarios. Also, 
applications of the quantitative measurement 
methodology and the scenario generation will be 
explored. 
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